
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

14 | P a g e

www.ijacsa.thesai.org

Converting Data for Spiking Neural Network

Training

Erik Sadovsky, Maros Jakubec, Roman Jarina

Department of Multimedia and Information-Communication Technologies-FEIT,

University of Zilina, Zilina, Slovak Republic

Abstract—The application of spiking neural networks (SNNs)

for processing visual and auditory data necessitate the conversion

of traditional neural network datasets into a format suitable for

spike-based computations. Existing datasets designed for

conventional neural networks are incompatible with SNNs due to

their reliance on spike timing and specific preprocessing

requirements. This paper introduces a comprehensive pipeline

that enables the conversion of common datasets into rate-coded

spikes, meeting processing demands of SNNs. The proposed

solution is evaluated on Spike-CNN trained on Time-to-First-

Spike encoded MNIST and compared with the similar system

trained on the neuromorphic dataset (N-MNIST). Both systems

have comparative precision; however the proposed solution is

more energy efficient than the system based on neuromorphic

computing. Since, the proposed solution is not limited to any

specific data form and can be applied to various types of

audio/visual content. By providing a means to adapt existing

datasets, this research facilitates the exploration and

advancement of SNNs across different domains.

Keywords—SNN; rate coding; spike timing; data conversion;
MNIST

I. INTRODUCTION

Spiking Neural Networks (SNNs) have emerged as a highly
promising research direction, bridging the gap between
neuroscience and machine learning. By emulating the
behaviour of biological neurons and their asynchronous
communication through discrete spikes, SNNs offer a
compelling computational framework for modelling and
understanding neural processes [1], [2]. However, a significant
obstacle in fully realizing the potential of SNNs lies in the lack
of dedicated databases specifically designed for their training
and evaluation.

In contrast to conventional neural networks that are trained
using readily and widely available datasets such as MNIST or
ImageNet (which are widely used in computer vision and
pattern recognition fields among many others), SNNs require
special data representations that capture the temporal dynamics
of neural processing in a form of spikes. The precise timing of
the spikes becomes crucial for encoding and processing
information, necessitating a departure from traditional data
formats [3]. Consequently, substantial research efforts are
currently focused on developing comprehensive databases
tailored explicitly for SNN training and evaluation.

Despite notable progress in the field of SNNs, the
development of specialized databases for training and testing
remains an ongoing research challenge. Currently, only a

limited number of publicly available datasets, such as the
Spiking Neural Network Architecture (SNA), N-MNIST [4],
DVS Gesture [5], and N-TIDIGITS [6], have been specifically
designed for SNNs. These datasets enable training and testing
of SNNs across various tasks, including decoding neural
activity, image classification, gesture recognition, and speech
recognition.

The availability of dedicated datasets is crucial for
advancing the field of SNNs, as they serve as the foundation
for training and evaluating network performance. However,
existing datasets for SNNs (usually recorded using a
specialized neuromorphic device) are limited in size and
diversity, hindering the exploration of SNN capabilities across
different domains and applications. This limitation underscores
the pressing need to develop methodologies for converting and
adapting conventional datasets into formats suitable for SNN
training.

Our objective is to explain a processing pipeline for
converting amplitude-based data into time/rate encoded spikes
and compare a performance of SNN trained on such data with
the performance of the SNN trained on specialized
neuromorphic dataset. Such conversion process involves the
transformation of input data into spike-based representations
that preserve the temporal information necessary for accurate
neural computation. This conversion necessitates careful
consideration of various factors, including spike encoding
schemes, spike rates, and the representation of spike timing.
Moreover, it is essential to ensure that the converted data
maintains the underlying structure and statistical properties of
the original data to guarantee meaningful and reliable training
of SNNs. By bridging the gap between conventional data
formats and SNNs, our work aims to empower researchers and
practitioners to overcome the limitations imposed by the
scarcity of SNN-specific databases.

