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Abstract—Patello-femoral joint stability is a complex problem
and requires detailed anatomic parametric study for knowing the
associated breakdowns of knee cartilage. Osteoarthritis is one
of the main disorders, which disrupt the normal bio-mechanics
and stability of the patello-femoral joint and for diagnosing
osteoarthritis radiologists needs a lot of time to diagnose it. An
improved network called PSU-Net is proposed for the automatic
segmentation of femoral, tibia, and patella cartilage in knee MR
images. The model utilizes a Squeeze and Excitation block with
residual connection for effective feature learning that helps in
learning imbalance anatomical structure between background,
bone areas and cartilage. The severity of knee cartilage is
measured through the Kellgren and Lawrence (KL) grading
system by radiologists. Also, updated weighted loss function is
used during training to optimize the model and improve cartilage
segmentation. Results demonstrate that PSU-Net can accurately
and quickly identify cartilages compared to the traditional
procedures, aiding in the treatment planning in a very short
amount of time. Future work will involve the use of augmentation
methods and also use this architecture as a generator model for
generative adversarial network to improve performance further.
The utility of this work will help in analyzing the anatomy of
the human knee by the radiologists in short amount of time that
may prove helpful to standardize and automate patello-femoral
measurements in diverse patient populations.
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I. INTRODUCTION

Patello-femoral joint stability depend on the knee. The
patello-femoral joint is formed between the patella (kneecap)
and the femur (thigh bone). It is a complex joint that allows for
the movement of the patella during knee flexion and extension.
The knee is known as the largest joint in the human body
[1]. One of the important components in the knee joint is
the cartilage. Cartilage is fine, rubbery, and flexible tissue that
covers the surface of bones, which can be found throughout
the body. Cartilage helps to reduce friction by acting as a
cushion and lubricant between the joints. However, repeated
bio-mechanical force or a sudden impact will cause the knee
cartilage to experience wears down or tear, leaving the rough
bone surface exposed to each other resulting the friction in
between the constituent structures making the joint [2]. This
situation is called damaged cartilage. Prolonged damage over
the time will lead to the happening of Knee Osteoarthritis
(KOA) with long-term irreversible effects on normal knee
function. Eventually, the disease would lead to permanent
physical disability.

KOA is a form of arthritis characterized by inflammation,
degradation, and ultimate loss of cartilage in joints, most

often affecting the knee’s major weight-bearing joint [3]. KOA
can be classified according to degradation severity. In 1961,
WHO has accepted the Kellgren and Lawrence (KL) grading
system as a standardized way to identify and grade the severity
of (KOA) [4]. The grading scheme classified KOA into five
different levels by assigning a grade from 0 to 4 [5].

Knee osteoarthritis (KOA) can be categorized into different
severity levels based on magnetic resonance (MR) images. In
the normal knee (KL 0 grade), there is no visible damage.
In mild KOA (KL 1 grade), minor loss is observed in the
femoral cartilage. Mild KOA (KL 2 grade) shows some loss
in bone density in the femoral and patella cartilage. Severe
KOA (KL 3 grade) exhibits tearing in the femoral cartilage,
while in the most severe stage (KL 4 grade), almost the entire
femoral cartilage seems to have worn down, exposing the bone
and causing tissue signal inhomogeneity.

Knee cartilage segmentation plays a crucial role in diag-
nosing KOA. By accurately identifying and delineating the
cartilage boundaries from medical imaging such as MRI,
segmentation techniques enable quantification and assessment
of cartilage health. This information helps in evaluating the
severity of osteoarthritis, tracking disease progression, and
guiding timely treatment decisions. Additionally, precise carti-
lage segmentation aids in detecting early cartilage degeneration
and monitoring the effectiveness of interventions or therapies.
Overall, knee cartilage segmentation plays a vital role in pro-
viding objective and quantitative measurements for diagnosing
and managing osteoarthritis.

The remaining paper is organized with Section II explain-
ing the related work, Section III describes the methodology,
the Experiment work is presented in Section IV. Section V
gives evaluation metrics and results and discussions are given
in Section VI before Section VII concludes the paper.

