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Abstract—Two key technologies in robotic object grasping are 

target object localization and pose estimation (PE), respectively, 

and the addition of a robotic vision system can dramatically 

enhance the flexibility and accuracy of robotic object grasping. 

The study optimizes the classical convolutional structure in the 

target detection network considering the limited computing 

power and memory resources of the embedded platform, and 

replaces the original anchor frame mechanism using an adaptive 

anchor frame mechanism in combination with the fused depth 

map. For evaluating the target’s pose, the smooth plane of its 

surface is identified using the semantic segmentation network, 

and the target’s pose information is obtained by solving the 

normal vector of the plane, so that the robotic arm can absorb 

the object surface along the direction of the plane normal vector 

to achieve the target’s grasping. The adaptive anchor frame can 

maintain an average accuracy of 85.75% even when the number 

of anchor frames is increased, which proves its anti-interference 

ability to the over fitting problem. The detection accuracy of the 

target localization algorithm is 98.8%; the accuracy of the PE 

algorithm is 74.32%; the operation speed could be 25 frames/s. It 

could satisfy the requirements of real-time physical grasping. In 

view of the vision algorithm in the study, physical grasping 

experiments were carried on. Then the success rate of object 

grasping in the experiments was above 75%, which effectively 

verified the practicability. 

Keywords—Mobile robot; target object localization; pose 

estimation; YOLOv2 network; FCN semantic segmentation network 

I. INTRODUCTION 

There are many high-intensity and dangerous delicate 
operations in the actual industrial production process, and with 
the significant increase of labor costs in recent years, the 
industrial production environment requires a lot of human 
capital to perform these operations. For enhancing the 
industrial productivity and control labor costs, a lot of 
industrial robots are introduced in industrial environments to 
perform daily industrial operations [1]. The ability of robots to 
perform a range of complex tasks in industrial production 
quickly and efficiently, and with lower input costs compared to 
manual labor, has made them the primary choice for real-world 
industrial operations [2]. However, mobile robots are still very 
difficult to fully automate in a real-world industrial production 
environment, and workers are often needed to assist in the 
process, resulting in limited efficiency gains for the entire 
industrial process [3-4]. To achieve fully automated robotic 
operations, vision systems need to be introduced on mobile 
robots equipped with robotic arms [5]. The introduction of 

vision systems in robotics can on the one hand increase the 
reliability of robotic arms working in real complex industrial 
environments and on the other hand reduce the need for 
manual assistance in industrial operations [6-7]. Although a 
large number of mobile robots have been introduced into actual 
industrial production environments, they cannot fully automate 
actual industrial operations. Therefore, a mobile robot 
equipped with a robotic arm with visual feedback is needed to 
carry out transportation, sorting and other work in the industrial 
environment. To achieve this process, mobile robots first need 
to detect the target, locate the target position, estimate the 
object's posture, and determine the grasping point. The 
research mainly focuses on the vision algorithm of the sucking 
robot arm when grasping objects. The problems to be solved 
are target location and pose estimation. Research on combining 
depth information and image color information for pose 
estimation, and propose an adaptive anchor frame mechanism 
based on the characteristics of depth images. Then, the 
semantic segmentation network and principal component 
analysis are used to determine the surface normal vector of the 
object, in order to estimate the target pose. The purpose of the 
research is to make the Robotic arm adjust the pose direction of 
the robot arm and grasp the object more efficiently and 
accurately by determining the spatial position and pose of the 
target object. 

