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Abstract—The application of spiking neural networks (SNNs) 

for processing visual and auditory data necessitate the conversion 

of traditional neural network datasets into a format suitable for 

spike-based computations. Existing datasets designed for 

conventional neural networks are incompatible with SNNs due to 

their reliance on spike timing and specific preprocessing 

requirements. This paper introduces a comprehensive pipeline 

that enables the conversion of common datasets into rate-coded 

spikes, meeting processing demands of SNNs. The proposed 

solution is evaluated on Spike-CNN trained on Time-to-First-

Spike encoded MNIST and compared with the similar system 

trained on the neuromorphic dataset (N-MNIST). Both systems 

have comparative precision; however the proposed solution is 

more energy efficient than the system based on neuromorphic 

computing. Since, the proposed solution is not limited to any 

specific data form and can be applied to various types of 

audio/visual content. By providing a means to adapt existing 

datasets, this research facilitates the exploration and 

advancement of SNNs across different domains. 

Keywords—SNN; rate coding; spike timing; data conversion; 
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I. INTRODUCTION 

Spiking Neural Networks (SNNs) have emerged as a highly 
promising research direction, bridging the gap between 
neuroscience and machine learning. By emulating the 
behaviour of biological neurons and their asynchronous 
communication through discrete spikes, SNNs offer a 
compelling computational framework for modelling and 
understanding neural processes [1], [2]. However, a significant 
obstacle in fully realizing the potential of SNNs lies in the lack 
of dedicated databases specifically designed for their training 
and evaluation. 

In contrast to conventional neural networks that are trained 
using readily and widely available datasets such as MNIST or 
ImageNet (which are widely used in computer vision and 
pattern recognition fields among many others), SNNs require 
special data representations that capture the temporal dynamics 
of neural processing in a form of spikes. The precise timing of 
the spikes becomes crucial for encoding and processing 
information, necessitating a departure from traditional data 
formats [3]. Consequently, substantial research efforts are 
currently focused on developing comprehensive databases 
tailored explicitly for SNN training and evaluation. 

Despite notable progress in the field of SNNs, the 
development of specialized databases for training and testing 
remains an ongoing research challenge. Currently, only a 

limited number of publicly available datasets, such as the 
Spiking Neural Network Architecture (SNA), N-MNIST [4], 
DVS Gesture [5], and N-TIDIGITS [6], have been specifically 
designed for SNNs. These datasets enable training and testing 
of SNNs across various tasks, including decoding neural 
activity, image classification, gesture recognition, and speech 
recognition. 

The availability of dedicated datasets is crucial for 
advancing the field of SNNs, as they serve as the foundation 
for training and evaluating network performance. However, 
existing datasets for SNNs (usually recorded using a 
specialized neuromorphic device) are limited in size and 
diversity, hindering the exploration of SNN capabilities across 
different domains and applications. This limitation underscores 
the pressing need to develop methodologies for converting and 
adapting conventional datasets into formats suitable for SNN 
training.  

Our objective is to explain a processing pipeline for 
converting amplitude-based data into time/rate encoded spikes 
and compare a performance of SNN trained on such data with 
the performance of the SNN trained on specialized 
neuromorphic dataset. Such conversion process involves the 
transformation of input data into spike-based representations 
that preserve the temporal information necessary for accurate 
neural computation. This conversion necessitates careful 
consideration of various factors, including spike encoding 
schemes, spike rates, and the representation of spike timing. 
Moreover, it is essential to ensure that the converted data 
maintains the underlying structure and statistical properties of 
the original data to guarantee meaningful and reliable training 
of SNNs. By bridging the gap between conventional data 
formats and SNNs, our work aims to empower researchers and 
practitioners to overcome the limitations imposed by the 
scarcity of SNN-specific databases. 

