
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

A Review on Machine-Learning and Nature-Inspired
Algorithms for Genome Assembly

Asmae Yassine, Mohammed Essaid Riffi
LAROSERI Lab-Department of Computer Science, Chouaib Doukkali University, Morocco

Abstract—Genome assembly plays a crucial role in the field of
bioinformatics, as current sequencing technologies are unable to
sequence an entire genome at once where the need for fragment-
ing into short sequences and reassembling them. The genomes
often contain repetitive sequences and duplicated regions, which
can lead to ambiguities during assembly. Thus, the process of
reconstructing a complete genome from a set of reads necessitates
the use of efficient assembly programs. Over time, as genome
sequencing technology has advanced, the methods for genome
assembly have also evolved, resulting in the utilization of various
genome assemblers. Many artificial intelligence techniques such
as machine learning and nature-inspired algorithms have been
applied in genome assembly in recent years. These technologies
have the potential to significantly enhance the accuracy of genome
assembly, leading to functionally correct genome reconstructions.
This review paper aims to provide an overview of the genome
assembly, highlighting the significance of different methods used
in machine learning techniques and nature-inspiring algorithms
in achieving accurate and efficient genome assembly. By ex-
amining the advancements and possibilities brought about by
different machine learning and metaheuristics approaches, this
review paper offers insights into the future directions of genome
assembly.
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I. INTRODUCTION

DNA, short for Deoxyribonucleic acid, is a macromolecule
that contains the genetic instructions for the development,
functioning, and reproduction of all living organisms. It con-
sists of two strands that form a double helix structure [1].
The four nucleotides—adenine (A), cytosine (C), guanine (G),
and thymine (T)— make up the building blocks of DNA. The
sequence of these nucleotides determines the genetic code.
DNA carries the hereditary information passed from parents to
offspring, containing genes that encode proteins and regulate
various biological processes. DNA replication ensures that
each new cell receives a complete copy of the genetic material
during cell division.

Advances in DNA sequencing technologies have revolu-
tionized biological research, enabling the analysis of DNA
sequences on a large scale. DNA sequencing helps unravel the
genetic code, identify mutations, study genetic variations, trace
evolutionary relationships, and diagnose genetic diseases. DNA
plays a central role in fields such as genomics, evolutionary
biology, genetic engineering, forensic science, and medicine.
It serves as a foundation for understanding the complexities
of life, exploring the diversity of species, and developing
innovative approaches [2] for disease treatment and prevention.

To determine the DNA material code within specific living
organisms, the DNA sequencing is utilized for the identi-

fication and characterization of genes within an organism’s
genome. By determining the sequence of genes, researchers
can analyze their functions, regulatory elements, and evolu-
tionary history. Genome assembly is the computational process
that comes after sequencing and aims to align reads of a
DNA sequence into the correct order to reconstruct the original
structure of the genome [3].

The novelty of this review stands out for its in-depth
analysis of the most important advancements and challenges
involved in genome assembly. By achieving a synthesis of
findings from multiple research studies, the review presents
a comprehensive survey of the current state of the machine-
learning and nature-inspired genome assemblers, while also
evaluating the recent bio-inspired techniques and providing
recommendations for future research. This gives researchers
insightful information and direction about the latest techniques
and approaches used in this rapidly growing field. Thus, this
study remains as an exceptional and valuable contribution to
the existing literature.

The work in this paper is organized as follows: Section II
presents an overview about the genome assembly. Section III
describe machine-learning techniques used in DNA sequence
assembly. Section IV introduce de novo assemblers. Section V
review nature-inspired algorithms and metaheuristics solving
the genome assembly problem and their best computational
results. Section VI provide a discussion and analysis of the
findings, proceeded by a conclusion in the last section.

II. GENOME ASSEMBLY OVERVIEW

The DNA genome assembly is one of many bioinformatics
problems that uses machine learning technologies and nature-
inspired approaches and metaheuristics in aim to be solved.
When sequencing the genomes of bacteria, viruses, or humans,
this problem is extremely important; it occurs during the final
stage of DNA reading, particularly for long strands of DNA.
Large strands are repeatedly broken into several little frag-
ments. After that a computer program will assemble together
the fragments into a string that matches the original DNA
sequence. Finding an organism’s DNA sequence is helpful
for both applied and fundamental study into how and why
they live. Given the significance of DNA to living organisms,
understanding a DNA sequence could be helpful in almost any
biological study. For instance, it can be applied in medicine to
locate, identify, and potentially develop cures for and genetic
diseases. Similar to how pathogen research may result in
medicines for infectious diseases and virus transmissions. Due
to the rapid advancements in sequencing technologies and the
increasing demand for sequencing services, various sequencing
platforms have become extensively utilized in recent years. As
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a consequence, sequence assembly has emerged as a critical
process with diverse applications in the field of bioinformatics
[4]. Consequently, the significance of efficient DNA assem-
blers has escalated, as they play a pivotal role in reconstructing
complete genomes from fragmented sequencing data

III. MACHINE LEARNING TECHNIQUES

McCarthy et al. suggested in the summer of 1956 in a
conference at Dartmouth College, that computers could be
programmed to think and reason. They referred to this idea as
artificial intelligence (AI) [5] a field used to the simulation of
human intelligence processes by computer systems. Machine
learning (ML) is a specific method to achieve this goal which
include deep learning (DL) and artificial neural networks
(ANN) methods [6].

Machine learning is used in DNA sequence assembly for
pre-grouping reads into similar groups before the assembly
process is carried out and it was proven that is an alternate
method for lowering the overall computational complexity of
the genome assembly process. In [7] the authors suggested
building a recurrent neural network (RNN), where the goal
is to train the network to track the sequence of bases that
constitute a given fragment and assign all of the sequences
that are properly tracked by this network to the same cluster
[7]. This machine learning method applies a three-layer RMLP
(Recurrent Multi Layer Perceptron) neural network with five
input nodes dedicated to the five possible incoming symbols
(A, C, G, T, and N) in the first layer, a hidden layer of 27 nodes,
and four output nodes for the output layer in the forecast of
the next base of the sequence created by the network [7]. The
experimental results obtained after comparing the proposed
neural network method with another conventional algorithm
have shown that if performed on multiprocessor machines,
the proposed procedure may prove to be less expensive than
ones that are currently used. Any assembly method may
be employed in place of the CAP approach, which greatly
improves its efficiency and yields superior outcomes. While
employing various definitions of distance, the two approaches
produce collections of fragments with more or less comparable
properties. The authors also indicated [7] that their proposition
is richer due to the fact that is based on the internal structure
of the strings rather than just topological similarities.