In this paper, we propose specifically an approach to
converting image data (conventionally represented by pixel
intensity values in matrix form) into spike-based
representations incorporating temporal encoding techniques.
We study and evaluate the proposed approach on MNIST
dataset. To prove our concept, we compare the performance of
developed SNN architectures trained on the spike-converted
MNIST database with ones trained using the N-MNIST
database, created by capturing MNIST images using
neuromorphic Dynamic Vision Sensor (DVS) camera [7]. N-
MNIST is a widely used benchmark dataset for evaluating the
performance of SNN models in various tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

15 | P a g e

www.ijacsa.thesai.org

This paper is organized as follows. Section II introduces
Spiking Neural Networks (SNNs) and emphasizes the need for
new databases. Section III provides an overview of SNNs
applications developed on the N-MNIST database. Section IV
outlines the proposed methodology, including data conversion,
database description, and network settings. Section V presents
the results, demonstrating the effectiveness of SNNs trained on
the newly acquired database. Finally, Section VI concludes the
paper by summarizing the findings, discussing research
implications and limitations, and providing recommendations
for future studies.

II. SPIKING NEURAL NETWORK – THEORETICAL

BACKGROUND

Despite the enormous efforts of scientists and evidently
great progress in information and cognitive science, the human
brain, with its billions of interconnected neurons, remains an
enigmatic engine capable of complex cognitive processes. In
recent years, there has been a surge of interest in developing
computational models that emulate the functionality of
biological neural networks. While traditional Artificial Neural
Networks (ANNs) have been successful in numerous
applications in diverse domains, they fall short in capturing the
temporal dynamics and binary nature of spiking neurons
observed in biological systems.

Spiking neural networks present a promising alternative to
ANNs, providing a more biologically realistic approach to
modelling neural computation. By communicating through
discrete binary events known as spikes, SNNs mimic the action
potentials observed in real neurons. This temporal coding
scheme enables SNNs to capture the dynamics and
synchronization observed in biological neural systems, opening
new avenues for understanding brain function and developing
advanced cognitive computing systems.

A. Neuronal Dynamics in SNNs

The core of a SNN lies in the dynamics of its constituent
spiking neurons. Unlike traditional ANNs, which operate using
real-valued activations, SNNs leverage the binary nature of
spiking neurons to encode and process information through
time.

1) Integrate and fire model: The Integrate and Fire (IF)

[8] model represents a fundamental building block of SNNs.

In this simplified model, the membrane potential of a neuron,

denoted as V, integrates the input spike trains it receives. Once

the membrane potential surpasses a threshold voltage, the

neuron generates an output spike. The dynamics of the

membrane potential in the IF model can be described as:

 () (1)

where u denotes the membrane potential, the derivative
du/dt represents the rate of change of the membrane potential,
R is the membrane resistance, () represent the input spike
train, and is the threshold voltage.

2) Leaky integrate and fire model: The Leaky Integrate

and Fire (LIF) model builds upon the IF model by

incorporating the concept of leakage. In biological neurons,

the membrane potential gradually decays towards a resting

potential due to ion leakage. The LIF model accounts for this

phenomenon by including a leakage term in the dynamics of

the membrane potential. The LIF model can be expressed as:

 () () (2)

where represents the membrane time constant, is
the resting potential. Fig. 1 provides a visual representation of
the key elements and parameters characterizing a LIF neuron.

Fig. 1. LIF neuron characterized by membrane potential V, membrane time

constant τ, input I(t), and synaptic weight w.

B. Impulse Coding

Impulse coding is a fundamental aspect of SNNs, as it
involves the transformation of data into an impulse-based
format that enables efficient processing within these networks.
The objective of impulse coding is to preserve relevant
information while generating a stream of spikes. However,
determining the importance of specific information and
developing a unified approach to impulse coding remains a
complex and context-dependent challenge. The following
subsections briefly discuss three mechanisms of impulse
coding in SNNs, namely rate encoding, temporal encoding, and
population coding.

1) Rate encoding: Rate encoding, also known as rate

coding, is a widely studied and utilized method of encoding

information in SNNs. It’s based on the assumption that the

average firing rate of neurons over a specific time interval

carries the desired information. By modulating the firing rate

of neurons, different stimuli can be represented. The rate

encoding approach offers a straightforward and intuitive

method for representing information using spikes.