In this paper, we propose specifically an approach to 
converting image data (conventionally represented by pixel 
intensity values in matrix form) into spike-based 
representations incorporating temporal encoding techniques. 
We study and evaluate the proposed approach on MNIST 
dataset. To prove our concept, we compare the performance of 
developed SNN architectures trained on the spike-converted 
MNIST database with ones trained using the N-MNIST 
database, created by capturing MNIST images using 
neuromorphic Dynamic Vision Sensor (DVS) camera [7]. N-
MNIST is a widely used benchmark dataset for evaluating the 
performance of SNN models in various tasks. 
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This paper is organized as follows. Section II introduces 
Spiking Neural Networks (SNNs) and emphasizes the need for 
new databases. Section III provides an overview of SNNs 
applications developed on the N-MNIST database. Section IV 
outlines the proposed methodology, including data conversion, 
database description, and network settings. Section V presents 
the results, demonstrating the effectiveness of SNNs trained on 
the newly acquired database. Finally, Section VI concludes the 
paper by summarizing the findings, discussing research 
implications and limitations, and providing recommendations 
for future studies. 

II. SPIKING NEURAL NETWORK – THEORETICAL 

BACKGROUND 

Despite the enormous efforts of scientists and evidently 
great progress in information and cognitive science, the human 
brain, with its billions of interconnected neurons, remains an 
enigmatic engine capable of complex cognitive processes. In 
recent years, there has been a surge of interest in developing 
computational models that emulate the functionality of 
biological neural networks. While traditional Artificial Neural 
Networks (ANNs) have been successful in numerous 
applications in diverse domains, they fall short in capturing the 
temporal dynamics and binary nature of spiking neurons 
observed in biological systems. 

Spiking neural networks present a promising alternative to 
ANNs, providing a more biologically realistic approach to 
modelling neural computation. By communicating through 
discrete binary events known as spikes, SNNs mimic the action 
potentials observed in real neurons. This temporal coding 
scheme enables SNNs to capture the dynamics and 
synchronization observed in biological neural systems, opening 
new avenues for understanding brain function and developing 
advanced cognitive computing systems. 

A. Neuronal Dynamics in SNNs 

The core of a SNN lies in the dynamics of its constituent 
spiking neurons. Unlike traditional ANNs, which operate using 
real-valued activations, SNNs leverage the binary nature of 
spiking neurons to encode and process information through 
time. 

1) Integrate and fire model: The Integrate and Fire (IF) 

[8] model represents a fundamental building block of SNNs. 

In this simplified model, the membrane potential of a neuron, 

denoted as V, integrates the input spike trains it receives. Once 

the membrane potential surpasses a threshold voltage, the 

neuron generates an output spike. The dynamics of the 

membrane potential in the IF model can be described as: 

  

  
     ( )                   (1) 

where u denotes the membrane potential, the derivative 
du/dt represents the rate of change of the membrane potential, 
R is the membrane resistance,  ( ) represent the input spike 
train, and     is the threshold voltage. 

2) Leaky integrate and fire model: The Leaky Integrate 

and Fire (LIF) model builds upon the IF model by 

incorporating the concept of leakage. In biological neurons, 

the membrane potential gradually decays towards a resting 

potential due to ion leakage. The LIF model accounts for this 

phenomenon by including a leakage term in the dynamics of 

the membrane potential. The LIF model can be expressed as: 

  
  

  
   (       )     ( )                   (2) 

where    represents the membrane time constant,       is 
the resting potential. Fig. 1 provides a visual representation of 
the key elements and parameters characterizing a LIF neuron. 

 
Fig. 1. LIF neuron characterized by membrane potential V, membrane time 

constant τ, input I(t), and synaptic weight w. 

B. Impulse Coding 

Impulse coding is a fundamental aspect of SNNs, as it 
involves the transformation of data into an impulse-based 
format that enables efficient processing within these networks. 
The objective of impulse coding is to preserve relevant 
information while generating a stream of spikes. However, 
determining the importance of specific information and 
developing a unified approach to impulse coding remains a 
complex and context-dependent challenge. The following 
subsections briefly discuss three mechanisms of impulse 
coding in SNNs, namely rate encoding, temporal encoding, and 
population coding.  

