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Abstract—This paper introduces a real-time workflow for 

implementing neural networks in the context of autonomous 

driving. The UNet architecture is specifically selected for road 

segmentation due to its strong performance and low complexity. 

To further improve the model's capabilities, Local Binary 

Convolution (LBC) is incorporated into the skip connections, 

enhancing feature extraction, and elevating the Intersection over 

Union (IoU) metric. The performance evaluation of the model 

focuses on road detection, utilizing the IOU metric. Two datasets 

are used for training and validation: the widely used KITTI 

dataset and a custom dataset collected within the ROS2 

environment. Simulation validation is performed on both 

datasets to assess the performance of our model. The evaluation 

of our model on the KITTI dataset demonstrates an impressive 

IoU score of 97.90% for road segmentation. Moreover, when 

evaluated on our custom dataset, our model achieves an IoU 

score of 98.88%, which is comparable to the performance of 

conventional UNet models. Our proposed method to reconstruct 

the model structure and provide input feature extraction can 

effectively improve the performance of existing lane road 

segmentation methods. 

Keywords—Local binary patterns; feature extraction; UNet; 

semantic segmentation 

I. INTRODUCTION 

There has been a growing interest in autonomous driving 
research due to its significant impact on traffic management, 
the economy, and the development of self-driving cars. 

The purpose of these vehicles is to imitate human driving 
actions through intelligent decision-making and executing 
various tasks such as switching lanes, preventing collisions, 
detecting objects, and issuing warnings for lane departure [1], 
[2],[3],[4],[5]. The design of autonomous driving cars 
involves three essential components: perception, path 
planning, and control [6],[7],[8],[9]. Recent advancements in 
sensor technology have greatly improved perception 
capabilities. While cameras are commonly used, the 
integration of additional sensors like GPS, radars, or LIDARs 
enhances the performance of self-driving systems [10]. The 
focus of autonomous navigation is on accurately detecting and 
identifying traffic participants, including cars, pedestrians, and 
surrounding objects/areas. 

In particular, road detection and segmentation are crucial 
for autonomous driving and intelligent transportation systems 

as it ensures safe and efficient vehicle operation. Solutions in 
this area aim to reduce accidents, alleviate traffic congestion, 
and improve fuel efficiency. 

Precise detection and recognition of roadways, 
encompassing boundaries and lanes, empower intelligent 
decision-making and enhance navigation efficiency. These 
advancements have the potential to greatly enhance overall 
transportation systems. Various datasets such as KITTI [11], 
Berkeley DeepDrive [12], A2D2, or those generated by the 
CARLA simulator [13] are utilized for a range of autonomous 
driving and lane segmentation tasks. Teichmann et al. 
Research was carried out to measure the computational time 
required for semantic segmentation tasks using the KITTI 
dataset [14]. Neven et al. focused on scene understanding 
using the Cityscapes dataset [15]. Similarly, real-time efforts 
utilizing the Cityscapes dataset involved the development of 
an ENet architecture [16]. Wang et al. utilized 3D LiDAR 
point clouds and the PointSeg architecture for real-time 
semantic segmentation [17]. Bai et al. explored time-critical 
task performance in road segmentation using the KITTI 
benchmark [18]. Additionally, Jang et al. aimed to explain and 
reduce the end-to-end delay for self-driving cars in their work 
[19]. 

In recent years, UNet is a fully convolutional network 
architecture that has gained popularity for lane segmentation 
in autonomous driving. It utilizes a U-shaped network design 
for accurate identification and delineation of road lanes. 
Studies have demonstrated its effectiveness, comparing it 
favorably to other methods in terms of accuracy and efficiency 
[20]-[21]. Giurgi et al. introduce a real-time implementation 
workflow for neural networks in autonomous driving, 
specifically focusing on road segmentation using the UNet 
structure with the KITTI dataset [22]. UNET's potential for 
improving autonomous driving systems may be seen in 
activities such as lane departure alerts and autonomous lane 
holding. However, when autonomous cars operate in tough 
traffic settings with high levels of noise and interference from 
elements such as dust, vibrations, rain, and wind, these 
algorithms become susceptible to disruptions, resulting in 
decreasing lane segmentation accuracy. The existence of these 
external elements severely impairs the effectiveness of lane 
segmentation algorithms, resulting in less than ideal results. 