II. RELATED WORK 

Target detection is the key and prerequisite for automated 
object grasping by robotic arms in industrial production 
environments, and is therefore a research focus in machine 
vision. Dai Y et al. present a discriminative network for 
infrared small target detection to address the problem of few 
features inherent in purely data-driven methods, which fully 
utilizes labeled data and domain knowledge, and validates its 
performance on the open SIRST dataset, verifying that the 
network has some enhancement performance [8]. Scholars 
Szemenyei M and Estivill-Castro V present two new neural 
network results for the target detection problem of rescue 
robots in soccer tournaments, both structures use 
environmental attributes for enhancing the semantic 
segmentation and target detection, and use synthetic transfer 
learning to complete the learning in a small number of 
manually labeled images, and finally validate the models in 
experiments low cost and advanced [9]. Three aspects of 
vision-based robot grasping were investigated by Du et al. A 
review of traditional methods based on RGB-D image input 
and new methods of deep learning (DL) was mainly conducted 
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to provide theoretical help for the challenges and solutions of 
robot grasping [10]. Ravindran et al. addressed the multi-target 
detection and multi-target tracking in vehicle driving and 
proposed the solution of combining sensing modalities with 
Deep Neural Network (DNN), which includes three sensors 
and fusion of sensor data with DNN, was proposed for multi-
target detection and multi-target tracking problem in vehicle 
driving [11]. Afif et al. proposed a detection framework for 
specific indoor category, which is based on "RetinaNet" built 
and evaluated using ResNet, DenseNet and VGGNet, 
achieving up to 84.61% detection accuracy in the experiment 
[12]. 

After obtaining the target’s position in the camera, in order 
to use the robotic arm to grasp the object, it is also necessary to 
obtain the object’s pose information. Vision-based PE can be 
divided into two categories: learning-based PE and model-
based PE. Wu et al. used linear complementary filters to deal 
with and depersonalize the multi-sensor PE problem in a 
device, specifically by obtaining a quadratic observation model 
through a gradient descent algorithm, and then building an 
additive measurement model based on the derived results, 
achieving a reduction in space without loss of estimation 
accuracy consumption and computational burden without loss 
of estimation accuracy [13]. Scholars Al-Sharman et al. train 
DNNs based on DL techniques for identifying related 
measurement models and filter them out, and use loss 
techniques to reduce computational sophistication [14]. 
Scholars Billings G and Johnson-Roberson M proposed 
SilhoNet, a new way for predicting 6D object pose in 
monocular camera data, which is to predict the intermediate 
contours of the objects with associated occlusion masks and 3D 
translation vectors, and then regress 3D orientation from the 
contours, obtaining better experimental performance than two 
networks Estimation performance [15]. Wang et al. presented a 
DL-based grasping pose estimation method for a SCARA 
loading and unloading robot, which fuses point clouds with 
category numbers into a point category vector and uses multi-
point mesh networks for evaluating the robot’s grasping pose, 
getting success rates of 98.89%, 98.89%, and 94.44% on three 
homemade sub-datasets [16]. Liu et al. proposed a grasping 
posture determination method related to shape analysis for 
target object shape analysis in robotic grasping, which reduces 
complicated objects to basic shapes and then simplifies the 
grasping of objects based on force closure [17]. 

Comprehensive domestic and international research on 
mobile robot target detection and PE reveals that most of the 
detection algorithms are related to DL, which is 
computationally intensive, while the learning-based PE 

methods also rely heavily on the diversity of training data sets, 
which requires high data collection and calibration. Therefore, 
the study reduces the computational effort of target detection in 
the embedded platform by optimizing the original convolution 
process, and then performs PE by the Fully Convolution 
Network (FCN) semantic segmentation and (Principal 
Component Analysis (PCA) algorithm, aiming to provide a 
more concise and practical mobile robot vision algorithm. 

III. TARGET OBJECT LOCALIZATION ALGORITHM AND POSE 

ESTIMATION ALGORITHM FOR MOBILE ROBOT 

A. Target Localization Algorithm and Optimization Based on 

YOLOv2 Network 

Based on the progress of computer technology and artificial 
intelligence technology, the robotics industry has also 
developed rapidly, and robots have been applied to more fields, 
especially in tasks with harsh working conditions and strong 
repeatability. Using robots to perform these tasks can liberate 
workers from harsh working environments and also improve 
work efficiency. In many robot work scenarios, the most 
common action performed by robots is grasping. Robots 
perceive the surrounding environment through sensors and then 
perform grasping operations. When a mobile robot performs 
grasping of a target object, it must obtain the correct object 
position and pose to ensure that the robot arm accurately grasps 
the target from a suitable position and with the correct grasping 
pose. That is, there are two important problems to be solved in 
the whole grasping process: localization of the target object 
and estimation of the spatial pose of the target. The study uses 
computer vision algorithms to solve the problems faced by 
mobile robots performing industrial production operations, and 
the specific process is shown in Fig. 1. 