The strength of the stimulus representation is believed to
increase with the firing rate. However, the precise mapping
between firing rate and stimulus intensity can vary depending
on the neural population and the specific encoding scheme
employed. The rate encoding method provides a reliable means
of representing information in SNNs and has been successfully
applied in various applications.

2) Temporal encoding: Temporal encoding is another

mechanism employed in impulse coding, which focuses on the

precise timing of spikes to represent information. Instead of

relying solely on the firing rate, temporal encoding

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

16 | P a g e

www.ijacsa.thesai.org

emphasizes the temporal order and precise timing of

individual spikes. The relative timing of spikes across multiple

neurons can convey specific features or patterns of stimuli.
In temporal encoding, the timing of spikes within a spike

train carries the information, such as the duration between
spikes or the occurrence of specific spike patterns. The brain
has the remarkable ability to decode and interpret these
temporal patterns to extract meaningful information. Temporal
coding offers a rich representation that captures fine-grained
details of stimuli and enables precise temporal processing in
neural networks.

3) Population encoding: In addition to rate encoding and

temporal encoding, population encoding has been introduced

as a third category of impulse coding. Population encoding

involves the joint activity of multiple neurons to encode

information. Rather than relying on the individual firing rates

or precise timing of spikes, population encoding considers the

collective behaviour of a group of neurons.

The underlying principle of population coding is that the
combined activity of a population of neurons carries
information that cannot be represented by individual neurons
alone. By analysing the distributed patterns of activity across
the population, specific features or stimuli can be decoded.
Population coding provides a powerful mechanism for
encoding complex information and has been observed in
various biological sensory systems.

III. RELATED WORK

In recent years, several studies have investigated a variety
of SNN approaches, using the N-MNIST database, a widely
used benchmark dataset for performance evaluation (see
Section IV for details on N-MNIST). He et al. [9] compared
the performance of the feedforward SNNs and recurrent neural
networks (RNNs). The authors modified the N-MNIST
database by compressing individual spiking events along the
temporal axis and utilized the leaky integrate and fire (LIF)
model as the spiking neuron model. Their findings indicated
that SNNs generally outperformed conventional RNNs in
terms of accuracy. However, with the adaptation of loss
functions and the incorporation of Long Short-Term Memory
(LSTM) networks, RNNs achieved competitive accuracy with
SNNs. This study highlighted the advantage of SNNs in
processing features represented by a sparse set of spikes.
Another approach by Cohen et al. [10] introduced the method
of inverse synaptic kernels for training SNNs on N-MNIST.
The authors constructed a spiking neural network with a hidden
layer comprising up to 10,000 neurons and achieved a high
classification rate of 92.87% on the N-MNIST test subset. This
work demonstrated the potential of leveraging biologically
inspired principles to further enhance the performance of
SNNs.

Wu et al. [11] proposed a novel architecture by
incorporating a population of neurons in the output layer of a
convolutional SNN. The output spike sequence from this layer
represented population coding, which improved the
discriminative capabilities of the network. The experiments
conducted on the N-MNIST and DVS-CIFAR10 databases
showed remarkable accuracies of 99.53% and 60.5%,

respectively. This study highlighted the effectiveness of
population coding in visual recognition tasks using SNNs.

For event-based features as (SNN input data), Ramesh et al.
[12] introduced the Event-Based structural Descriptor (EBD)
that captures a spatio-temporal structure using a log-polar grid
and applied it to various computer vision problems, including
N-MNIST classification. They proved the efficacy of event-
based representations in capturing spatiotemporal information
and leveraging it for robust classification in SNN frameworks.
Their classifier achieved a high accuracy of 97.95% on the N-
MNIST test subset.

Addressing the challenges associated with SNN training,
Shrestha et al. [13] explored the non-differentiability of the
spike generation function and proposed a solution for
converting existing databases into spike-based representations.
They introduced the SLAYER algorithm, inspired by
backpropagation, enabling the training of both feedforward and
convolutional SNNs. The N-MNIST database was used to
demonstrate the algorithm's effectiveness and the conversion
process from image-based to spike-based representations.

Table I summarizes the accuracy achieved by various
approaches on the N-MNIST dataset, providing a
comprehensive performance comparison of the state-of-the-art
SNN-based methods.