(IJACSA) International Journal of Advanced Computer Science and Applications 

Vol. 14, No. 7, 2023 

218 |  P a g e

www.ijacsa.thesai.org 

 

Fig. 1. Our proposed system.

To address these challenges, we propose the combination 
of LBC layers with UNet in this paper to improve lane 
segmentation performance in noisy traffic environments. The 
LBC layers integrate local binary patterns into the 
convolutional neural network (CNN) architecture [23], 
enhancing the ability to extract fine-grained structural 
information and model image representations. These layers 
have shown potential in applications that require robust 
feature extraction and learning, particularly in scenarios with 
limited training data or noisy environments. We will compare 
the performance of the proposed method to earlier approaches 
in order to quantify the improvement in accuracy on two 
datasets: KITTI and our own gathered dataset in a ROS2 robot 
simulation environment. Fig. 1 describes our proposed system. 

The subsequent sections of the paper follow the following 
structure. Section II provides an introduction and summary of 
relevant research pertaining to lane segmentation. Section III 
describes the model's architecture in detail, outlining the 
integration of LBC and skip connections to enhance local 
feature extraction. Section IV focuses on the experimental 
implementation, dataset utilization, and a comparative analysis 
of various models. Finally, the paper concludes by 
summarizing key findings and proposing future avenues for 
advancement. 

II. RELATED WORK 

In recent years, there have been several advancements in 
the field of road lane segmentation. One notable approach is 

the DeepLab method proposed by Chen et al. [24], which 
combines deep convolutional nets with fully connected 
conditional random fields for accurate semantic image 
segmentation. Another approach is the ENet architecture 
introduced by Paszke et al. [25], specifically designed for real-
time semantic segmentation tasks. Additionally, Pan et al. [26] 
proposed LaneNet, a spatial CNN architecture for traffic scene 
understanding, focusing on lane segmentation. Fu et al. [27] 
presented SCNN, a parallel CNN model that explores the road 
scene in depth for precise road segmentation. In a recent 
study, Giurgi et al. developed a unique method employing the 
UNet architecture, which demonstrated appreciable increases 
in lane segmentation accuracy. These studies are a limited 
exploration of image segmentation in the complex context of 
autonomous vehicles. Lane recognition is a crucial task in 
autonomous driving, and existing approaches confront 
difficulties owing to the complexities of the input pictures. To 
address this, we propose the use of LBC layers to reduce 
complexity and increase processing speed. Building upon this, 
we present an enhanced UNet model incorporating skip 
connections and LBC layers for improved lane markings 
recognition while minimizing training time. Comparative 
analysis and evaluation metrics, such as IoU, Dice coefficient, 
and precision, are employed to assess the accuracy and 
efficiency of the proposed models. Our study focuses on 
developing efficient and accurate segmentation models for 
lane recognition in autonomous driving scenarios. 
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Fig. 2. Visualizing local binary patterns (LBP) operation: exploring 3x3 and 5x5 local dimensions.

 
Fig. 3. Basic module local binary convolution. 

III. PROPOSED METHOD 

A. Local Binary Pattern and its Convolution Variants 

1) Local binary patterns: Local Binary Patterns (LBPs) is 

an image processing technique used for capturing local 

patterns by comparing pixel values in small neighborhoods 

[28]. It is commonly employed in face recognition and object 

detection. LBPs operate by selecting a neighborhood around 

each pixel and converting the pixel values into a binary string. 

By comparing the values of surrounding pixels with the 

central pixel, the binary string is constructed. The equation for 

calculating the brightness intensity of LBPs can be described 

as follows: 

     ∑ (     ) 
 

   

   

 

(1) 

 

s(z) = {
              
             

 

where    is the neighbor pixel intensity value;   is the 

center pixel intensity value. P is the number of neighbor 

pixels. Z is the result of    minus   . 