Neural networks have powerful feature extraction 
capabilities, and with a sufficient number of training datasets 
with labels, the gradient back-propagation algorithm can be 
used to renew the weights of the neural network to achieve the 
coordinate position detection of different target objects. The 
YOLOv2 network is in view of the Darknet network. It has a 
powerful feature extraction capability and uses the anchor 
frame mechanism instead of the direct regression of the target 
frame coordinates in YOLOv1. However, although the 
YOLOv2 network has a relatively small model structure and 
fast localization detection speed, it is still difficult to be 
arranged in related platforms with very limited resources, so 
the network structure needs to be further optimized for 
decreasing the model’s size. Fig. 2 indicates the structure of the 
convolutional layer. 
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Fig. 1. Computer vision algorithm flowchart.
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Fig. 2. Structure diagram of convolution layer. 

It supposes that a feature map (FM) of W HD D M   is 

input and a feature map of W HD D N   is output in the 

standard convolution operation (CO) as in Fig. 2(a), where HD  

and WD  are the length and width of the FM, respectively, and 

M  serves as the channels’ quantity of the input FM and N  

serves as the channels’ quantity of the output FM. Assuming 

that the convolution kernel’s (CK) size is kD  and the step size 

is 1, the parameters quantity of the CK is k kD D M N    , 

then the amount of computation generated by one CO is shown 
in Equation (1). 

k k W HD D M N D D    
         (1) 

The standard CO is divided into two processes: filtering 
and combining. For decreasing the size of the network, the 
standard CO is split into depthwise convolution, which is only 
responsible for filtering, and pointwise convolution, which is 
only responsible for combining. The depth wise convolution in 
Fig. 2(b) uses a single-channel CK on each channel of the input 
FM to generate corresponding feature values at each position 
on each channel of the input FM. Then the point wise CO is 
used, i.e., a 1 × 1 CK is used to combine the feature values on 
different channels at the same position to produce the 
corresponding feature vectors. Compared with the standard 
CO, the parameters quantity for depth wise convolution is 

W HD D M   and the parameters quantity for point wise 

convolution is 1 1 M N   . Equation (2) demonstrates the 

parameters quantity for the two-step CO. 

k kD D M M N                      (2) 

And the two-step CO produces the computation as shown 
in Equation (3). 

k k W H W HD D M D D M N D D       
   (3) 

Compare the transport arithmetic before and after splitting 
the standard CO into two parts, depth wise CK and point wise 
convolution, as shown in Equation (4). 

2

1 1k k W H W H

k k W H k

D D M D D M N D D

D D M N D D N D

       
 

    
 (4) 

The size of CK is usually assumed to be 3, so the former 
term in Equation (4) can be neglected, i.e., by splitting the 
standard CO, the number of CK parameters can be reduced 
while the computation is reduced to one-ninth of the standard 
CO. In order to facilitate more accurate target detection and 
localization by the machine, an adaptive anchor frame 
mechanism is presented to obtain the 3D position of the object 
by using additional depth pictures to complement the 
information of the color pictures. The adaptive anchor frame 
mechanism only requires pre-setting n  anchor frames with 

different aspect ratios of 1. The width and height of the anchor 
frames are multiplied by the scale factor calculated from the 
depth image to obtain the effect of the original anchor frame. 
The YOLOv2 network framework after adding the adaptive 
anchor frames is shown in Fig. 3. 