TABLE I. PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART

METHODS ON THE N-MNIST DATASET

Authors Method
Accuracy

(%)

Sironi et al., 2018 [14] HATS 99.10

Lee et al., 2020 [15]
Spike based supervised gradient

descent
99.09

Bi et al., 2019 [16] Graph based object classification 99.00

Jin et al., 2019 [17] HM2-BP 98.84

Yousefzadeh et al., 2018

[18]
Active perception with DVS 98.80

Wu et al., 2018 [19] Spatiotemporal backpropagation 98.78

Lee et al., 2016 [20]
Training SNN using
backpropagation

98.74

Ramesh et al., 2017 [12] Event-Based Descriptor 97.95

Liu et al., 2020 [21]
Segmented probability-

maximization
96.30

Kaiser et al., 2020 [22] DECOLLE 96.00

Cohen et al., 2016 [10]
Inverse synaptic kernels for
training SNN

92.87

The Spiking Heidelberg Digits (SHD) and the Spiking
Speech Command (SSC) [23] datasets are both audio-based
classification datasets that provide input spikes and output
labels for different spoken digits and commands. Both of these
datasets were created using a software conversion that was
based on mathematical models of inner auditory system.

The IBM gestures dataset [24] contains spike trains of
gesture movement recordings under different illumination
conditions. It is one of the most popular real world scenario
datasets for training SNNs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

17 | P a g e

www.ijacsa.thesai.org

IV. METHODS

In this section, we present a comprehensive methodology
that enables the conversion of various datasets into temporal-
encoded spikes suitable for SNN processing. The proposed
approach combines techniques of data preprocessing, feature
extraction, and network configuration to ensure the
compatibility of the converted spikes with the SNN
architecture.

A. Datasets

1) MNIST: MNIST is a standard database consisting of

grayscale images of handwritten digits. It contains 60,000

training images and 10,000 test images, with each image

having a size of 28×28 pixels. One of the advantages of using

this database is that it requires minimal data preprocessing

since most machine learning libraries have built-in support for

MNIST. Although MNIST is not encoded in spikes, it can be

utilized for SNN development in such a way that classical

ANNs are first trained on MNIST and then converted to

SNNs. It should be noted that MNIST does not include a

separate validation set. If needed, a few samples from the

training set have to be separated for such a purpose.

2) N-MNIST: Neuromorphic MNIST (N-MNIST) [4] is a

spike-based representation of the MNIST database. It captures

the dynamics of handwritten digits using a Dynamic Vision

Sensor (DVS) camera. N-MNIST consists of the same number

of samples as MNIST. Each sample is encoded as a binary

file, storing pixel index (x, y), event type (ON or OFF), and

the event timestamp. The events represent changes in light

intensity. N-MNIST provides dynamic sequences with a

duration of 300 ms and a resolution of 34×34 pixels. The

motion in N-MNIST is inspired by the saccadic eye

movement, featuring rapid movements in three directions

lasting 100 ms each. This database enables the exploration of

SNNs and their performance on tasks involving temporal

information, serving as an alternative to static image-based

databases.

B. Conversion Procedure: Transforming Data for Effective

SNN Training

The first step for enabling SNN training on the MNIST
dataset is to encode the data samples into time-distributed spike
sequences.

The conversion pipeline consists of the following steps:

 Loading the image data

 Preprocessing the image data

 Scaling the image data

 Converting the image data into spike sequences

 Saving the converted spike sequences for later use in
training

To implement this spike encoding procedure, several
libraries written in Python have been used: Pytorch and
Pytorch-vision for MNIST loading, snnTorch library for

temporal encoding and h5py library for saving the converted
spike sequences.

The next step was to preprocess the image data to be
compatible with the snnTorch library. One main preprocessing
step was to scale the image values between 0 and 1. This step
was mandatory as it was a requirement from the snnTorch
library. One can do multiple preprocessing operations step such
as resizing, rotating, etc, at this step.

The scaled values of the data are then used as an input for
the spike generation module of the snnTorch library (this
module enables to use several encoding schemes, either of rate
or temporal types). The simulation time of the temporal
encoded samples may be specified to a desired value.