The author [8] also proposed the construction of an artifi-
cial neural network based binning of reads to assist assembly
process. After producing the required reads for assembly using
a simulated shotgun sequencing technique. Four assembly
techniques were then simulated : The greedy assembler, the
de Bruijn assembler, the greedy neural network assembler, and
the de Bruijn neural network assembler. In order to determine
which of these assembly procedures provided the maximum
coverage accuracy and with what level of computational com-
plexity, simulations were performed. The research also looks
into the advantages of combining the greedy and de Bruijn
assembly algorithms with a “divide and conquer” strategy the
greedy assembler’s computational efficiency could be signif-
icantly improved. The author in [8] proposed in future work
to investigate strategies of reducing the complexity associated
with the training and grouping process and to take advantage
of the parallelisable nature of the neural network grouping
scheme.

The study in the paper [9] offers two techniques for sep-
arating sequencing method errors from natural variance. The
first is an analytical technique for choosing appropriate error
candidates. In order to identify the bases that are uncommon
within fuzzy grouped clusters of closely related sequences,
it applies similarity weights between pairs of sequences. The
chosen candidates are then filtered using a classification model
built using a suitable ML technique and rests on frequency
vectors [9]. Both the usage of weights and the ML-based
regrouping were proven to greatly reduce the set of potential
errors, without missing simulated faults along the way for
artificial neural networks and the Hoeffding tree classifier. The
performance of the RIPPER rule learner and random forest
classifier, however, drastically declined. On hexaploid wheat,
the ML-based models showed raw accuracy high enough to
imply that they might be utilized independently of the analyt-
ical approach for error discovery. According to the authors it
was demonstrated that applying the ML model as an additional
filter while calling variants significantly changes the results.
Further validation were needed to validate the results achieved
on hexaploid wheat.

IV. DE-NOVO ASSEMBLERS

Three major strategies are widely used for the novo assem-
blers in Bioinformatics to solve the DNA Assembly Problem:
greedy graph-based algorithms, de Bruijn graphs, and the
overlap-layout-consensus (OLC) approach mainly adopted by
the nature-inspired algorithms presented in Section V.

De novo gene assemblers have no reference genome for
assembling DNA sequences and they are classified into two
types: Greedy-based De-novo assemblers Graph-method as-
semblers: String and DeBruijn. Several graph based common
algorithms were used for genome sequence assembly CAP3
[10], PHRAP [11] , TIGR [12].

Authors in [13] suggested a novel DNA sequence assem-
bly approach that combines the advantages of shotgun and
sequencing by hybridization (SBH). The technique makes use
of the high coverage and low error rates in sequencing made
available by the development of efficient DNA sequencing
machines. The authors were proceeding in the development of
full software with all the characteristics stated in [13] .They
created a prototype that incorporates some of the algorithm’s
fundamental components, and utilized this prototype to put
together synthetic sequencing data. They presented results of
such an experiment, mostly as a demonstration of concept for
their methodology and based on their preliminary investiga-
tions [13], the algorithm promises to be very fast and practical
for DNA sequence assembly.

A novel EULER algorithm have been designed in [14] and
for the first time fixes the repeat problem in fragment assembly.
The primaly goal of the authors was the fragment assembly’s
reduction to a variant of the standard Eulerian path problem,
which makes it possible to produce precise answers to complex
sequencing issues. In contrast to the CELERA assembler [15],
EULER utilizes such repeats as a strong fragment assembly
tool rather than masking them. Based on the de Bruijn graph
concept. In order to explain their method, they adopted the
DNA sequence as a thread with repeated sections attached
together by glue. Every repeat in the resulting de Brujin graph
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having five edges [14], corresponds to one edge rather than a
group of vertices in the layout graph.

In [16] the authors presented the ARACHNE com-
puter system, which uses paired-end whole-genome shotgun
reads to assemble genome sequences. The key characteristics
of ARACHNE include an effective and sensitive method for
detecting read overlaps, a method for scoring overlaps that
achieves high accuracy by fixing errors prior to assembly,
read merger using forward-reverse links, and identifying repeat
contigs by forward-reverse link inconsistency.

ARACHNE begins by identifying and aligning overlaps, or
pairs of reads that appear to be overlapping. In later rounds,
some of these false overlaps caused by repeated sequences
in the genome will be removed [16]. An effective overlap
detection is achieved. The program utilizes a sort and extend
technique that scales about linearly rather than comparing
every pair of reads. This method entails creating a sorted
table of each k-letter (k-mer) and its source so that related k-
mers appear successively. The algorithm next eliminates highly
frequent k-mers, which often correlate to highcopy, high-
fidelity repetitive sequences in the genome, in order to improve
the effectiveness of the overlap detection procedure. After
identifying all read pairs that share one or more overlapping k-
mer, the algorithm applies a three-step procedure to effectively
align the reads. First, overlapping shared k-mers are combined.
Next, shared k-mers are extended to alignments. Finally,
dynamic programming is used to enhance the alignments.
In a similar manner, ARACHNE corrects random insertions
and deletions caused by apparent sequencing errors [16]. The
alignments are modified in accordance with how the reads are
adjusted.

Simulated reads that covered many genomes order have
been generated to evaluate ARACHNE. These simulated reads’
assemblies produced virtually full coverage of the correspond-
ing genomes, with a few contigs combined into even fewer
supercontigs (or scaffolds) [16]. Contig coverage after genome
assembly ranged between 97 and 98 percent, with at least 92
percent of the reads being used in every case. For full coverage,
the N50 contig length is 350 kb, whereas for half coverage, it is
17 kb. The length of the N50 supercontigs varies significantly
within the genomes.

The authors precised that assembly accuracy was good,
but it wasn’t perfect due the fact that there were a very small
number of additional misassemblies and little errors happened
about once every 1 Mb. Assembling the Drosophila genome
was quick, requiring only 21 hours on 8.4 Gb of RAM in a
single 667 MHz processor.