Fig. 3 illustrates that the input image is subjected to the 
YOLOv2 network to generate the prediction parameter, which 
is used to improve the shape of the anchor frame and produce 
the normalized prediction frame. The depth image is processed 
to obtain the scale factor map, and the final detection result is 
obtained by multiplying the scale factor corresponding to each 
pixel to the prediction frame. When the camera captures an 
object, the same object has different distances from the camera 
and has different sizes in the computer's field of view, thus the 
object size can be obtained by combining the depth fusion map. 
The correspondence between depth distance and object size is 
shown in Fig. 4. 
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Fig. 3. YOLOv2 network combined with adaptive anchor frame mechanism network block diagram. 
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Fig. 4. Correspondence between depth distance and object size. 

Fig. 4(a) indicates that the size of the object imaged on the 
imaging plane of the camera is s  can be calculated based on 

the principle of similar triangles, as shown in Equation (5). 

f l
s

h


                                         (5) 

In Equation (5), l  is the actual length of the object, h  

serves as the distance between the object and the camera, and 

f  serves as the focal length of the camera. In Fig. 4(b), the 

image size can also be calculated as shown in Equation (6). 

 f l x f x f l
s

h h h

   
  

        (6) 

The size factor can be approximated based on this model of 
the relationship between the object-to-camera distance and the 
imaging size on the imaging plane, and multiplied by the 
normalized anchor frame to achieve the original anchor frame 
effect and get a relatively accurate prediction frame. For fully 
utilizing the information of all the prediction frames generated 
on the same object, a soft NMS is used in the study specifically 
by doing a weighted average of the coordinate information of 

all the frames to get the final prediction frame iBox  , as shown 

in Equation (7). 

ij ijj

i

iji

conf box
Box

conf






                (7) 

In Equation (7), ijbox  is the j  th predictor box output on 

the i  th object, and ijconf  is the confidence score of the 

predictor box. Finally, the overfitting phenomenon caused by 
limited training samples is solved by training the anchor frame 
parameters in steps. When training the anchor frames 
individually, the training data assigned to each anchor frame 
almost doubles, thus overcoming the over fitting phenomenon 
of a single anchor frame due to insufficient training samples. 

B. Target Object Pose Estimation Algorithm 

In actual industry and life, mobile robots often need to 
grasp objects with various shapes, uncertain postures, and 
possible occlusion between objects. Therefore, it is necessary 
to obtain the position and attitude information of the target 
object through appropriate methods, and then use a robotic arm 

to grasp the target object. After the position of the object in the 
camera is determined by the target detection and localization 
algorithm, the spatial coordinate values of the object can be 
obtained by using the camera's internal reference and related 
fused depth maps. However, the robotic arm also needs to 
know whether there is a plane on the object surface that can be 
absorbed when it grasps the object. This process can be done 
by semantic segmentation network to do pixel-level 
classification of the pixel points on the object surface and 
extract the points on the object surface that can be grasped, and 
the maximum connected domain (CD) consisting of these 
points is the absorbable plane (AP). The plane normal vector 
(PNV) of the plane equation in the 3D space established by 
these points is the pose direction of the target object, while the 
center on the CD is chosen as the target’s 3D spatial location. 
The flow of the PE algorithm in the study is shown in Fig. 5. 

Pixel points 
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Remove 
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Center point 
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direction

Target information

FCN RANSAC
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Fig. 5. Flow chart of attitude estimation algorithm. 

In Fig. 5, the PE first extracts its AP using the FCN neural 
network algorithm, then removes the noisy points of the plane 
using the Random Sampling Consensus (RANdom SAmple 
Consensus, RANSAC), and finally solves the parameters of the 
object surface model using PCA for getting the target’s pose 
message. Since there is noise in the depth map by the camera, 
after using FCN to determine the joint area on the AP of the 
target, RANSAC is used for removing the noise with large 
errors before getting a more accurate plane model. The 
processing flow is shown in Fig. 6. 