The output from the spike generation module is an array of
discrete values 0 and 1, in which value of 1 represents a spike.
The array is a two-dimensional array of [T, U] size, in which
the first dimension represents the simulation time index and the
second one corresponds to the feature number, T is the total
number of simulation time steps, and U represents the number
of features (which matches SNN input layer size).

The final step is to save the generated spike data for the
later use in SNN training. A common practice in neuromorphic
datasets is to save the data in the form of arrays that correspond
to: coordinates (x,y), spike times, and labels. Each event (spike)
has a coordinate that corresponds to the index of the input
neuron firing a specific spike, and a timestamp. In addition, a
label is assigned to the whole sample. We have followed this
common practice and reformulated the encoded spike data into
corresponding arrays as mentioned above.

In our experiments, we have chosen a temporal encoding
scheme, because of lower number of spikes needed to carry the
information. This encoding scheme belongs to the group of
temporal encoding schemes. As opposed to the rate encoding
schemes, temporal encoding schemes contain a smaller number
of spikes. In rate encoding schemes the average number of
spikes represents the information. However, in temporal
encoding schemes, the precise timing of a single spike carries
the information. There are several temporal encoding schemes
available. [25]. In this experiment, we applied the Time-to-
First-Spike encoding procedure (T2FS) [26]. In the case of
T2FS, the information is carried in the time of the first spike
from the beginning of the simulation. It was experimentally
proven, that tactile systems (e.g., at the fingertips) use a similar
scheme to encode and transmit information about touch. Also,
it has been suggested that the first spike carries twice as much
information compared to rate encoding [27].

Lower number of spikes has a positive impact on overall
hardware requirements, especially on the size of the batch in
GPU. Also, this lower number of spikes reflects lower
requirements for energy if a SNN processing this dataset would
be implemented on hardware. The simulation time of samples
was set to 30 ms as opposed to 300 ms simulation time of N-
MNIST samples. The shorter sample time was selected to
investigate the ability of SNNs to process samples with short
sample time.

The encoding procedure of the spikegen module returns a
multi-dimensional array with values 0 and 1. Note, due to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

18 | P a g e

www.ijacsa.thesai.org

differences between input structure of the library used for SNN
training with converted samples and the output structure of the
spikegen module, the structures need to be reorganized to fit
each other. The proposed pipeline block diagram is shown in
Fig. 2.

Fig. 2. Proposed pipeline block diagram.

C. Baseline System

The Spiking Convolutional Neural Network (SCNN), that
is similar to the structure published in [13] was chosen as a
baseline architecture. The architecture of the baseline system is
shown in Table II.

The baseline model was trained on N-MNIST. The output
layer of the model uses the rate encoding method, where the
neuron with a higher spike rate is selected as the neuron
representing the class. The neurons were trained to spike 60
times for the representing (true) class and 10 times otherwise
(false class). The simulation time of SNN was 300 ms. The
trained SNN was able to classify samples with processing
delay of 150 ms. Although the process was more biologically
plausible, its computational cost may be a disadvantage.

TABLE II. THE ARCHITECTURE OF THE BASELINE SYSTEM

Layer Parameters

Input 34×34×2

Conv1 12 kernels (5×5)

Delay1 -

Pool1 2×2

Delay2 -

Conv2 64 kernels (5x5)

Delay3 -

Pool2 2×2

Delay4 -

Fc1 10

D. The Proposed System

As an alternative we propose an approach using a software
conversion of the MNIST dataset that may be widely available
and without the need of a specialized hardware (in contrast to
N-MNIST).

The proposed architecture is again a SCNN similar to the
baseline, except the input layer. The size of the input layer
corresponds with the size and format of the MNIST image
data. The structure of the model consists of convolutional
layers followed by pooling. After each layer also a time delay

layer is applied. The delay layer is used as a special layer in
SNNs. The SCNN output layer is a spiking fully connected
layer with 10 neurons corresponding with the number of
classes to be recognized. The whole architecture is shown in
Table III.