In this work [17], the authors developed Velvet a novel
collection of de Bruijn graph-based sequence assembly meth-
ods for very small reads. The main objective of the approach
is both remove errors and resolve large number of repeats
repeats in the presence of pair read information. The error
correction technique initially merges sequences that belong
together, and the repetition solver then separates path that
share local overlaps. Authors have evaluated Velvet using both
simulated and real data [17]. The algorithm has the potential of
assembling bacterial genomes with N50 contig lengths of up to
50 kb and simulations on 5-Mb portions of large mammalian
genomes with contigs of 3 kb using only relatively small

paired simulated reads. The two other short read assemblers,
SSAKE [18] and VCAKE [19], were compared to Velvet. The
algorithms are different from one another mostly in how they
handle errors. By looking for reads in a hash table, SSAKE
and VCAKE automatically explore a de Bruijn graph in a step-
by-step manner. Velvet is considerably faster and generates
larger contigs without misassembly, but it takes a little bit
more memory. Furthermore, it has great precision and covers
a significant part of the genome. The authors attempted to use
EULER [14] and SHARCGS [20], but the tools were unable
to handle their data sets. According to authors, this was most
likely because the differed expected input, notably in terms of
covering depth and read lenght.

Building on earlier works [21] [14] the authors in [22] de-
veloped MULTIBRIDGING a de Brujin graph based assembly
algorithm for shotgun sequencing under the criterion of com-
plete reconstruction, which can achieve very close to the lower
bound for repeat statistics of a variety of sequenced genomes,
including the GAGE datasets. As results assembling the repeat
statistics of hc19, have shown successful reassembling desired
with probability 99%.

The La Jolla Assembler (LJA) [23] a fast algorithm with
three modules that address the three challenges in assembling
HiFi reads: jumboDBG (constructing large de Bruijn graphs),
multiplexDBG (using the entire read-length for resolving re-
peats), and mowerDBG (error-correcting reads), was designed
to enable automated assemblies of long, HiFi reads. The Bloom
filter [24], sparse de Bruijn graphs [25], disjoint generation
[26] and rolling hash [27] were all used in the jumboDBG ap-
proach. LJA builds the de Bruijn graph for huge genomes and
large k-mer sizes and turns it into a multiplex de Bruijn graph
with changing k-mer sizes, reducing the error rate in HiFi reads
by three orders of magnitude. The suggested approach not only
produces five times fewer misassemblies than state-of-the-art
assemblers, but also generates more contiguous assemblies. In
the publication, the automated assembly of a human genome
which successfully assembled all six chromosomes was used
to illustrate the usefulness of LJA.

V. NATURE-INSPIRED ALGORITHMS FOR GENOME
ASSEMBLY

Nature-inspired optimization algorithms is defined as a
group of algorithms that are inspired by the behavior natural
systems, including bio-inspired algorithms , swarm intelligence
and evolutionary algorithms. Inspired by animal, insects be-
haviors, biology and chemical reactions, those algorithms have
provided many engineering, medical and bioinformatics solu-
tions such as solving the DNA Fragment Assembly Problem.
The genetic assembly is a critical step in any genomic project,
it attempts in reconstructing a DNA sequence from a set of
a large number of fragments taken obtained by biologists in
the laboratory. DNA Fragment Assembly Problem is known to
be an NP-hard combinatorial optimization problem, therefore
efficient approximate metaheuristics are required to solve such
kinds of problems. The purpose of the study presented in
this section is to analyze and synthesize the existing nature-
inspired optimization algorithms in for genome assembly.
Since the genome assembly is a particularly difficult problem
in computational biology due to the problem’s NP-hardness,
the ideal solution cannot be found. So, it necessitates the
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use of metaheuristics and other computational techniques of
intermediate complexity. Which their goal is to compare all
possible solutions to an optimization problem in order to
choose the best (feasible) one. They evaluate prospective
solutions and perform a number of operations on them in an
effort to find better alternatives in order to accomplish this.

As genome assembly is a combinatorial optimization prob-
lem, different nature inspired algorithms and metaheuristics
have been proposed in past few decades to solve this problem.
The process of these metaheuristics involves the reconstruction
of the original genome sequence from a set of fragments
(reads) aligned in a correct order by exploring a large solution
space. Numbers from 1 to N are assigned to the set of
fragments, where N represents the total number of fragments.
By reordering this list of numbers using the fitness function,
the algorithm aims to find the optimal order that reconstructs
the complete genome sequence through a process of iterative
optimization.

Generally an incremental solution of a metaheuristic algo-
rithm for DNA fragment assembly is described as follows:
The algorithm starts by setting up parameters and creating
an initial assembly of DNA fragments. To assess the quality
of the assembly, a fitness function is established. In the case
of genome assembly the fitness function involves maximizing
the fragment’s scores obtained through semi-global alignment
of the DNA fragments. The metaheuristic algorithm proceeds
with iterations, each aimed at optimizing the assembly step by
step. In each iteration, the current assembly is perturbed to ex-
plore neighboring solutions in the search space. The algorithm
decides whether to accept the newly generated solution or keep
the previous one based on a specific acceptance criterion for
each iteration. As the algorithm progresses through iterations,
the incremental assembly continues to integrate improvements
made in previous steps. The process is considered final when
the algorithm reaches a near-optimal solution or fulfills the
desired quality standards, the stopping criterion is based on
predefined conditions, such as a fixed number of iterations or
convergence of the fitness function.

Many Swarm Optimization algorithms have evolved the
fragment assembly problem: [28], [29], [30], [31] Cuckoo
Search algorithm [33] Harmony Search algorithm [34] hybrid
crow search algorithm [35], Cat Swarm Optimization [36],
etc. A total of 30 publications on nature-inspired optimization
algorithms dealing with DNA genome assembly have been
reviewed as shown in Table I.

A. Swarm Intelligence Algorithms

Verma et al. have proposed the DSAPSO method [28]
to resolve the DNA sequence assembly problem using Par-
ticle Swarm Optimization (PSO) with Shortest Position Value
(SPV) rule. To convert the continuous version of PSO to
discrete version SPV rule is used in solving the DNA sequence
assembly problem wich is a discret problem. The proposed
methodology outperforms the genetic algorithm (GA) for every
DNA data set, according to the results of a comparison of the
DSAPSO results with those of the GA.

By maximizing the overlapping-score measurement, a hy-
brid particle swarm optimization VNS-based local search ap-
proach for solving the DNA fragment assembly (DFA) problem

is proposed in [31]. To make PSO appropriate for DFA, the
particles are encoded using the lowest position value (SPV)
rule. During the PSO search process, VNS local search is
used to enhance the quality of the globally best solution
generated from the PSO algorithm. The results demonstrated
that the algorithm can significantly outperform other PSO-
based algorithms with different-sized benchmarks in terms of
overlap score.