The planar model used in the study has four parameters. 
Therefore, four data points (DP) are required for addressing the 
model. In Fig. 6, the RANSAC algorithm randomly selects 
four DP in the data set generated from the FCN results for 
solving the model parameters. All DP are included in the 
solved model, and the statistical error is less than the internal 
points’ quantity. The model is considered accurate only when 
the internal points’ quantity exceeds the set threshold, and then 
the PCA algorithm is used for addressing the related model 
parameters, and if the error of the current optimal model is 
greater than that of the obtained model, the optimal model is 
renewed. 

The PCA algorithm is used to compress the data in the 
original feature space into a lower dimensional space. A 
schematic diagram of the PCA algorithm and its solution to the 
PNV is shown in Fig. 7. 
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Fig. 6. Flow chart of RANSAC algorithm.
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Fig. 7. PCA algorithm and its schematic diagram for solving plane normal 

vector. 

In Fig. 7(a), PCA transforms the data in the original feature 
space into the new orthogonal feature space by linear 
transformation, and then removes the dimensional information 
that is less informative, leaving a number of dimensions with 
more informative information to express the original data. The 
amount of information in a dimension can be expressed by the 
variance of the data in that dimension; the larger the variance, 
the greater the amount of information. The projection 
transformation is shown in Equation (8). 

 1 2, , ,

T

n

A x

A



  

 




                          (8) 

In Equation (8), x  is the data in the dataset, A  is the 

change transformation matrix, the projected data is   , and the 

feature space formed by   as the feature vector is the 

projected space where the vectors have the relationship shown 
in Equation (9). 

1 1

0,

i

i j i j

 

 




 
                                (9) 

The data in the original feature space is projected into the 
feature space consisting of   as the feature vector by the 

projection transformation, and the projection value of the 

vector x  in i  i  is shown in Equation (10). 

T

i ia x                                        (10) 

The principle of PCA is to let the information in the dataset 
fall into the feature space as much as possible, so the variance 
of the projection on the new feature vector should also be as 
large as possible. The data variance of the projected data in one 
dimension is shown in Equation (11). 

     

     

2 2 2

i i i

T T T T

i i i i

T

i i

D E E

E xx E x E x

  

   

 

 

 

      (11) 

In Equation (11),  2

iD   is the variance after projection. 

To maximize it and to satisfy the relation, it is solved using the 
Lagrange multiplier method as shown in Equation (12). 

   1T T

i i i if x       
     (12) 
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In Equation (12),   serves as the eigenvalue of the matrix 

  and 
i  serves as the corresponding eigenvector. The 

derivative of 
i  is obtained when the derivative is 0. The 

maximum value of  2

iD   is obtained when the derivative is 

0, as shown in Equation (13). 

 
i i

i

i i

f x

a

a

 




  


                      (13) 

Since the points on the AP of the target object are 
distributed in the whole plane space, the two eigenvectors 
along the plane direction have the largest variance, and the 
eigenvector normal to the plane direction corresponds to the 
smallest eigenvalue, so the eigenvector corresponding to the 
smallest eigenvalue found by PCA is the normal vector of the 
AP. With the obtained PNV as the target’s pose direction, the 
grasping of the robot arm for the target can be realized. As 
shown in Fig. 6(b), PCA first determines the two feature 
vectors with the largest variance x  and y  , and determines the 

z  axis direction in view of certain premises. Due to the small 
impact of sensor noise on the z  axis direction, a portion of the 
sensor noise is successfully filtered out using the PCA method. 
The evaluation metric for the target PE is the 2D projection 
metric, and the PE is considered accurate if the average 
distance between the projection of the predicted corner point 

and the real labeled corner point REFe  is less than 5 pixels. 2D 

reprojection metric is defined as shown in Equation (14). 

2REF ie P TM                     (14) 

In Equation (14), CM  is the camera matrix, G  is the target 

pose to be estimated, iP  is the position of the i  th pixel, and 

  is the average of the pixel distribution with the maximum 

blending weight. 