This string represents the local spatial patterns within the 
neighborhood. Analyzing the distribution of these binary 
patterns provides valuable insights into local variations in 
brightness, which can be utilized for tasks like contrast 
enhancement and object recognition. LBPs are a compact 
representation of local patterns and find wide usage in 
computer vision applications. Fig. 2 illustrates the basic 
operation of LBPs, demonstrating their functionality for each 
pixel in an image with local dimensions of 3x3 and 5x5. 
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Fig. 4. Conventional UNet architecture. 

 

Fig. 5. Transposed convolution with a 2x2 kernel. 

2) Local binary convolution: The Local Binary 

Convolution (LBC) layer convolves a filter over an input 

image, converting pixel values into binary patterns called 

Local Binary Patterns (LBPs). These patterns record 

structural, morphological, and textural information. During 

training, gradients can be backpropagated through the layer's 

anchor weights, while the learnable 1x1 filters are updated. 

The anchor weights can be generated deterministically or 

stochastically, allowing for diversified filters and fine-grained 

control overweight sparsity. The LBC layer efficiently extracts 

meaningful features for tasks like object detection and 

recognition in computer vision. In Fig. 3, we present the basic 

model of LBC that we use in this paper. The input image is 

first separated into three RGB channels through the LBP 3x3 

local dimensions. After that, a convolutional layer is used for 

additional processing, followed by the ReLU activation 

function to extract key traits of road segments. 

B. Improved Lane Road Segmentation 

1) Conventional UNet model 

a) UNet architecture: UNet is an architecture for 

semantic segmentation introduced by Olaf Ronneberger et al. 

[23]. This is a widely used architecture for road segmentation 

that combines encoding and decoding paths. It utilizes max 

pooling for down-sampling and transposed convolution for 

up-sampling. Skip connections play a crucial role in 

preserving information between the encoding and decoding 

stages. 

Fig. 4 illustrates the structure of basic UNet architecture. It 
is made up of a left side encoding path and a right-side 
decoding path. Max pooling techniques are used in the 
encoding process to gradually lower the spatial resolution 
while raising the number of feature channels. This helps 
extract abstract features related to road structures. The 
decoding path employs transposed convolutions to up-sample 
the feature maps and increase the spatial resolution. This 
results in a dense output map representing the road 
segmentation mask. Skip connections establish direct 
connections between corresponding encoding and decoding 
layers, allowing detailed information to flow between them. 
This facilitates the reconstruction of accurate road 
segmentations. 
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Fig. 6. Proposed UNet architecture. 

UNet's combination of encoding and decoding paths with 
skip connections enables exceptional performance in road 
segmentation. It effectively captures both local and global 
context information, enabling precise delineation of road 
regions in images. 

b) Up-convolution with transposed convolution 

approach: Transposed convolution, also known as 

deconvolution or fractionally stridden convolution, is a 

technique used to up-sample feature maps in convolutional 

neural networks. It is the reverse operation of the standard 

convolution operation and is commonly used in the decoding 

path of architectures like UNet. Fig. 5 shows the operation of 

Transposed Convolution with a 2x2 kernel. The parameters 

required to design a Transposed Convolution to achieve the 

desired output size can be described using (2): 

      (       )              (2) 

where        is the desired size of the output feature map; 
      refers to the size of the input feature map; s is the stride 
value used in the Transposed Convolution operation;        
represents the size of the kernel used in the operation; and   
refers to the padding applied to the input feature map. 
However, in noisy and challenging environments such as 
transportation, a lane segmentation system with a robust 
feature extractor needs to be investigated. Therefore, we have 
developed an algorithm that we propose in the next section. 

2) Improved design of the UNet model: The improved 

design of the UNet model aims to enhance the segmentation 

accuracy compared to the classic UNet architecture. To 

achieve this, we have introduced the Local Binary 

Convolution (LBC) layer into the skip connections of the 

UNet model. The design structure is illustrated in Fig. 6. 