In other research [32], the same authors suggests a novel
memetic GSA method called MGSA in order to solve DNA
FAP problem. The overlap-layout-consensus model known as
MGSA is based on tabu search for population initialization.
This algorithm uses an SPV rule to convert continuous position
values into job sequences, initializes the population with a tabu
search, and then uses simulated annealing with VNS as the
local search method to improve the quality of the best global
solution produced by the GSA algorithm.These modifications
create a balance between exploitation and exploration. The
simulation results show that the algorithm MGSA maximizes
the overlap score of 19 benchmark instances, however its
disadvantage is requiring more processing time than the current
techniques. In order to resolve this issue, the authors want to
take into account DNA sequence compression, fuzzy entropy
and adapting the MGSA strategy to the de-Bruijn-graph (DBG)
model in future works in order to decrease the computation
time.

Adaptive Particle Swarm Optimization was proposed in
[30] and the experimental results of study on the impact of
inertia weight and the cognitive and social components for
enhancing the PSO efficiency to obtain the optimal fitness
score, were presented with the simulation of three methods:
The PSO with constant inertia weight (CIW), PSO with
dynamically varying inertia weight (DVIW) and APSO.

The paper [37] presents a new particle swarm optimization
and differential evolution approach using the SPV rule to
convert the continuous variables used in PSO and DE to the
permutation required to solve the FAP. The authors have con-
ducted four different experiments The purpose of Experiment
1 was to evaluate the PPSO+DE algorithm with those that
performed the best on the sixteen typical benchmarks. The Lin-
Kernighan method was used in Experiment 2 to tackle each
of the sixteen benchmark issues utilizing the TSP approach.
The results of the Lin-Kernighan algorithm were used to
determine the best solutions in Experiment 3. In Experiment 4,
the Staphylococcus aureus COL Main Chromosome test data
was used to test the TSP technique.

In this study [38], the authors suggested a new approach to
solve the sequence assembly problem using Particle Swarm
optimization (PSO) with Naive crossover and shortest position
value (SPV) rule. There are two phases in PSO with Naive
Crossover with SPV: The initialization phase, where individu-
als are initialized, and the update phase, where new solutions
are generated and updated. The real coded values are converted
to discrete values using SPV rules. According to the authors,
the DNA sequence assembly utilizing PSO algorithm with
naı̈ve crossover (DSAPSONC) has demonstrated the effective-
ness in solving the sequence assembly problem.

In order to effectively solve the fragment assembly prob-
lem, a new DPSO method that operates directly in the search

www.ijacsa.thesai.org 901 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

space of permutations has been proposed [39]. The Probabilis-
tic Edge Recombination (PER) operator is the main element
of the suggested approach. Through the probabilistic recom-
bination of edges connecting adges from current position,
the personal best, and the group best, this operator creates
an alternate position. In this probabilistic construction, the
utilization of overlap lengths between fragments has also
been taken into consideration. With this purpose, memetic
algorithms with a new fast variant local search of PALS known
as quick-PALS were developed to improve the intensification
potential. To show the efficiency and potency of the employed
algorithms, two sets of validation experiments have been
performed. The authors claim that when compared to present
in litterature assembly techniques, the algorithms performed
better.

A new PSO variation was suggested in [40] that uses
chaos, levy flight, and adaptive parameters to solve the genome
sequencing problem which is transformed into a discrete
optimization problem while using the SPV rule. The proposed
algorithm incorporates chaos in two distinct ways: apply-
ing chaotic inertia weight and chaotic initialization. To ensure
the balance between exploitation, which is encouraged by a
lower inertia weight, and exploration, which is encouraged by
a bigger inertia weight, a chaotic inertia weight was applied.
The production of particles through using Levy, chaos and
refinement Flight ensure that the particles are initialized with
a high fitness score. The chaotic initialization provides favor-
able circumstances for discovering better values [40]. For the
four datasets studied in the paper, the Chaotic Particle Swarm
Optimization with Levy Flight performs better than other PSO
variations by 7% to 24%. When compared to other algorithms
on the basis of Standard Deviation, the proposed approach does
not, however, demonstrate a significant improvement. It has
a higher ranking but inconsistent performance. To solve this
issue the authors suggests to used alternative PSO algorithm
versions in future.

This study [33] presents the Cuckoo Search Algorithm
(CS) as a novel optimization approach for genome sequence
assembly, inspired by the behavior of cuckoos. CS incorpo-
rates levy flight and brood parasitic behavior, mimicking the
process of cuckoos laying eggs in host nests. The algorithm
is a population-based search procedure widely applicable to
complex optimization problems. These birds lay their eggs in
the nests of other birds and use various strategies to increase
the chances of their eggs hatching. The algorithm models this
behavior by representing each solution as an egg and using
Levy flight to generate new solutions. The algorithm follows
three main rules: -Each cuckoo lays one egg at a time in
a random nest -Only the nests with high-quality eggs are
preserved, - Hosts have a probability of discovering alien eggs
and can either remove them or abandon their nests. Various
algorithm settings are analyzed to determine the most effective
configuration, and CS’s efficiency is evaluated against PSO and
its variants.

In this study [41], a hybrid cuckoo-search genetic algorithm
(CSGA) was suggested as a nature-inspired swarm optimiza-
tion algorithm. The total assembly time and the number of
reorientations during the assembly process are taken into
account by the cost criterion for optimization. An example
assembly with 19 components has been shown to demonstrate

how the CSGA is applied, and the results have been compared
with those of the Genetic Algorithm (GA). According to
the findings, the CSGA algorithm not only generates optimal
assembly sequences for the given problem at costs equivalent
to those of GA, but it has also been discovered to have a faster
convergence rate than GA.

The study [42] introduces subsequence-based matching
techniques using the CS and PSO algorithms. These meth-
ods were implemented in Java and utilized MapReduce for
Hadoop. The experimental results validate the effectiveness of
the proposed techniques, showcasing their ability to achieve
extensive DNA fragment coverage and high matching accu-
racy. Furthermore, the performance analysis reveals that the CS
algorithm outperforms the PSO algorithm in terms of overall
performance.

B. Simulated Annealing based Algorithms

Simulated annealing is a computing technique that seeks
for the optimal solution by using randomness. It’s inspired
from a related technique called Annealing in Metallurgy which
mimics the physical solid annealing process where a glass
material or metal is heated to a high temperature and then
allowed to cool. The authors in [43], [44] have introduced and
applied methods solving the DNA fragment assembly problem
with the addition of the inversion and transposition operators to
a simulated annealer by [45] the performance have successfully
been increased. These studies generally raise a variety of other
important issues, particularly those relating to the significance
of solution space redundancy and the synergistic interactions
between the various operators [46].