IV. ANALYSIS OF THE EFFECT OF TARGET OBJECT 

LOCALIZATION AND POSE ESTIMATION FOR MOBILE ROBOTS 

A. Performance of Target Object Localization Algorithm for 

Mobile Robots 

The study is based on a mobile robot platform to test the 
visual perception algorithm, including the performance 
analysis of target localization algorithm, PE algorithm and the 
effect analysis of the robot arm’s grasping for the target. The 
mobile robot platform is equipped with a robot arm system, a 
color depth binocular vision system, a TX2 DL IPC and an 
image acquisition IPC for completing the grasping process of 
the target. The initial Learning rate of network training is 
0.001, and the Learning rate of every 100 epochs is divided by 
10. The configuration parameters of the experimental hardware 
are shown in Table I. 

The public dataset used in the object detection and 
positioning experiment is from LineMod, which is a standard 
dataset for attitude estimation. There are 1200 instances of 13 
objects, and the data includes color maps, depth maps, and 
corresponding camera coordinate information from different 

perspectives. In order to improve operational efficiency, the 
study selected 200 images of each of the four types of objects 
for comparative analysis of different anchor box mechanisms 
and to compare the performance of the algorithms before and 
after the improvement. The mean Average Precision (mAP) 
results of the original anchor frame mechanism and the 
adaptive anchor frame mechanism in YOLOv2 are shown in 
Fig. 8. 

In Fig. 8, the accuracy of the adaptive anchor frame 
mechanism improves by 1.55% when there are only 1 or 2 
anchor frames, and the improvement is more obvious. When 
the number of anchor frames is three or more, the original 
anchor frame mechanism shows a serious over fitting 
phenomenon, and the detection accuracy decreases by 
3.65%~3.77%. The adaptive anchor frame mechanism can still 
maintain a high detection accuracy when the number of anchor 
frames is three and four, which indicates that it has some 
improvement effect on the over fitting problem. The detection 
accuracies of different target detection and localization 
algorithms are shown in Fig. 9. 

TABLE I.  CONFIGURATION OF EXPERIMENTAL HARDWARE 

PARAMETERS 

Configuration 
TX2 Deep Learning 

Industrial Control Board 

Image acquisition 

industrial control board 

CPU ARM Contex-A57 Intel Bay Trail J1900 

Memory 8GB LPDDR4 8G DDR3L 1333MHz 

Hard disk 32GB eMMC5.1 64GB Solid-state drive 

interface Wireless, Bluetooth, Ethernet 
Network interface, serial 

port, USB 

83.07 83.13 

80.20 80.11

85.38 

86.93 

85.26 85.42

76 

78 

80 

82 

84 

86 

88 

1 2 3 4

m
A

P
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Original anchor box Adaptive anchor frame

m
A

P
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Fig. 8. Comparison of mAP results between the original anchor frame 

mechanism and the adaptive anchor frame mechanism under different number 

of anchor frames frames. 
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Fig. 9. Detection accuracy of target detection and location algorithm before 

and after improvement. 
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In Fig. 9, the improved algorithm detects objects 01, 02, 
and 03 significantly better than the Support Vector Machine 
(SVM) algorithm and the Single Shot multiBox Detector 
(SSD) algorithm, and the detection accuracy for object 04 is 
lower than the other two algorithms, but still above 95%. The 
SSD algorithm has good detection speed and accuracy 
compared to the SVM algorithm, but it is still weak in 
detecting small object 02. The average detection accuracies of 
the improved algorithm, SVM algorithm and SSD algorithm 
for objects are 98.8%, 96.65% and 96.78%, respectively. 
Taken together, the YOLOv2 network used in the study has 
high detection accuracy, good small object detection ability, 
and the optimized model size can be applied to embedded 
platforms, which is the optimal choice. 