The encoding structure (left side) consists of four blocks. 
Each block includes a series of convolutional layers with 
ReLU activation, followed by max-pooling operationsThe 
output of each block is created by gradually applying the 
pooling and convolutional layer operations. The LBC layers 
are integrated into the skip connections of the UNet model to 
capture local binary patterns and improve the segmentation 
performance. These skip connections establish direct 
connections between the corresponding encoder and decoder 
layers. The four blocks handle the up-sampling and 
concatenation operations necessary for the skip connections. 
They take the inputs from the corresponding pooling layers 
and transpose convolutional layers to up-sample the feature 
maps. Finally, the model is compiled with the Adam optimizer 
and binary cross-entropy loss. The metrics used for evaluation 
include the Intersection over Union (IoU). This improved 
UNet model with LBC layers in the skip connections offers 
enhanced capabilities for accurately segmenting road images. 
In the upcoming section, we will evaluate the results and 
accuracy of this model using two datasets. The purpose is to 
demonstrate the superiority of the proposed method in 
comparison to existing approaches. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setting 

The experiments were conducted to train and evaluate 
multiple models using two distinct datasets. Each model 
underwent 100 epochs of training, and performance was 
assessed based on metrics such as IOU, Validation IOU, Loss, 
and Validation Loss. The training process utilized a computer 
with Ubuntu 20.04, an Intel i7 3.4 GHz CPU, an Nvidia GTX 
3060 Laptop, and 32 GB RAM. The implementation was 
carried out in Python 3.9.13, employing the Conda 22.9.0, 
CUDA 11.7, Tensorflow 2.10.0, and Keras 2.10.0 libraries.
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a) b) c) 

   
d) e) f) 

Fig. 7. Comparison of segmentation performance among DeepLabv3, UNet, and proposed model based on IOU, Validation IOU, Loss, and Validation Loss. a), 

b), c) using KITTI dataset, and d), e), f) using Gazebo/ROS2 dataset.

B. Datasets and Evaluation Metrics: 

1) Datasets: The research paper utilizes two datasets, 

namely KITTI [29] and a dataset created from simulated lanes 

in the Gazebo/ROS2 environment of our laboratory. The 

KITTI dataset is employed primarily for unmarked lane 

segmentation in urban areas, comprising 800 training images 

and 200 test images. On the other hand, the second dataset 

involves the Donkey self-driving car, which operates in the 

Gazebo/ROS2 3D simulation environment. The car is 

controlled using a driving wheel joystick to maintain lane 

position. The car is equipped with a front-facing camera that 

captures images, and the ROS2 controller records these 

images at a rate of 5 frames per second for training data. A 

total of 1000 images were collected for this dataset. The data 

split ratio is 80% for training data and 20% for validation data. 

2) Evaluation metrics: In image segmentation, 

Intersection over Union (IoU) [25] is a primary metric used to 

evaluate the accuracy of models. Unlike in object detection, 

where IoU serves as a supplementary metric, it plays a crucial 

role in the pixel-level analysis of segmentation masks. The 

definitions of true positive (TP), false positive (FP), and false 

negative (FN) differ slightly in image segmentation, 

considering the pixel-wise intersection and logical operations 

between the ground truth and segmentation masks. IoU is 

determined in image segmentation by dividing the intersected 

area by the sum of the ground truth and prediction areas using 

the TP, FP, and FN areas, or pixel counts. 

 

Fig. 8. Example of the IOU equation. 

This metric helps assess the effectiveness of models in 
accurately segmenting objects and regions of interest in 
images. The equation is shown below: 
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(3) 

 

Fig. 9. Lane road segmentation results of the proposed model using the 

KITTI dataset. 