In this paper [47], a parallel models of Simulated An-
nealing (SA) was proposed combined with Genetic Algo-
rithm (GA) for solving the DNA fragment assembly problem.
They employed SA as a local search method within the
GA framework. The experimental results demonstrate that
the parallel approach improves the quality of solutions while
reducing the overall runtime. Comparing the execution times,
SA outperforms GA by being faster. However, SA tends
to produce worse fitness values compared to GA In this
paper [48], Simulated Annealing-based local search have been
utilized to improve the final solution obtained by the Chemical
Reaction Optimisation (CRO) algorithm in solving the DNA
fragment assembly problem. The CRO approach is used in
seeking for the best layout where the objective function is
minimized. The main process of the algorithm starts with
setting valued to the control parameters after the determination
of the initial population. Then one of the four collisions of
the CRO algorithm is performed in each iteration. After any
new minimum fitness value is checked and saved. After that,
to retain the diversity of the population the worst 20 percent
of the population is replaced with new solutions. When no
amelioration has occured, the simulated annealing method is
used in order to enhance the best solution found.

SA maintains at the same temperature for a period of time
while a predetermined number of iterations are set. Then, the
heat becomes colder. One of the following three operators is
chosen for each iteration [48]:

1) Inversion: Two points are chosen at random for this
operator [48]. Then, between them, the order of the fragments
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is reversed.

2) Specific inversion: One contig’s orientation is reversed.
To do this, a permutation point is randomly chosen, and the
contig containing this fragment is identified. The fragments in
the chosen contig are then rearranged in reverse order [48].

3) Transposition: This operator [48] shifts a contig to a
new position between two points in different distinct nearby
contigs that are selected for the contig movement.

The experimental results in the paper [48] have shown
that combining CRO and SA have lead to the highest overlap
scores.

C. Local Search based Algorithms

In this paper [49], the authors have presented PALS (Prob-
lem Aware Local Search) a fast and accurate local search
algorithm that, after comparing its results with commercially
available assemblers Phrap and CAP3, pattern matching algo-
rithms (PMA) and genetic algorithms (GA), it have shown to
be competitive against those present specialized assemblers.
They also explored the effect of many alternative approaches
on the efficacy of the suggested algorithm. The main objective
of PALS algorithm is to obtain one single contig by finding a
fragment’s order that minimizes the number of contigs, which
is different from the other assembling algorithms that aim to
search for solutions having in the layout maximum overlap
between adjacent fragments . The three main methods of the
PALS algorithm are [49]:

• GenerateInitialSolution method: Generates a single
solution (successive overlapping fragments) and is
continually updated by the application of ordered
movements.

• ApplyMovement method: Makes a movement pertur-
bation and alters the subpermutation between to posi-
tions i and j.

• CalculateDelta method: Calculates the variation in the
overlap and in the number of contigs this method is
considered the main step of the PALS algorithm.

In another paper [50] two changes were proposed to the
principal PALS: The first goal is to avoid the local optima
and premature convergence. In this case, the method for
choosing the enhancing perturbation to be applied to the
existing solution at each algorithmic step is changed in a way
that leads to a significant improvement. The second one is to
minimize the computational demands of the algorithm, this
change involves applying multiple independent perturbations
rather than a single perturbation to enhance the present solution
at each algorithmic step.

The authors in [50] have noticed that the optimization of
the fitness is not the same as the optimization of the number of
contigs which is the present objective although the two goals
are complementary. As a result, the search mechanism in PALS
includes an estimation of the number of contigs. It selects the
movement with the lowest variation of contigs to orient the
search towards solutions that improve the number of contigs
which is the movement that reduces or maintains the number
of contigs.

Authors in [50] have suggested changing the movement
selection technique to prevent the premature convergence. With
the modified PALS known as PALS2, the movement with the
lowest contigs variation have always been selected, but in
contrast to the main PALS, in the situation that there are several
movements with the same contig variation, the movement with
the lowest fitness variation is chosen.

To avoid the significant amount of recalculations required
in each step in the process of PALS where only one single
movement in every step is applied, the authors have proposed
the algorithm PALS2-many [50] where many movements are
used in each step by developing a second variant in PALS2 in
order to improve the solution

The paper [51] have presented a discrete whale opti-
mization algorithm (DWOA) modeling the approach taken
by humpback whales when looking for victim or prey by
employing conventional operators adapted from evolutionary
algorithms. The whales assault their victim or prey using
a remarkable feeding technique known as the bubble-net
approach. They swim up to the surface after constricting
loop after spiraling around the victim [52]. In order to avoid
reducing the variation in the population, the whale positions
used to look for the prey were produced randomly from the
fragment numbers rather than utilizing a random whale. To
show how effective DWOA is in converting continuous whale
behaviors to discrete ones, it was compared to various WOA,
DE, and SCA methods. The paper have also demonstrated the
performance of the DWOA over those algorithms. To enhance
the performance of the proposed Discrete Whale Optimization
Algorithm (DWOA) in terms of fragment order, a local search
technique called PALS2-many was incorporated [51]. This
approach, known as DWOA-LS, combines the benefits of both
DWOA and local search to optimize the fragment order. By
integrating the local search, DWOA-LS not only maximizes
the overlap score among the fragments but also minimizes the
number of contigs, resulting in improved overall performance.

D. Genetic Algorithms

Genetic algorithm have also been applied in the DNA
fragment assembly problem by [46]. The authors investigated
various evolutionary algorithm operators for the issue and
discovered that using “macro-operators” considerably boosts
performance by exploiting fragment construction at gradually
higher levels.

Individuals are the population of potential solutions that
genetic algorithms operate on [53] [54] [55]. Usually, random
people are used to initialize the population. Depending on
their relative fitness, individuals are then either removed from
the population or reproduced within it. Different operators are
applied to the existing population of individuals to create new
individuals ones. A generation is a group of people in any
consecutive population. Typically, the genetic algorithm [46]
[56] processes in the following order:

1) The algorithm creates a pool of solutions at random
where random individuals are used to initialize the population.

2) It uses a fitness function for superior solutions selection.
The fitness of each individual is evaluated during the selection
process. Based on fitness, individuals are reproduced (copied)

www.ijacsa.thesai.org 903 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

in different ways. Various genetic algorithms implement the
concept of differential reproduction using various techniques
[46]. However Parsons et al. have used generational genetic
algorithm where a A new population is formed at each
generation, totally replacing the prior population. Low fitness
individuals have a low likelihood of being copied into the
next generation, whereas high fitness individuals have a high
likelihood of having several copies in the following generation.