The proposed system was trained from scratch for 80
epochs. The time of the whole training process was around 2.5
hours (using NVIDIA RTX 2060TI with 6GB of GPU
memory). We used the Adam optimizer with starting learning
rate of 0.001. The learning rate parameter was modified by the
ReduceLROnPlateau learning rate scheduler, which modified
the value of the learning rate based on criteria. The batch size
of both train and test subsets was set to 32.

To implement and train the proposed SCNN on the
converted MNIST dataset we applied the Pytorch library along
with the slayerPytorch library that includes an implementation
of SNN training using Pytorch. SNNs implemented using this
library consists of Spike Response Model spiking neurons. The
architecture is trained using the Spike SLAYER algorithm.
This algorithm uses a surrogate gradient approach to overcome
difficulties with training SNNs. This library contained all
building blocks to create a SNN. This includes special layers
that were made of spiking neurons, spike processing and the
surrogate gradient method. There are more parameters that
were needed to be configured. Most of these parameters were
related to the slayerPytorch library and were used to control
the simulation of SNN. We used similar parameters as the
baseline, except that our samples had different simulation
length. Note, our proposed model was trained for temporal
encoding, where a lower number of spikes were needed for the
model to classify a sample than in the case of the rate encoding
that was used in the baseline.

TABLE III. ARCHITECTURE OF THE MODEL

Layer Parameters

Input 28×28

Conv1 12 kernels (5×5)

Delay1 -

Pool1 2×2

Delay2 -

Conv2 64 kernels (5x5)

Delay3 -

Pool2 2×2

Delay4 -

Fc1 10

V. EXPERIMENTAL RESULTS AND DISCUSSION

The trained architecture was able to achieve accuracy of
98.79% on the MNIST test set. The changes in accuracy and
loss during the training process are shown in Fig. 3 and Fig. 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

19 | P a g e

www.ijacsa.thesai.org

Fig. 3. Accuracy on subsets during the training process.

Fig. 4. Loss of the model during the training process.

The accuracy of the baseline system on the N-MNIST test
set was 99.2%. The performance of the baseline system is
comparable with other systems trained on N-MNIST and
published. Although, the accuracy of our trained model was not
higher than the baseline system, it is still a competitive number.

The improvement of our model is in spike efficiency. Our
trained model was able to classify MNIST samples with only
average of 27 spikes on the output layer during the simulation
time. The baseline system for N-MNIST used 150 spikes on
average during the simulation time. Our proposed system uses
a more energy-efficient temporal encoding method, while the
baseline system used rate encoding. Also, the number of spikes
that are on the input of the SNN is lower. Baseline system for
N-MNIST used around 4100 spikes on average, while our
system used only 784 spikes. When encoding an image, the
spikes are first occurring on the indexes of pixels with higher
brightness intensity, while spikes on indexes of pixels with
lower brightness intensity occur later. Note, each represented
pixel contains only one spike. This means, that for MNIST
images with a resolution of 28×28 pixels only 784 spikes occur
for each image. Such a number of spikes are much smaller than
in the case of the N-MNIST dataset, in which each sample
around 4100 spikes on average.

Our proposed model is more energy efficient not only on
the input spikes, but also on the output spikes. The comparison

of the baseline system and our proposed system is summarized
in Table IV.

TABLE IV. COMPARISON OF THE BASELINE SYSTEM AND OUR PROPOSED

SYSTEM

 Baseline system Proposed system

Dataset N-MNIST

MNIST (converted

with the proposed
pipeline)

Encoding Rate encoding Temporal encoding

Number of spikes

on input (average)
4100 784

Number of spikes
on output

150 27

Accuracy 99.2% 98.79%

Although our experiments are carried out on MNIST
benchmark dataset, the methodology we present is versatile
and applicable to other image datasets as well as to diverse data
modalities, including audio or biological signals (e.g. in the
form of spectrograms).

VI. CONCLUSION

In this paper we have presented a software conversion
process that uses an energy efficient temporal encoding method
to convert static image data into a format of spikes distributed
in time. The proposed method was compared with a baseline
method that used a specialized hardware for converting the
same dataset. The baseline system used rate encoding. The
functionality of the proposed method was examined on SNN
that used a similar architecture to the baseline system. The
results of the proposed solution in terms of accuracy were
competitive with the baseline. However, the SNN trained using
the proposed temporal encoding needs a significantly lower
number of spikes in both input and output spike trains to
correctly classify the dataset.