TABLE I. SEGMENTATION RESULTS ON KITTI DATASET 

Approach IOU 
Validation 

IoU 
Loss 

Validation 

Loss 

DeeplabV3+ 0.93 0.9292 0.014 0.0670 

UNET 0.95 0.9211 0.021 0.0742 

LBC+UNET 0.97 0.9442 0.012 0.0437 
 

with: 

          

   (    )      

   (    )    

where TP, FP, and FN indicate the True Positive, False 
Positive, and False Negative numbers, respectively; GT is the 
region's Ground Truth; X is segmentation mask overlap. Fig. 8 
shows an example of IoU on the actual input image. 

During training, the Loss function is used to measure the 
difference between the model's predicted output and the actual 
output value. The goal is to find a way to minimize the loss 
function to make a more accurate prediction. The equation is 
shown below (4): 

      
 

 
∑ [     (  )  (    )   (    )]

 

   

 (4) 

where L represents the Binary Cross Entropy Loss, E is the 
number of samples in the dataset,    represents the true label 

(ground truth) for the     sample (0 or 1),    represents the 

projected probability for the     sample, and log represents the 
natural algorithm. 

 

Fig. 10. Lane road segmentation results of the proposed model using the 

Gazebo/ROS2 dataset. 

TABLE II. SEGMENTATION RESULTS ON GAZEBO/ROS2 DATASET 

Approach IOU 
Validation 

IOU 
Loss 

Validation 

Loss 

DeeplabV3+ 0.94 0.933 0.0223 0.0319 

UNET 0.94 0.948 0.0238 0.0388 

LBC+UNET 0.988 0.96 0.0122 0.0144 

3) Results and discussion: DeepLabV3+ [30], UNet, and 

LBC+UNet segmentation outcomes were compared using 

Intersection over Union (IoU) and loss values on two datasets, 

the KITTI dataset and the ROS2 dataset. Afterwards 100 

training epochs, the three techniques' highest IoU values were 

as follows: On the KITTI dataset, DeepLabV3+, UNet, and 

LBC+UNet each had an IoU of 0.93, 0.95, and 0.97, 

respectively. In addition, using the KITTI dataset, the three 

techniques produced the following loss values: LBC+UNet 

had a loss of 0.012, DeepLabv3+ had a loss of 0.014, and 

UNet had a loss of 0.021. 

The models' performance was further examined using the 
Gazebo/ROS2 dataset. The IoU values attained by the three 
methods were as follows after 100 training epochs: 
DeepLabV3+ had an IoU of 0.94, UNet had an IoU of 0.94, 
and LBC+UNet had an IoU of 0.988. DeepLabV3+ had a loss 
of 0.0223, UNet had a loss of 0.0238, and LBC+UNet had a 
loss of 0.0122. These were the loss numbers produced by the 
three methodologies. 
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The proposed method, LBC+UNet, achieved the highest 
segmentation results in terms of IoU for both the KITTI 
dataset and the Gazebo/ROS2 dataset. This can be observed 
from the results presented in Fig. 7, where the performance of 
each epoch is displayed. The IoU Validation and Loss 
Validation metrics are also included in Tables I and II, 
respectively, to facilitate a clearer comparison. The proposed 
method demonstrated the highest accuracy in terms of IoU and 
the lowest error in terms of the loss function. 

The experimental results of road lane segmentation using 
the proposed method are illustrated in Fig. 9 and Fig. 10. We 
can observe a high level of accuracy, exceeding 95%, which 
can be attributed to the utilization of the feature extraction 
capabilities of LBC combined with the UNet architecture. The 
performance of the proposed method is consistently strong on 
both the KITTI and Gazebo/ROS2 datasets, demonstrating 
good segmentation results and high accuracy. Moreover, the 
proposed method was tested on both simulated and real-world 
datasets, confirming its effectiveness in road lane 
segmentation. This advancement supports autonomous driving 
systems and contributes to reducing accidents by providing 
higher accuracy. 