3) To produce next-generation solutions, crossover and
mutation processes are applied to successful solutions [56].
The authors have discussed in [46] all the crossover operators
where the crossover rate indicates the average percentage of
new people created by crossover per generation and defined
the crossover as the selection of two individuals from the
population, and the swapping of substrings from corresponding
regions within the individuals. At the next generation, one or
both of the new individuals are incorporated into the popula-
tion. The operator’s goal is to let incomplete solutions develop
on various individuals before combining them to create a better
solution.

By modifying a basic component of an individual, a
mutation modifies that individual is the definitions of mutation
in [46]. The chances that any element in an individual will
change depends on the mutation rate. The resultant individual
takes the place of the mutation’s parent. It is thought by authors
that mutation is successful because it both explores the search
space close to existing individuals and saves solution com-
ponents that have been totally excluded from the population
by selection for the following generations [46]. Noting that
in genetic algorithm the individuals are the fragment orders
representing the DNA sequence solutions.

A new Hybrid genetic algorithm (GA+PALS) have been
presented in the paper [57], the genetic algorithm have been
used with PALS that was utilized as a mutation operator.The
authors have compared the hybrid method with the original
GA and PALS methods.A very effective assembler that enables
the search of optimal solutions for numerous instances of
this problem was obtained as a result. Authors have used
the conventional recombination and mutation operators,then
some solutions with a low probability, are randomly chosen
from the existing offspring and enhanced utilizing the local
search algorithm in the method’s main loop. This type of
hybridization is justified by the fact that, while the GA
identifies good positions of the search space , PALS facilitates
exploitation in the best regions discovered by its collaborator.
Obviously, the goal in this situation is to determine whether
we can develop another heuristic from the best of the two (the
GA and PALS algorithm) that would outperform either of the
two methods from which it was derived.

The authors have introduced two novel algorithms in recent
publications: the Recentering-Restarting Genetic Algorithm
(RRGA) and the Recentering-Restarting Hybrid Genetic Al-
gorithm (RRHGA), as mentioned in the papers [58] and
[59]respectively. The primary advantage emphasized in the
paper [58] for RRGA is its ability to avoid local optima by
exploring the search space and leveraging specific dynamic
representations. Before initiating the algorithm, a center or
reference point, representing a potential solution, is selected
either through seeding or random selection. Uzma and Halim
[59] suggest that starting with a solid solution is preferable,

while RRGA refines the potential solutions. Once the center
is determined, the population is generated.

In the direct representation approach, each individual in
the population is created by applying a sequence of n trans-
positions to the center of the population. The ordered lists of
fragments are modified through evolution, as explained in the
work by [59]. The RRGA algorithm incorporates the Power
Aware Local Search (PALS) operator as an evolutionary oper-
ator. The performance of the proposed algorithm is evaluated
based on overlap scores and the quantity of contigs.

According to the authors, the initial arrangement of frag-
ment orders in RRGA is known as the center, which represents
the default arrangement of the dataset’s fragments. The center
is then optimized using a 2-opt heuristic. This process gener-
ates a set of chromosomes, from which the best chromosome
is selected based on its fitness value. A comparison is made
between the fitness value of the best chromosome and the
center. If the fitness value of the best chromosome surpasses
that of the center, the number of transpositions is reduced
by five percent, and the center is replaced with the best
chromosome.

To evaluate their work, the authors conducted three types of
experiments. In the first set of experiments, the PALS operator
was used as a genetic operator. In the second set, PALS was
applied after running the Genetic Algorithm (GA). Finally, in
the third set, PALS served as a genetic operator and was also
used after the execution of the GA. The experiments were
performed with and without force recentre methodologies, and
the results were compared with the Recentering-Restarting
Genetic Algorithm, PALS, Genetic Algorithm, and Hybrid Ge-
netic Algorithm. The RRHGA approach demonstrated superior
performance across all of these methods.

The paper [60] discusses the importance of studying ge-
netic algorithms to address the DNA fragment assembly prob-
lem. The efficient GA operators that have proven successful
in the TSP and QAP contexts served as the inspiration for the
construction of a GA platform to tackle the DNA FAP prob-
lem. By identifying commonalities between the three DNA
FAP, TSP, and QAP problems these efficient GA operators
successfully been identified and integrated in the platform.

By carefully combining various GAs operators of the
platform, an effective GA variant was created in this research
[61] . In order to do that, various GAs operators have been
studied in solving the DNA FAP problem [60]. The perfor-
mance of these operators in the contexts of the TSP and
QAP issues is already established, and this study has the
advantage of comparing the GA results with the results of
other previous GA studies in the context of the overlap score.
The SCX crossover, a smart crossover that has never been
utilized with DNA FAP, provided better results than the other
crossover types under consideration, which is the study’s most
evident and important discovery. The best-designed GA variant
outperformed the current GA algorithms at solving the DNA
FAP problem and showed a notable improvement in accuracy
with good and competitive results. This paper [61] is the first
study to solve the DNA FAP problem form this perspective.
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TABLE I. NATURE-INSPIRED ALGORITHMS IN LITERATURE

Inspiration Stand alone algo-
rithm

Hybridization algo-
rithm

Total

Insects [62] [66] [65] [67] [63] [64] 6

Birds [30] [33] [42] [28]
[38] [39] [40]

[31] [32] [37] [41]
[35]

12

Evolutionary [46] [58] [61] [57] [59] 5

Mammals [36] [51] 2

Annealing in
metallurgy

[43][45][44] [47] [48] 5

Total 17 13 30

E. Ant Colony Algorithms

This paper [62] introduces the application of an ant colony
system algorithm for DNA fragment assembly. The proposed
approach utilizes an asymmetric ordering representation, where
the collective path generated by the ant colony represents the
search solution. The study investigates two types of assembly
problems: single-contig and multiple-contig problems. The
simulation results demonstrate that, for single-contig problems,
the ant colony system algorithm performs comparably to a
nearest neighbor heuristic algorithm. However, in the case
of multiple-contig problems, the ant colony system algorithm
surpasses the nearest neighbor heuristic algorithm.