1) Rate encoding: Rate encoding, also known as rate 

coding, is a widely studied and utilized method of encoding 

information in SNNs. It’s based on the assumption that the 

average firing rate of neurons over a specific time interval 

carries the desired information. By modulating the firing rate 

of neurons, different stimuli can be represented. The rate 

encoding approach offers a straightforward and intuitive 

method for representing information using spikes. 

The strength of the stimulus representation is believed to 
increase with the firing rate. However, the precise mapping 
between firing rate and stimulus intensity can vary depending 
on the neural population and the specific encoding scheme 
employed. The rate encoding method provides a reliable means 
of representing information in SNNs and has been successfully 
applied in various applications. 

2) Temporal encoding: Temporal encoding is another 

mechanism employed in impulse coding, which focuses on the 

precise timing of spikes to represent information. Instead of 

relying solely on the firing rate, temporal encoding 
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emphasizes the temporal order and precise timing of 

individual spikes. The relative timing of spikes across multiple 

neurons can convey specific features or patterns of stimuli. 
In temporal encoding, the timing of spikes within a spike 

train carries the information, such as the duration between 
spikes or the occurrence of specific spike patterns. The brain 
has the remarkable ability to decode and interpret these 
temporal patterns to extract meaningful information. Temporal 
coding offers a rich representation that captures fine-grained 
details of stimuli and enables precise temporal processing in 
neural networks. 

3) Population encoding: In addition to rate encoding and 

temporal encoding, population encoding has been introduced 

as a third category of impulse coding. Population encoding 

involves the joint activity of multiple neurons to encode 

information. Rather than relying on the individual firing rates 

or precise timing of spikes, population encoding considers the 

collective behaviour of a group of neurons. 

The underlying principle of population coding is that the 
combined activity of a population of neurons carries 
information that cannot be represented by individual neurons 
alone. By analysing the distributed patterns of activity across 
the population, specific features or stimuli can be decoded. 
Population coding provides a powerful mechanism for 
encoding complex information and has been observed in 
various biological sensory systems. 

III. RELATED WORK 

In recent years, several studies have investigated a variety 
of SNN approaches, using the N-MNIST database, a widely 
used benchmark dataset for performance evaluation (see 
Section IV for details on N-MNIST). He et al. [9] compared 
the performance of the feedforward SNNs and recurrent neural 
networks (RNNs). The authors modified the N-MNIST 
database by compressing individual spiking events along the 
temporal axis and utilized the leaky integrate and fire (LIF) 
model as the spiking neuron model. Their findings indicated 
that SNNs generally outperformed conventional RNNs in 
terms of accuracy. However, with the adaptation of loss 
functions and the incorporation of Long Short-Term Memory 
(LSTM) networks, RNNs achieved competitive accuracy with 
SNNs. This study highlighted the advantage of SNNs in 
processing features represented by a sparse set of spikes. 
Another approach by Cohen et al. [10] introduced the method 
of inverse synaptic kernels for training SNNs on N-MNIST. 
The authors constructed a spiking neural network with a hidden 
layer comprising up to 10,000 neurons and achieved a high 
classification rate of 92.87% on the N-MNIST test subset. This 
work demonstrated the potential of leveraging biologically 
inspired principles to further enhance the performance of 
SNNs. 

Wu et al. [11] proposed a novel architecture by 
incorporating a population of neurons in the output layer of a 
convolutional SNN. The output spike sequence from this layer 
represented population coding, which improved the 
discriminative capabilities of the network. The experiments 
conducted on the N-MNIST and DVS-CIFAR10 databases 
showed remarkable accuracies of 99.53% and 60.5%, 

respectively. This study highlighted the effectiveness of 
population coding in visual recognition tasks using SNNs. 

For event-based features as (SNN input data), Ramesh et al. 
[12] introduced the Event-Based structural Descriptor (EBD) 
that captures a spatio-temporal structure using a log-polar grid 
and applied it to various computer vision problems, including 
N-MNIST classification. They proved the efficacy of event-
based representations in capturing spatiotemporal information 
and leveraging it for robust classification in SNN frameworks. 
Their classifier achieved a high accuracy of 97.95% on the N-
MNIST test subset. 