V. CONCLUSION 

We have successfully used a combination of the UNET 
architecture and the LBC feature extractor in this article to 
improve the accuracy of road lane segmentation for 
autonomous driving support. The proposed method has 
demonstrated superior accuracy compared to conventional 
approaches such as DeepLabV3+ and the classical UNET 
method. Through comprehensive evaluations using well-
known datasets, including KITTI and our custom-built dataset 
based on the ROS2 robot simulation model, the proposed 
model has proven its effectiveness in both simulated and real-
world scenarios. The application of our proposed model holds 
great potential for various domains, including simulation and 
practical implementations. Looking ahead, further 
advancements in road lane segmentation will focus on 
fulfilling the demand for more refined lane segmentation, 
particularly the differentiation between drivable and non-
drivable areas. This ongoing development will significantly 
contribute to the improvement of self-driving systems by 
providing precise lane segmentation for enhanced decision-
making and safer navigation. 

REFERENCES 

[1] Yaqoob, L. U. Khan, S. M. A. Kazmi, M. Imran, N. Guizani, and S. C. 
Hong, „„Autonomous driving cars in smart cities: Recent advances, 
requirements, and challenges,‟‟ IEEE Netw., vol. 34, no. 1, pp. 174–181, 
Jan./Feb. 2020. 

[2] S. P. Narote, P. N. Bhujbal, A. S. Narote, and D. M. Dhane, „„A review 
of recent advances in lane detection and departure warning system,‟‟ 
Pattern Recognit., vol. 73, pp. 216–234, Jan. 2018. 

[3] Hoang Tran Ngoc and Luyl-Da Quach, “Adaptive Lane Keeping Assist 
for an Autonomous Vehicle based on Steering Fuzzy-PID Control in 
ROS” International Journal of Advanced Computer Science and 
Applications(IJACSA), 13(10), 2022 

[4] V. D. Nguyen, T. D. Trinh and H. N. Tran, "A Robust Triangular 
Sigmoid Pattern-Based Obstacle Detection Algorithm in Resource-
Limited Devices," in IEEE Transactions on Intelligent Transportation 
Systems, vol. 24, no. 6, pp. 5936-5945, June 2023 

[5] H. K. Hua, K. H. N., L. Quach, and H. N. Tran. 2023. “Traffic Lights 
Detection and Recognition Method using Deep Learning with Improved 
YOLOv5 for Autonomous Vehicle in ROS2”. In Proceedings of the 
2023 8th International Conference on Intelligent Information 
Technology (ICIIT '23). Association for Computing Machinery, New 
York, NY, USA, 117–122.. 

[6] J. Vargas, S. Alsweiss, O. Toker, R. Razdan, and J. Santos, “An 
overview of autonomous vehicles sensors and their vulnerability to 
weather conditions,” Sensors (Basel, Switzerland), vol. 21, pp. 1–22, 
August, 2021. 

[7] M. Buehler, K. Iagnemma, and S. Singh, “The darpa urban challenge: 
Autonomous vehicles in city traffic, george air force base, victorville, 
california, usa,” in The DARPA Urban Challenge. 

[8] H. T. Vo, H. N. Tran, and L. Quach, “An Approach to Hyperparameter 
Tuning in Transfer Learning for Driver Drowsiness Detection Based on 
Bayesian Optimization and Random Search” International Journal of 
Advanced Computer Science and Applications(IJACSA), 14(4), 2023. 

[9] P. H. Phan, A. Q. Nguyen, L. Quach, and H. N. Tran. 2023. “Robust 
Autonomous Driving Control using Auto-Encoder and End-to-End Deep 
Learning under Rainy Conditions”. In Proceedings of the 2023 8th 
International Conference on Intelligent Information Technology (ICIIT 
'23). Association for Computing Machinery, New York, NY, USA, 271–
278. 

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: 
An open urban driving simulator,” in Proceedings of the 1st Annual 
Conference on Robot Learning, pp. 1–16, 2017. 

[11] J. Fritsch, T. Kuhnl, and A. Geiger, “A new performance measure and 
evaluation benchmark for road detection algorithms,” 16th International 
IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 
pp. 1693–1700, 2013. 