In [63] and [64] the ant colony system (ACS) algorithm was
combined with the nearest neighbor heuristic (NNH) algorithm
for solving the DNA fragment assembly. The ACS algorithm
is utilized to create an optimized ordering sequence for the
fragments, while the resulting contigs are assembled using
the NNH rule. To evaluate its effectiveness, the ACS+NNH
procedure is compared to the standard sequence assembly
program CAP3. The results indicate that the overall perfor-
mance of the combined ACS/NNH technique surpasses that
of CAP3. Specifically, when dealing with large problem sizes,
the ACS/NNH solutions exhibit higher quality than the CAP3
solutions. It is observed that CAP3 tends to generate a greater
number of contigs compared to the ACS+NNH procedure.
Thus, the combined ACS/NNH approach demonstrates supe-
rior performance and improved contig quality, particularly for
larger-scale problems, as opposed to the CAP3 program.

F. Bee Algorithms

The nature-inspired Bee Colony metaheuristic algorithms
are population-based search algorithms based on various bio-
logical and natural processes observed in the food foraging
behaviour of honey bee colonies. In [65] the authors have
designed two different Bee algorithms: Artificial Bee Colony
(ABC) Algorithm and Queen-bee Evaluation Based On Ge-
netic Algorithm (QEGA).

Artificial bee colony (ABC) algorithm was developed using
the notion of the honey bee swarm’s intelligent behavior.
To create new effective search algorithms, honey bees use
strategies like the waggle dance [65]. Three types of bees
that compose the artificial bee colony in the ABC algorithm
are workers or employed, onlookers, and scouts. A bee that
waits at the dance area to decide which food source to

choose, representing one possible solution of a permutation
of DNA sequence fragments based on the waggle dance of the
employed bee, is referred to as an onlooker. And a bee that
moves to the food source that had previously visited is referred
to as a worker bee. A scout bee is one that hunts for food
at random.The nectar content of a food source represents the
DNA assembly problem’s fitness solution.

In the ABC algorithm [65], the employed artificial bees
make up the first half of the colony, while the observers make
up the second half. When both the employed and onlookers
bees have consumed the employed bee’s food supply, it turns
into a scout. A worker or onlooker bee modifies the solution
with PALS method for the locating a new food source and
evaluates its nectar by calculating the fitness value of the new
solution.

In the other category of Bee Colony algorithms, authors
[65] designed Queen-bee evolution based on genetic algorithm
(QEGA), which was inspired by the queen bee evolution
process and has been utilized to improve the optimization
capabilities of genetic algorithms in solving the DNA FAP.
Genetic algorithms are capable of reaching the global optimum
quickly due to the queen-bee evolution, which also reduces
the risk of premature convergence. The authors have utilized
problem aware local search (PALS) for an effective mutation.

G. Firefly Algorithm

The Firefly Algorithm (FA), a population-based algorithm
inspired by the behavior and lighting patterns of fireflies
created by Yang [66], is a recent nature-inspired algorithm
that has excelled in many number of fields.The firefly have
the following attributes according to Yang’s theory:

1) As all fireflies are not gender-specific, they are attracted
to each other regardless of their gender orientation.

2) Their brightness is inversely correlated with attractive-
ness. The less brilliant firefly will therefore travel toward the
brighter one for any pair of flashing fireflies. When their
distance grows, their attractiveness decrease. Hence, when
there is no distance between two fireflies, the attractiveness
is equal to the brightness. If none can see a better firefly it
will move at random.

3) The environment of the objective function influences or
determines a firefly’s radiance.

Authors in the paper [67] have designed Discrete Firefly
Algorithm design for Graphics Processing Units (GPU-DFA)
and analyzed it behaviour to solve the DNA assembly problem.
The main objective of the authors of the paper while designing
the algorithm GPU-DFA is to establish an efficient model
that runs the main processes of DFA entirely on GPU so
the algorithm can support large numbers of fireflies due to
optimized data-structures. The initialization and evaluation of
each solution are completed one at a time in the paper’s GPU-
DFA method. DNA pieces are randomly permuted to produce
each firefly i. The firefly I is then assessed, and its brightness
(fitness) is determined. In order to compute them, GPU-DFA
uses parallel threads. Several consecutive threads can make use
of different memory space.
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TABLE II. COMPARISON OF THE FITNESS VALUE OF THE STUDIED ALGORITHMS FROM [48], [67], [35], [51],[59], [37], [65], [39] ON DIFFERENT
INSTANCES

Dataset CRO+SA [48] GPU-DFA+LS [67] CSA-P2M*Fit [35] DWOA-LS [51] RRHGA [59] PPSO+DE [37] QEGA [65] PER-PSO-(hi)-ls [39]

M154215 38746 38746 38746 38746 22598 38686 38578 38746

M154216 48052 48048 48052 48052 29469 47669 47882 48052

M154217 55171 55072 55171 55171 32744 54891 55020 55171

J024597 116700 116700 116700 116700 68736 114381 116222 116700

BX8425964 227914 227233 227920 227920 125711 224797 227252 227920

BX8425967 444518 444162 445422 445422 247856 429338 443600 445422

H. Crow Search Algorithms

A novel crow search inspired algorithm (CSA) was pro-
posed [35] to solve the DNA fragment assembly problem
following the OLC model. Crows represent individuals in
the population. Each crow maintains a unique hiding place,
analogous to a solution candidate in the DNA fragment as-
sembly problem. To protect their hiding places, crows employ
specific defensive measures against potential followers, This
behavior is presented through the following descriptions: -
Crows live in social groups known as flocks. -Each crow
maintains a memory of the location of its own hiding place.
-Crows engage in a follow-the-leader strategy to identify the
hiding places of other crows. -A crow defends its hiding place
from potential attackers by employing a probabilistic defense
mechanism. Since the FAP is a discrete problem, and the
original algorithm was designed for continuous optimization
problems, Allaoui et al. proposed using a modified version of
the ordered crossover operator (OX). CSA was also combined
with a local search method and utilized standard operators
from evolutionary algorithms. The resulting approach, CSA-
P2M *Fit Algorithm, outperformed other algorithms designed
for the same purpose. It demonstrated accelerated search and
yielded high-quality solutions in the context of DNA fragment
assembly.

I. Cat Swarm Optimization

Recently, Yassine et al. presented in [36] the application
of the Cat Swarm Optimization algorithm (CSO) in the DNA
fragment assembly problem. This metaheuristic is a swarm
intelligence algorithm that incorporates the natural behavior
of cats and takes inspiration from the characteristics of cats,
which are typically lazy creatures that spend a significant
amount of time resting in a seeking mode. However, even
during their resting periods, they remain aware of their sur-
roundings. When cats sense a target, they switch to a tracing
mode and start moving towards it.