Addressing the challenges associated with SNN training, 
Shrestha et al. [13] explored the non-differentiability of the 
spike generation function and proposed a solution for 
converting existing databases into spike-based representations. 
They introduced the SLAYER algorithm, inspired by 
backpropagation, enabling the training of both feedforward and 
convolutional SNNs. The N-MNIST database was used to 
demonstrate the algorithm's effectiveness and the conversion 
process from image-based to spike-based representations. 

Table I summarizes the accuracy achieved by various 
approaches on the N-MNIST dataset, providing a 
comprehensive performance comparison of the state-of-the-art 
SNN-based methods. 

TABLE I. PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART 

METHODS ON THE N-MNIST DATASET 

Authors Method 
Accuracy 

(%) 

Sironi et al., 2018 [14] HATS 99.10 

Lee et al., 2020 [15] 
Spike based supervised gradient 

descent 
99.09 

Bi et al., 2019 [16] Graph based object classification 99.00 

Jin et al., 2019 [17] HM2-BP 98.84 

Yousefzadeh et al., 2018 

[18] 
Active perception with DVS 98.80 

Wu et al., 2018 [19] Spatiotemporal backpropagation 98.78 

Lee et al., 2016 [20] 
Training SNN using 
backpropagation 

98.74 

Ramesh et al., 2017 [12] Event-Based Descriptor 97.95 

Liu et al., 2020 [21] 
Segmented probability-

maximization 
96.30 

Kaiser et al., 2020 [22] DECOLLE 96.00 

Cohen et al., 2016 [10] 
Inverse synaptic kernels for 
training SNN 

92.87 

The Spiking Heidelberg Digits (SHD) and the Spiking 
Speech Command (SSC) [23] datasets are both audio-based 
classification datasets that provide input spikes and output 
labels for different spoken digits and commands. Both of these 
datasets were created using a software conversion that was 
based on mathematical models of inner auditory system. 

The IBM gestures dataset [24] contains spike trains of 
gesture movement recordings under different illumination 
conditions. It is one of the most popular real world scenario 
datasets for training SNNs. 
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IV. METHODS 

In this section, we present a comprehensive methodology 
that enables the conversion of various datasets into temporal-
encoded spikes suitable for SNN processing. The proposed 
approach combines techniques of data preprocessing, feature 
extraction, and network configuration to ensure the 
compatibility of the converted spikes with the SNN 
architecture. 

A. Datasets 

1) MNIST: MNIST is a standard database consisting of 

grayscale images of handwritten digits. It contains 60,000 

training images and 10,000 test images, with each image 

having a size of 28×28 pixels. One of the advantages of using 

this database is that it requires minimal data preprocessing 

since most machine learning libraries have built-in support for 

MNIST. Although MNIST is not encoded in spikes, it can be 

utilized for SNN development in such a way that classical 

ANNs are first trained on MNIST and then converted to 

SNNs. It should be noted that MNIST does not include a 

separate validation set. If needed, a few samples from the 

training set have to be separated for such a purpose. 

2) N-MNIST: Neuromorphic MNIST (N-MNIST) [4] is a 

spike-based representation of the MNIST database. It captures 

the dynamics of handwritten digits using a Dynamic Vision 

Sensor (DVS) camera. N-MNIST consists of the same number 

of samples as MNIST. Each sample is encoded as a binary 

file, storing pixel index (x, y), event type (ON or OFF), and 

the event timestamp. The events represent changes in light 

intensity. N-MNIST provides dynamic sequences with a 

duration of 300 ms and a resolution of 34×34 pixels. The 

motion in N-MNIST is inspired by the saccadic eye 

movement, featuring rapid movements in three directions 

lasting 100 ms each. This database enables the exploration of 

SNNs and their performance on tasks involving temporal 

information, serving as an alternative to static image-based 

databases. 