B. Performance of Target Object Pose Estimation Algorithm 

for Mobile Robots 

The training samples for the pose estimation network 
model for mobile robots are taken from the LineMod dataset. 
In order to better simulate the real work environment and 
verify the stability of the algorithm, the dataset used during the 
testing was the Occlusion LineMod dataset, which was 
reannotated and generated from the LineMod dataset, was used 
during testing. This dataset contains 1435 images of eight 
objects with complex backgrounds and occlusions. For testing 
the PE algorithm in the study, it is compared with several 
commonly used PE algorithms for experiments. The PE results 
of different algorithms for seven target objects are shown in 
Fig. 10. 

In Fig. 10(a), the BB8 algorithm has the highest PE 
accuracy for seven types of targets, followed by the PoseCNN 
algorithm, and the detection accuracy of the proposed PE 
algorithm is close to that of PoseCNN. However, according to 
the average detection accuracy and detection speed in Fig. 
10(b), although the detection accuracy of BB8 is 92.78%, its 
detection speed is only 2 frames/s. 

The detection accuracy of PoseCNN is 75.91% and the 
detection speed is 7 frames/s, which is slightly higher than that 
of BB8. The detection accuracy of PoseCNN is 75.91% and the 
detection speed is 7 frames/s, which is slightly higher than that 

of BB8. The Tekin algorithm runs the fastest at 26 frames/s, 
but its estimation accuracy is only 63.14%. The accuracy of the 
PE algorithm is 74.32%, which is a big improvement over 
Tekin's algorithm, and it runs at 25 fps, which seems to satisfy 
the needs of real-time operation. Table II depicts the 
experimental results of the visual perception algorithm for 
different objects in the real object grasping experiments. 
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Fig. 10. Comparison of results of common object attitude estimation 

algorithms. 

TABLE II.  RESULTS OF VISUAL PERCEPTION ALGORITHM ON DIFFERENT OBJECTS 

Object 

number 

Surface center coordinate 

point 

Coordinate point directly 

above 
Surface normal vector 

Center pixel 

coordinates 

Pixel coordinates 

directly above 

1 (0.09,0.24,1.84) (0.12,0.24,1.64) (-0.17,0.00,0.99) (710,665) (751,688) 

2 (-0.06,0.11,1.36) (-0.07,0.15,1.39) (0.03,0.87,0.25) (621,537) (614,385) 

3 (-0.10,0.07,1.54) (-0.11,0.12,1.51) (0.04,1.00,0.14) (556,548) (543,367) 

4 (0.00,0.14, 1.50) (0.06,-0.05,1.45) (-0.28,0.95,0.17) (646,608) (708,434) 

5 (0.05,0.21,1.18) (0.05,0.31,1.01) (-0.04,0.50,0.87) (699,727) (722,906) 

6 (0.07,0.06,1.27) (0.08,-0.12,1.19) (-0.03,0.91,0.42) (721,546) (734,337) 

7 (0.08,0.05,1.37) (0.09,-0.13,1.28) (-0.03,0.89,0.45) (728,532) (740,340) 

8 (0.06,0.16,1.35 ) (0.07,0.27,1.18) (-0.04,-0.52,0.86) (710, 649) (728,796) 

9 (0.07,0.04,1.28) (0.08,-0.11,1.37) (-0.03,0.82,0.49) (725,518) (746,322) 

10 (-0.08,0.06,1.14) (-0.09,0.08,1.46) (0.05,1.01,0.15) (558,543) (547,361) 
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In the physical object grasping experiments, a total of 10 
unknown objects were grasped, with object numbers 1 to 5 for 
normal-sized objects and 6 to 10 for smaller-sized objects. In 
Table I, the surface center coordinate point indicates the three-
dimensional spatial point of the absorbable point on the 
object’s surface in the corresponding coordinate system, and 
the coordinate point directly above indicates the three-
dimensional spatial point at 20 cm directly above the center 
coordinate point. The robot arm system controls the end of the 
robot arm to move to the upper coordinate point, and adjusts 
the direction of the end nozzle to be consistent with the PNV, 
and then makes it move to the surface center coordinate point 
along the normal direction for completing the grasping of the 
target. The pixel coordinates projected to the color camera 
coordinate system are the center pixel point and the upper pixel 
point. The results of the grasping success rate and the each 
algorithm’s time are shown in Fig. 11 for 50 grasps of each 
object. 