In CSO, each cat within the swarm is represented by its
position, velocity, and a flag indicating whether it is in seeking
mode or tracing mode. The position of a cat corresponds to a
potential solution to the problem being optimized. The velocity
of the cat influences its movement within the search space. The
flag determines the current mode of the cat, indicating whether
it is in seeking mode (resting) or tracing mode (actively moving
towards a target). The mixing ratio (MR) is a parameter in CSO
that determines in which mode the cat will go into.

By simulating the natural behavior of cats and incorpo-
rating it into an optimization algorithm, CSO aims to find
accurate solutions to the DNA fragment assembly problem
by efficiently exploring the search space. The balancing of
seeking and tracing modes through the mixing ratio enables the
algorithm to adapt its exploration and exploitation strategies
based on the problem characteristics and the current state of
the swarm.

The Table II synthesize eight main algorithms hybridized
with local search and other methods for solving the DNA frag-
ment assembly problem. The first column of the table presents
the dataset instances names provided from [68]: M15421(5),
M15421(6) and M15421(7) from the human apolipoprotein B
gene. j02459(7) instance from Complete nucleotide sequence
of the cohesive ends of bacteriophage lambda DNA. The
two instances bx842596(4) and bx842596(7) from Neurospora
crassa DNA linkage group II BAC clone B10K17. In the
other columns the fitness results obtained by the algorithms
are presented: CRO+SA (Chemical Reaction Optimisation)
[48], GPU-DFA+LS (Discrete Firefly Algorithm design for
Graphics Processing Units) [67], CSA-P2M*Fit (Crow Search
Algorithm and ALS2-many) [35], DWOA-LS (Discrete Whale
Optimization Algorithm PALS2-many) [51], RRHGA (Recen-
tering–Restarting Hybrid Genetic Algorithm) [59], PPSO+DE
(Parallel Particle Swarm Optimization and Differential Evolu-
tion) [37], QEGA (Queen-bee Evaluation Based On Genetic
Algorithm)[65], PER-PSO-(hi)-ls (Probabilistic Edge Recom-
bination Particle Swarm Optimization and quick-PALS) [39].

It’s clear seen from the Table II that the hybrid methods
CSA-P2M*Fit, DWOA-LS and PER-PSO-(hi)-ls outperfomed
in all the instances. CRO+SA give better results in M15421(5),
M15421(6), M15421(7) and j02459(7). GPU-DFA+LS showed
high fitness values too in M15421(5) and j02459(7).

However, it is important to consider that every meta-
heuristic algorithm possesses certain parameters that contribute
to enhancing the algorithm’s results. In most of the algorithms,
the different parameters settings were applied in different test
experiments and were varying for each instance of the dataset.

VI. DISCUSSION

The field of genome assembly algorithms has experienced
rapid and exponential growth. Over time, there has been a
significant increase in the development and advancement of
these algorithms. This growth can be attributed to several
factors, including the availability of high-throughput sequenc-
ing technologies, the decreasing cost of sequencing, and the
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increasing demand for accurate and complete genome assem-
blies. Genome assembly algorithms play a crucial role in
reconstructing the fragmented DNA sequences obtained from
sequencing machines into complete genomes. As the com-
plexity and size of genomes vary across different organisms,
the development of efficient and accurate assembly algorithms
has become essential. Advancements in assembly algorithms
have been driven by a combination of algorithmic innovations,
computational resources, and improved understanding of the
characteristics of DNA sequences. Researchers have developed
various algorithmic approaches, including machine learning
methods, nature inspired metaheuristics based on overlap-
layout-consensus and de Bruijn graph-based approaches, and
hybrid methods that combine multiple strategies.

As a result of these combined factors, the field of genome
assembly algorithms has experienced remarkable growth, with
continuous improvements in scalability, computational effi-
ciency and in assembly quality [69]. This ongoing progress
in algorithm development is crucial for advancing genomics
research, enabling discoveries, and understanding the com-
plexities of genomes across different species. This review
paper provide collaboration and knowledge exchange among
researchers, enabling them to overcome the genome assem-
bly challenges through the application of machine learning
and nature-inspired optimization algorithms. Machine learning
methods and metaheuristic methods are known to be two
distinct approaches used in problem-solving domains including
genome assembly. Each approach has its strengths and limita-
tions, and a comparison between the two can provide insights
into their applicability and effectiveness in different scenarios.
Methods provided by machine learning, such as supervised
learning, unsupervised learning, and reinforcement learning,
utilize algorithms that learn patterns and relationships from
data. These methods excel in tasks where large amounts of
labeled or unlabeled data are available. In genome assembly,
machine learning methods can be employed for various pur-
poses, such as error correction, read alignment, and sequence
classification. They can leverage the inherent structure and
patterns within the genomic data to make predictions and im-
prove assembly accuracy. However, machine learning methods
often require extensive training data and may be computa-
tionally intensive, especially for complex problems with high-
dimensional data. Metaheuristics in the other side, explore
the search space systematically, looking for optimal solu-
tions without relying on explicit problem-specific knowledge.
Metaheuristics are well-suited for combinatorial optimization
problems, including genome assembly as shown in the results
(Table II). They can effectively handle large-scale datasets and
non-linear optimization objectives. Metaheuristic algorithms
offer a balance between exploration and exploitation, enabling
them to escape local optima and find near-optimal solutions.
However, they do not provide guarantees of finding the global
optimum, and the convergence speed can vary depending on
the problem and parameter settings. Researchers can combine
these approaches to laverage the strengths of both and to im-
prove genome assembly outcomes. Machine learning models
can be used to guide hybrid metaheuristic algorithms combined
with parallelism technologies like mapreduce in the search
process like in [42] or to extract meaningful features from
genomic data, enhancing the effectiveness of the optimization
process of genome assembly.

VII. CONCLUSION

In this paper, a comprehensive review of existing literature
in the field of genome assembly was established with a particu-
lar emphasis on practical algorithms. The reviewed algorithms
include OLC (overlap-layout-consensus) based algorithms, de
Bruijn graph-based algorithms, swarm algorithms, and ma-
chine learning methods. For each algorithm, detailed insights
and highlights were provided, outlining their characteristics,
strengths, and potential applications. Recent advancements
in the literature also were examined, considering how these
algorithms have evolved to address the challenges of genome
assembly problem.In the future, the suggested DNA fragment
assembler could be further developed by leveraging both
machine learning techniques and nature-inspired algorithms,
having the potential to be adapted into a parallel version using
parallel programming frameworks like MapReduce. These
enhancements are expected to lead to significantly improved
performance, allowing for more efficient results and reduced
execution times.
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