II. RELATED WORK

Segmentation of cartilage can be performed manually or
by using computational approaches. Computational approaches
can be classified into two which is semi-automatic or automatic
methods. Manual segmentation of cartilage results usually
gives more reliable outcomes compared to computational ap-
proaches. In a manual approach, cartilage will be segmented
slice by slice from 2D MR images. Although manual seg-
mentation outcome has high accuracy and sensitivity [6] and
has been widely used to evaluate the performance of semi-
automatic or automatic segmentation methods, it requires extra
effort to the user and is time-consuming. This may result in
inter and intra observer variability between the experts [7].
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The region-based segmentation approaches have been clas-
sified under semi-automatic and conventional segmentation
approaches. Based on [8], [9] this approach use the concept
of exploiting the homogeneity property values of neighboring
pixels such as grey-level intensity, texture, and edge [10].
Often, the initialisation point of segmentation or also known
as seed points, Si = {S1,, S2 . . . , Sn} will be manually placed
by a user. After placing the seed points, the algorithm will next
begin to search for homogeneous pixels in neighbouring pixels
[11] and keep updating the corresponding region’s mean and
expanding until the similarity requirement is met. In equation
(1), let T represent the set of all pixels that adjacent to at least
one of the pixels in Si where nb(x) denotes the set of nearest
neighbours pixel of x.

T =

{
x /∈

n⋃
i=1

Si

∣∣∣∣∣nb(x) ∩
n⋃

i=1

Si ̸= ∅

∣∣∣∣∣
}

(1)

This approach has been widely used in the past two
decades. However, the traditional region-growing approach
is incapable to deal with the inhomogeneous image quality,
especially for knee MR images. With this limitation, further
research has been conducted by combining this approach with
other image-processing approaches to achieve robust segmen-
tation results. The author in [12] proposed a region growth
approach by introducing the binary-class intensity-based local
clustering to segment knee cartilage from a background image.
Binary-class intensity-based local clustering is a voxel labeling
of cartilage or non-cartilage. This approach was introduced
to differentiate the class of unlabelled areas based on the
distance to the knee bone and the contrast of the boundaries
area. Finally, a 3D cartilage model was generated to tackle
the issue of intensity inhomogeneity. The authors in [13],
[14] performed a knee cartilage segmentation model based on
a multistage region growth approach. This approach used a
median filter to filter the image noise while edge detection
and thresholding were used to remove the background image
at the pre-processing stage. Next, the pre-segmentation stage
by using region growth will take place. Output from this stage
was bone and cartilage region mask. Finally, the bone region
mask will be removed to leave out the cartilage.

Recently, there have been significant advancements in
automatic biomedical image segmentation using deep neural
network techniques [15], [16], [17]. In the context of segment-
ing knee joint structures, Burton et al. [18] initially employed
two-dimensional (2D) tri-planar CNNs (axial, coronal, and
sagittal planes) to classify pixel labels (background or tibial
cartilage) by considering local image patches surrounding
each pixel. However, Ronneberger et al. [19] identified two
limitations with this approach: excessive redundancy and a
trade-off between localization accuracy and the utilization
of context. To address these issues, they proposed a dense
prediction network called U-Net, which incorporated skip
connections. This architecture encompassed both low-level and
high-level features for voxel classification and was subse-
quently employed for knee joint segmentation by Liu et al.
[20], Zhao et al. [21], and Ambellan et al. [22]. Generally,
the U-Net employed pixel-wise or voxel-wise loss functions
such as cross-entropy loss and dice loss. However, the resulting
segmentation lacked spatial consistency [23]. The reason is that

U-Net consists of only Convolution layers that suffer from the
training-related issues of vanishing gradient and dead neurons
considered as the main research gap being addressed in this
work [24]. The main contribution of this paper is to propose
an automatic deep learning segmentation model which can
segment knee cartilage in the image efficiently and to do so
we have introduced the proposed squeeze and excitation block
in U-Net which will work alongside convolution layer of U-
Net so that the architecture learning process goes smoothly.
Additionally updated loss function is also used, which will
help the proposed model to perform the task effectively.