We envise that the proposed pipeline will not only facilitate
improved training and testing of SNNs but also inspire the
development of larger datasets that cover a broader application
domain. Through these efforts, we attempt to unlock the
immense potential of SNNs and neuromorphic computing
while advancing our understanding of brain-inspired
computation.

The future improvements for the proposed pipeline may be
in experiments with more datasets to be converted into spike
trains and then used for training SNNs. The length of samples
in time may play a role in the accuracy of the trained model
and would need to be further investigated.

ACKNOWLEDGMENT

This work was supported by the Slovak Grant Agency
KEGA under contract no. KEGA 008ZU-4/2021 and also by
the ERDF project of Operational Programme Integrated
Infrastructure, ITMS2014+ code 313011ASK8.

REFERENCES

[1] S. Ghosh-Dastidar and H. Adeli, ‘Spiking neural networks’, Int. J.
Neural Syst., vol. 19, no. 04, pp. 295–308, Aug. 2009, doi:
10.1142/S0129065709002002.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

20 | P a g e

www.ijacsa.thesai.org

[2] S. Thorpe, A. Delorme, and R. Van Rullen, ‘Spike-based strategies for
rapid processing’, Neural Netw., vol. 14, no. 6, pp. 715–725, Jul. 2001,
doi: 10.1016/S0893-6080(01)00083-1.

[3] T. Zhang, M. R. Azghadi, C. Lammie, A. Amirsoleimani, and R. Genov,
‘Spike sorting algorithms and their efficient hardware implementation: a
comprehensive survey’, J. Neural Eng., vol. 20, no. 2, p. 021001, Apr.
2023, doi: 10.1088/1741-2552/acc7cc.

[4] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, ‘Converting
Static Image Datasets to Spiking Neuromorphic Datasets Using
Saccades’, Front. Neurosci., vol. 9, 2015, Accessed: Feb. 07, 2023.
[Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2015.00437

[5] ‘DVS128 Gesture Dataset - IBM Research’.
https://research.ibm.com/interactive/dvsgesture/ (accessed Feb. 07,
2023).

[6] ‘TIDIGIT Spikes Dataset’, Google Docs.
https://docs.google.com/document/d/1Uxe7GsKKXcy6SlDUX4hoJVAC
0-UkH-8kr5UXp0Ndi1M/edit?usp=embed_facebook (accessed Feb. 07,
2023).

[7] P. Lichtsteiner, C. Posch, and T. Delbruck, ‘A 128\times 128 120 dB 15
μs Latency Asynchronous Temporal Contrast Vision Sensor’, IEEE J.
Solid-State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008, doi:
10.1109/JSSC.2007.914337.

[8] J. Feng and David Brown, ‘Integrate-and-fire Models with Nonlinear
Leakage’, Bull. Math. Biol., vol. 62, no. 3, pp. 467–481, May 2000, doi:
10.1006/bulm.1999.0162.

[9] W. He et al., ‘Comparing SNNs and RNNs on Neuromorphic Vision
Datasets: Similarities and Differences’. arXiv, May 02, 2020. Accessed:
May 19, 2023. [Online]. Available: http://arxiv.org/abs/2005.02183

[10] G. K. Cohen, G. Orchard, S.-H. Leng, J. Tapson, R. B. Benosman, and
A. van Schaik, ‘Skimming Digits: Neuromorphic Classification of
Spike-Encoded Images’, Front. Neurosci., vol. 10, 2016, Accessed: May
19, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2016.00184

[11] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, ‘Direct Training for
Spiking Neural Networks: Faster, Larger, Better’, Proc. AAAI Conf.
Artif. Intell., vol. 33, no. 01, Art. no. 01, Jul. 2019, doi:
10.1609/aaai.v33i01.33011311.

[12] B. Ramesh, H. Yang, G. Orchard, N. A. Le Thi, S. Zhang, and C. Xiang,
‘DART: Distribution Aware Retinal Transform for Event-Based
Cameras’, IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 11, pp.
2767–2780, Nov. 2020, doi: 10.1109/TPAMI.2019.2919301.