(a) Success rate result of grasping target object
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(b) Running time of each algorithm in the process
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Fig. 11. The success rate of grasping objects and the running time of each 

algorithm in the process. 

In Fig. 11(a), the success rates of physical grasping for 
objects 1~5 of normal size are all over 90%, while the success 
rates of physical grasping for objects 6~10 of smaller size are 
reduced but still maintain around 80%. The average success 
rate of physical object grasping reaches 86.4%, which tests the 
practicality of the physical object grasping algorithm proposed 
in the study. The study also tested the running time of the 

vision algorithm for each stage. In Fig. 11(b), although the 
neural network algorithm is computationally intensive, it does 
not account for a large percentage of the total algorithm 
running time because the target detection algorithm runs on the 
GPU and the optimization of the DL framework substantially 
increases the neural network’s speed. The RANSAC algorithm 
takes up the largest percentage of the time because it requires 
multiple iterations and the iterative process also uses PCA to 
calculate the interior point error. 

V. CONCLUSION 

As robots are used to replace tedious manual labor in more 
and more industries, the use of mobile robots to complete the 
handling of goods in the logistics industry has gradually 
become a hot research topic nowadays. The study designs a set 
of vision algorithms for a mobile robot platform for the vision 
system of fully automated handling, mainly including a target 
object detection and localization algorithm based on the 
embedded platform with improved convolutional structure and 
an object PE algorithm based on FCN semantic segmentation 
network. While the detection accuracy of the original anchor 
frame mechanism decreases by 3.65%~3.77% due to the 
overfitting phenomenon, the proposed adaptive anchor frame 
mechanism can still maintain a high detection accuracy with 
good resistance to overfitting when the number of anchor 
frames is 3 and 4. In the experiments of detection and 
localization of different objects, the target localization 
algorithm proposed in the study improves the detection 
accuracy by 2.22% and 2.09% compared with the SVM 
algorithm and the SSD algorithm, respectively, with better 
localization results. The average success rate of grasping 
physical objects also reaches 86.4%, which effectively tests the 
algorithm’s practicality proposed in the study for physical 
object grasping. However, although the study has optimized 
the convolutional structure and reduced the network’s model 
parameters, the computational burden is still too large for the 
embedded platform, and the base convolutional layers can be 
considered to be combined together in subsequent studies to 
further reduce the model size of the network. 

VI. DISCUSSION AND PROSPECTS 

The study used object detection networks to determine the 
three-dimensional position information of objects and semantic 
segmentation networks to assist in estimating the pose of 
objects. Although the research has optimized the convolution 
structure of the network, reduced the model parameters of the 
network, and improved the operation efficiency of the 
feedforward network, for the embedded platform, the 
computational burden of using two convolutional neural 
networks is still too large, resulting in the overall operation 
efficiency of the system is not very ideal. Jiang D et al. used an 
improved Fast RCNN to achieve tasks such as semantic 
segmentation, object classification, and detection in indoor 
scenes, resulting in a model with good performance and high 
efficiency [18]. Scholar Feng T used Mask RCNN combined 
with a single multi box detector algorithm to achieve gesture 
detection and recognition in human-computer interaction, 
which has high detection accuracy and speed [19]. Therefore, 
in future research, it can be considered to draw on the solutions 
of these two networks and merge the basic convolutional layers 
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together to reduce repetitive operations in the network. The 
results of the target detection network can also be projected 
onto the intermediate feature map, and the FCN head network 
can be run on the extracted feature image pixels to further 
improve the running speed of the feed forward network. 
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