III. METHODOLOGY

A. Proposed Squeeze and Excitation Block

The proposed Squeeze and Excitation Block, shown in Fig.
1, is composed of residual connection with Squeeze and Exci-
tation block. The residual connection has been proven to be an
effective way to overcome the problem of vanishing gradient
when it comes to learning features in deep neural networks
[25]. In [26], the authors have proposed SE-Net (Squeeze-and-
Excitation networks), which is the ImageNet Challenge winner.
The SE-Net adds the Attention mechanism to the feature
channel dimension to learn the weight of each dimension
through the loss function, and to learn the residual connection
according to the importance of each channel feature. The
image input after passing from convolution layers, delivers the
feature map with size of H x W x C as the output. Then this
feature map is passed colorred through Global pooling layer
which reduces the size to 1 x 1 x C. Again, the output of
global pooling layer is passed through fully connected layer
and ReLU activation function thus reducing its channel by r
as shown in Fig. 1. This process is known as the Squeeze
operation. The output of Squeeze operation is then upsampled
to 1 × 1 × C using another fully connected layer followed
by sigmoid activation function, which gives weights for each
of the channels, a process referred to as Excitation operation.
Mathematically the Squeeze and Excitation operation can be
expressed as in equations (2) to (5):

oc = Fsq (xc) =
1

H ×W

H∑
h

W∑
w

xc(h,w) (2)

Where Fsq represents squeezing operation, xc represents
feature map of Xm on the C dimension. H and W denotes the
height and width of the feature map, h and w exemplify the
abscissa and ordinate of a certain point on the feature map. The
correlation between each feature channel is learned through the
two fully connected layers and the ReLU activation function,
and the correlation between the features is normalized by
the Sigmoid function to obtain the weights for each feature
channel, then these weights are multiplied by the input feature
channel.

tc = Fex (oc) = Sigmoid (W2 (RELU (W1 (oc)))) (3)

x̄ = Fscale (xc ∗ tc) (4)
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Fig. 1. Proposed squeeze and excitation block.

Where Fex indicates an excitation operation, W1 and W2 show
weights of two fully connected layers.

Xm+1 = RELU (x̄+Xm) (5)

Xm signifies the input to the proposed block. Squeeze
and Excitation block will then be embedded into the residual
connection to improve the residual characteristics of different
channels according to the degree of importance that will help
in learning ability.

B. PSU-Net

Fig. 2 and Fig. 3 show the U-Net and PSU-Net architecture
to segment the knee image data in NRRD format. It has
the same architecture as that of the standard U-Net in the
Down-convolutional part; each layer is consisting of two
convolution layers followed by the activation function and
then the input is down-sampled by the Maxpool layer in two-
layered step. In the Up-Convolutional part each input coming
from bottleneck layer is then upsampled by 2 x 2 in a two-
layered step, followed by two 3 x 3 convolution layers and
then followed by an activation function. The bottleneck layer
connects Down-Convolution part to the Up-Convolution part
that helps in stabilizing training and transferring information
from Down-Convolutional part to Up-Convolutional part. The
last convolution layer helps in reducing the number of labels
to three according to number of class in our dataset. The
input to the model in our case is 384 x 384 x 1 pixels
and our output size is 384 x 384 x 3 pixels in which the
digit 3 represents the classes (femoral, tibia and patella). We
also used Batch normalization before activation functions.

In PSU-NET the two convolution layers block in the Up-
Convolutional part and Down-Convolutional parts are replaced
by the proposed Squeeze and Excitation block as shown in Fig.
3. Each unit of Down-convolutional part includes a proposed
Squeeze and Excitation Block to extract image features and
a down-sampling layer. The down-sampling is done using
maxpool layer. The channel size is reduced to half, each unit
of Up-Convolutional part includes a proposed Squeeze and
Excitation Block and an upsampling layer. Upsampling uses
transposed convolution, the channel size is expanded by two
times. The last layer consists of convolution layer that helps
in reducing the number of class to three - the femoral, tibia
and patella in our case.

Fig. 2. Standard U-Net architecture.

Fig. 3. PSU-Net architecture.

C. Loss Function

Knee image segmentation is done to divide the voxels
of the cartilage of knee image into three classes: femoral,
patella and tibia, using neural network. The pixel value of
cartilages is approximately the same as different organs of the
knee like meniscus etc. In order to make the neural network
pay more attention to the cartilage, we give these pixels of
cartilage greater weights to improve knee image segmentation.
The weights can be expressed as in equation (6):

wi =

(
1
Ni

)2

∑3
i=1

(
1
Ni

)2 (6)
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Where wi represents weight for each class, Ni is the total
number of pixels in each class of the image. This paper uses a
weighted multi-class loss function, which is a combination of
Dice loss function and cross-entropy loss function to optimize
the model. The formulas of the Dice loss function and the
cross-entropy loss function are mathematically expressed in
equation (7) and (8):

lossDice = 1−
M∑
n=1

C∑
i=1

wi
2 · yniy′ni
yni + y′ni

(7)

lossce = −
M∑
n=1

C∑
i=1

wiyni log (y
′
ni) (8)