[13] S. B. Shrestha and G. Orchard, ‘SLAYER: Spike Layer Error
Reassignment in Time’, in Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2018. Accessed: Feb. 17, 2023.
[Online]. Available:
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607
ce05f52a2fed-Abstract.html

[14] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman,
‘HATS: Histograms of Averaged Time Surfaces for Robust Event-Based
Object Classification’, in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Jun. 2018, pp. 1731–1740. doi:
10.1109/CVPR.2018.00186.

[15] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, ‘Enabling
Spike-Based Backpropagation for Training Deep Neural Network

Architectures’, Front. Neurosci., vol. 14, 2020, Accessed: Jul. 28, 2023.
[Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2020.00119

[16] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, and Y. Andreopoulos,
‘Graph-Based Object Classification for Neuromorphic Vision Sensing’,
in 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Oct. 2019, pp. 491–501. doi: 10.1109/ICCV.2019.00058.

[17] Y. Jin, W. Zhang, and P. Li, ‘Hybrid Macro/Micro Level
Backpropagation for Training Deep Spiking Neural Networks’, in
Advances in Neural Information Processing Systems, Curran Associates,
Inc., 2018. Accessed: Jul. 28, 2023. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2018/hash/3fb04953d95
a94367bb133f862402bce-Abstract.html

[18] A. Yousefzadeh, G. Orchard, T. Serrano-Gotarredona, and B. Linares-
Barranco, ‘Active Perception With Dynamic Vision Sensors. Minimum
Saccades With Optimum Recognition’, IEEE Trans. Biomed. Circuits
Syst., vol. 12, no. 4, pp. 927–939, Aug. 2018, doi:
10.1109/TBCAS.2018.2834428.

[19] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, ‘Spatio-Temporal
Backpropagation for Training High-Performance Spiking Neural
Networks’, Front. Neurosci., vol. 12, 2018, Accessed: May 29, 2023.
[Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2018.00331

[20] J. H. Lee, T. Delbruck, and M. Pfeiffer, ‘Training Deep Spiking Neural
Networks Using Backpropagation’, Front. Neurosci., vol. 10, 2016,
Accessed: Jul. 28, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2016.00508

[21] Q. Liu, H. Ruan, D. Xing, H. Tang, and G. Pan, ‘Effective AER Object
Classification Using Segmented Probability-Maximization Learning in
Spiking Neural Networks’, Proc. AAAI Conf. Artif. Intell., vol. 34, no.
02, Art. no. 02, Apr. 2020, doi: 10.1609/aaai.v34i02.5486.

[22] J. Kaiser, H. Mostafa, and E. Neftci, ‘Synaptic Plasticity Dynamics for
Deep Continuous Local Learning (DECOLLE)’, Front. Neurosci., vol.
14, 2020, Accessed: Jul. 28, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424

[23] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke, ‘The Heidelberg
Spiking Data Sets for the Systematic Evaluation of Spiking Neural
Networks’, IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp.
2744–2757, Jul. 2022, doi: 10.1109/TNNLS.2020.3044364.

[24] A. Amir et al., ‘A Low Power, Fully Event-Based Gesture Recognition
System’, in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jul. 2017, pp. 7388–7397. doi:
10.1109/CVPR.2017.781.

[25] J. K. Eshraghian et al., ‘Training Spiking Neural Networks Using
Lessons From Deep Learning’. arXiv, May 15, 2023. Accessed: May 29,
2023. [Online]. Available: http://arxiv.org/abs/2109.12894

[26] B. Rueckauer and S.-C. Liu, ‘Conversion of analog to spiking neural
networks using sparse temporal coding’, in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1–5. doi:
10.1109/ISCAS.2018.8351295.

[27] H. P. Saal, S. Vijayakumar, and R. S. Johansson, ‘Information about
Complex Fingertip Parameters in Individual Human Tactile Afferent
Neurons’, J. Neurosci., vol. 29, no. 25, pp. 8022–8031, Jun. 2009, doi:
10.1523/JNEUROSCI.0665-09.2009.