[12] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and 
T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous 
multitask learning,” 2018. 

[13] M. Teichmann, M. Weber, J. Zollner, R. Cipolla, and R. Urtasun, ¨ 
“Multinet: Real-time joint semantic reasoning for autonomous driving,” 
pp. 1–10, 12 2016. 

[14] D. Neven, B. Brabandere, S. Georgoulis, M. Proesmans, and L. Van 
Gool, “Fast scene understanding for autonomous driving,” pp. 1–5, 08 
2017. 

[15] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep 
neural network architecture for real-time semantic segmentation,” pp. 1–
10, 06 2016. 

[16] Y. Wang, T. Shi, P. Yun, L. Tai, and M. Liu, “Pointseg: Real-time 
semantic segmentation based on 3d lidar point cloud,” pp. 1–10, 07 
2018. 

[17] L. Bai, Y. Lyu, and X. Huang, “Roadnet-rt: High throughput cnn 
architecture and soc design for real-time road segmentation,” IEEE 
Transactions on Circuits and Systems I: Regular Papers, pp. 1–11, 11 
2020. 

[18] W. Jang, H. Jeong, K. Kang, N. Dutt, and J.-C. Kim, “R-tod: Realtime 
object detector with minimized end-to-end delay for autonomous 
driving,” pp. 1–14, 10 2020. 

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional 
networks for biomedical image segmentation,” in Proc. Int. Conf. Med. 
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 
pp. 234–241, 015. 

[20] L. -A. Tran and M. -H. Le, "Robust U-Net-based Road Lane Markings 
Detection for Autonomous Driving," 2019 International Conference on 
System Science and Engineering (ICSSE), Dong Hoi, Vietnam, pp. 62-
66, 2019,  

[21] D. -V. Giurgi, T. Josso-Laurain, M. Devanne and J. -P. Lauffenburger, 
"Real-time road detection implementation of UNet architecture for 
autonomous driving," 2022 IEEE 14th Image, Video, and 
Multidimensional Signal Processing Workshop (IVMSP), Nafplio, 
Greece, pp. 1-5,2022. 

[22] F. J. Xu, V. N. Boddeti, and M. Savvides, "Local Binary Convolutional 
Neural Networks," Machine Learning, Jul. 2017. 

[23] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, 
"Semantic Image Segmentation with Deep Convolutional Nets and Fully 



(IJACSA) International Journal of Advanced Computer Science and Applications 

Vol. 14, No. 7, 2023 

225 |  P a g e

www.ijacsa.thesai.org 

Connected CRFs," in International Conference on Learning 
Representations (ICLR), 2015. 

[24] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "ENet: A Deep 
Neural Network Architecture for Real-Time Semantic Segmentation," in 
Conference on Neural Information Processing Systems (NIPS), 2016. 

[25] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, "Spatial As Deep: Spatial 
CNN for Traffic Scene Understanding," in IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 2018. 

[26] X. Fu, J. Cao, and Z. Li, "Look Deeper into the Road: A Parallel CNN 
for Road Scene Segmentation," in IEEE International Conference on 
Computer Vision (ICCV), 2017. 

[27] T. H. Rassem and B. E. Khoo, “Completed local ternary pattern for 
rotation invariant texture classification,” Sci. World J., vol. 2014, pp. 1–
10, Jan. 2014. 

[28] Ronneberger O., Fischer P., Brox T. “U-net: Convolutional networks for 
biomedical image segmentation,” International Conference on Medical 
image computing and computer-assisted intervention, Springer, Cham, 
pp. 234–241, 2015. 

[29] The KITTI Vision Benchmark Suite (cvlibs.net). 

[30] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin 
Murphy, and Alan L Yuille. 2018. Deeplab: Semantic image 
segmentation with deep convolutional nets, atrous convolution, and fully 
connected crfs. IEEE transactions on pattern analysis and machine 
intelligence Vol. 40, pp. 834-848, April (2018). 

 

https://www.cvlibs.net/datasets/kitti/eval_road.php