Where M represents the total number of pixels in the image
in a batch, C represents the class (femoral, patella, tibia), wi

Indicates the class weight obtained by using equation (6), and
yni indicates the true probability value of the pixel belonging to
class i, y′ni represents the predicted probability value. Finally,
the weighted loss function is as expressed in (9)

Loss = λ1 lossDice +λ2 lossce (9)

IV. EXPERIMENT

A. Dataset

This study is carried out on 30 datasets from OAI [27] that
can be found at http://oai.epi-ucsf.org/datarelease/About.asp,
consisting of 160 slices each of Knee MR images. The datasets
consist of various KL grades as listed in Table I. The KL
grades are generally referred to in the medical images to reflect
the damage of the cartilage in between joints. We labelled
the cartilage of these 30 datasets using slicer [28] software.
we divided these 30 datasets into 3 categories. 23 of training
datsets, 5 of validation datasets and 2 of testing datasets.

TABLE I. AMOUNT OF DATASETS FOR VARIOUS KL GRADES

KL Grades Dataset Numbers
0 8
1 4
2 5
3 6
4 7

B. Experimental Setup

The operating environment of this study is NVIDIA
cuDNN7.5, CUDA10.0, Python 3.4, Anaconda, the hardware
configuration is GTX 1060Ti GPU, 1 TB capacity hard disk,
and the deep learning framework is built using Keras [29]
with Tensorflow [30] as backend. Other libraries also used like
SimpleITK [31], matplotlib [32], Scikit learn [33] and numpy
[34] for reading, processing NRRD data and for other functions
as well. The neural network learns the weights of each layer
through training data and selects the optimal model through
validation data to verify the performance of the model. Each
epoch of learning randomly selects 80 percent of the training
model from the training set, and the remaining 20 percent is
used to verify the model to improve model learning ability.

We have entered data in batches to reduce training time. In
this study, the Adam optimization method is used to optimize
the network, and the weighted joint loss function proposed
in equation (9) is used to judge the training process of the
network model. We have adjusted the parameters according to
the training results, the parameter of loss function λ1 and λ2

Set to 0.3 and 0.7, respectively, set the training batch size to
2, and iterate the training data set for 50 epochs.

V. EVALUATION METRICS

In order to quantitatively evaluate the segmentation perfor-
mance of the algorithm in this paper, Dice coefficient (F1) and
Intersection over union (IoU) are used as evaluation metrics,
and these scores were measured by calculating the regional
similarity between deep neural neural network predicted result
and expert annotated result.

F1 score can be calculated by using following mathematical
equation:

F1 =
2|A ∩B|
|A|+ |B|

(10)

IoU score can be expressed mathematically as:

IoU =
|A ∩B|
|A ∪B|

(11)

In above equation 10 and 11, A represents the ground truth
of knee cartilage and B is the predicted segmentation result by
segmentation models.

VI. RESULTS AND DISCUSSION

Using the model of this paper to trained on 30 datasets
of knee images to calculate the dice coefficient of our pro-
posed model on training dataset and validation datasets during
training of each epoch using dice coefficient and intersection
over union. The box plot shown in Fig. 4 indicates the
distribution of the dice coefficient of the femoral, tibia and
patella cartilages during training. Usually, each of the datasets
consists of 160 slices in which we have slices with cartilage
and without cartilage. The average training dice coefficient
of our proposed model during training on those slices which
have femoral cartilage is up to 0.925, the average training dice
coefficient on those segmented slice which has tibia cartilage is
up to 0.945, and the average training dice coefficient on those
slices which have patella cartilage is 0.978. The distribution
of dice coefficient is also relatively concentrated, which shows
that the network can effectively segment the cartilage under
normal circumstances. Table II shows the average validation
dice coefficient (F1) and intersection over union (IoU) of
our model. The average validation dice coefficient of femoral
cartilage is 0.79 and the average validation IoU is 0.74, the
average validation dice coefficient of the tibia is 0.85 and
the average validation IoU is 0.78 and for patella cartilage,
the average validation dice coefficient is 0.82 and the average
validation IoU is 0.73. The reason of low validation F1 score
from training F1 scores is that in the evaluation process of
validation datasets, some slices in datasets have no cartilage.

www.ijacsa.thesai.org 880 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

Fig. 4. Boxplot of dice-coefficient of those slices having cartilage from
PSU-Net.

TABLE II. AVERAGE VALIDATION DICE-COEFFICIENT(F1) AND
INTERSECTION OVER UNION(IOU) SCORES OF DIFFERENT CARTILAGES

USING PSU-NET

Performance Metrics Femoral Tibia Patella
F1 0.79 0.85 0.82
IoU 0.74 0.78 0.73

This article also compares proposed model with the U-Net,
Branch residual U-Net (BRUNet) based on dilated convolution
[35] and FU-Net [36] with batch normalization and residual
block. Table III describes the dice coefficients of the four
networks, which automatically segment femoral, tibia and
patella cartilages. Compared with other segmentation models,
the dice coefficients of knee cartilages have improved to a
certain extent in PSU-Net, which shows that the model can
segment knee cartilages more effectively. This is mainly be-
cause the proposed Squeeze and Excitation block with residual
connection reduces the loss of feature information during
propagation to a certain extent. At the same time, the proposed
block increases the weights of useful features of the image and
improves the segmentation performance in consequence.

Fig. 5 shows the segmentation results on some image
slices from the test dataset. The first column is the slices of
knee image from the test datasets, the second column is the
label mask manually annotated, which provides the ground-
truth, and the third column is the prediction result of the
cartilage area by the PSU-Net. The green area represents
femoral cartilage, the yellow area represents tibia cartilage,
and the pink area shows patella cartilage. The first to fourth
rows show a simple situation. When the knee image slices
show different cartilages, our model outperforms contemporary
models in segmenting different type of cartilage in input image
slice. However, in some slices when the cartilage boundary is
closely in contact with other organs like meniscus and tissue,
then the segmentation performance of our model becomes
weak as shown in the first column, the reason is that assigning
weights in such condition becomes difficult. Fig. 6 shows the
predicted axial 3D view of cartilage using Slicer software for
two test datasets.

TABLE III. COMPARISON OF DICE-COEFFICIENT SCORE USING
DIFFERENT MODELS FOR TWO TEST DATASETS AFTER TRAINING

Models Femoral Tibia Patella
U-Net 0.80 0.76 0.84

FU-Net 0.82 0.80 0.87
BRUNET 0.77 0.73 0.78
PSU-Net 0.86 0.89 0.85

VII. CONCLUSION

In this paper, the improved network PSU-Net is proposed to
automatically segment the femoral, tibia and patella cartilage
in the knee MR image. The proposed model has employed
Squeeze and Excitation block with residual connection instead
of only convolution layer in U-Net to learn the feature in-
formation of the image more effectively. In order to reduce
the problem of imbalance between the background and the
bone area in the image, the image is clipped before training.
In the training, a weighted loss function is used to optimize
the model, and the weight of femoral, tibia and patella is
increased to improve the cartilage segmentation. Our proposed
model has achieved good segmentation results of each cartilage
on the test datasets compared to other variants of U-Net
models. The authors have noticed that proposed model clearly
outperforms U-Net and other variants of U-Nets in segmenting
the cartilages of femoral, tibia and Patella of the knee with
Dice-Coefficient of 0.86, 0.89 and 0.85, respectively. PSU-Net
can quickly and accurately segment femoral, tibia and patella,
which help physicians to adjust treatment plans according to
the condition. Detection and segmentation of cartilages in knee
Image based on deep learning requires a large amount of
training data. However, due to the limitation of segmentation
targets, the number of annotated datasets in the Knee image
group is small, which limits the effect of model training. As the
number of publicly available annotated Knee images increases
in the future, the segmentation performance of the proposed
network will also be further improved. The segmentation of
those cartilages whose boundary are in contact with meniscus
or other tissues, are hard to be segmented by our model,
is suggested in the future part of this work. Additionally,
augmentation of data using generative model will also finish
the problem of less data in medical images that will affect the
segmentation results of the potential models.
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Fig. 5. Input knee image with manually annotated Groundtruth and predicted segmentation mask using PSU-Net.

Fig. 6. Axial view of two test datasets and their predicted 3D segmented cartilage using PSU-Net.
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