B. Conversion Procedure: Transforming Data for Effective 

SNN Training 

The first step for enabling SNN training on the MNIST 
dataset is to encode the data samples into time-distributed spike 
sequences. 

The conversion pipeline consists of the following steps: 

 Loading the image data 

 Preprocessing the image data 

 Scaling the image data 

 Converting the image data into spike sequences 

 Saving the converted spike sequences for later use in 
training  

To implement this spike encoding procedure, several 
libraries written in Python have been used: Pytorch and 
Pytorch-vision for MNIST loading, snnTorch library for 

temporal encoding and h5py library for saving the converted 
spike sequences. 

The next step was to preprocess the image data to be 
compatible with the snnTorch library. One main preprocessing 
step was to scale the image values between 0 and 1. This step 
was mandatory as it was a requirement from the snnTorch 
library. One can do multiple preprocessing operations step such 
as resizing, rotating, etc, at this step.  

The scaled values of the data are then used as an input for 
the spike generation module of the snnTorch library (this 
module enables to use several encoding schemes, either of rate 
or temporal types). The simulation time of the temporal 
encoded samples may be specified to a desired value. 

The output from the spike generation module is an array of 
discrete values 0 and 1, in which value of 1 represents a spike. 
The array is a two-dimensional array of [T, U] size, in which 
the first dimension represents the simulation time index and the 
second one corresponds to the feature number, T is the total 
number of simulation time steps, and U represents the number 
of features (which matches SNN input layer size). 

The final step is to save the generated spike data for the 
later use in SNN training. A common practice in neuromorphic 
datasets is to save the data in the form of arrays that correspond 
to: coordinates (x,y), spike times, and labels. Each event (spike) 
has a coordinate that corresponds to the index of the input 
neuron firing a specific spike, and a timestamp. In addition, a 
label is assigned to the whole sample. We have followed this 
common practice and reformulated the encoded spike data into 
corresponding arrays as mentioned above.  

In our experiments, we have chosen a temporal encoding 
scheme, because of lower number of spikes needed to carry the 
information. This encoding scheme belongs to the group of 
temporal encoding schemes. As opposed to the rate encoding 
schemes, temporal encoding schemes contain a smaller number 
of spikes. In rate encoding schemes the average number of 
spikes represents the information. However, in temporal 
encoding schemes, the precise timing of a single spike carries 
the information. There are several temporal encoding schemes 
available. [25]. In this experiment, we applied the Time-to-
First-Spike encoding procedure (T2FS) [26]. In the case of 
T2FS, the information is carried in the time of the first spike 
from the beginning of the simulation. It was experimentally 
proven, that tactile systems (e.g., at the fingertips) use a similar 
scheme to encode and transmit information about touch. Also, 
it has been suggested that the first spike carries twice as much 
information compared to rate encoding [27].  

Lower number of spikes has a positive impact on overall 
hardware requirements, especially on the size of the batch in 
GPU. Also, this lower number of spikes reflects lower 
requirements for energy if a SNN processing this dataset would 
be implemented on hardware. The simulation time of samples 
was set to 30 ms as opposed to 300 ms simulation time of N-
MNIST samples. The shorter sample time was selected to 
investigate the ability of SNNs to process samples with short 
sample time. 

The encoding procedure of the spikegen module returns a 
multi-dimensional array with values 0 and 1. Note, due to 
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differences between input structure of the library used for SNN 
training with converted samples and the output structure of the 
spikegen module, the structures need to be reorganized to fit 
each other. The proposed pipeline block diagram is shown in 
Fig. 2. 

 
Fig. 2. Proposed pipeline block diagram. 

C. Baseline System 

The Spiking Convolutional Neural Network (SCNN), that 
is similar to the structure published in [13] was chosen as a 
baseline architecture. The architecture of the baseline system is 
shown in Table II. 

The baseline model was trained on N-MNIST. The output 
layer of the model uses the rate encoding method, where the 
neuron with a higher spike rate is selected as the neuron 
representing the class. The neurons were trained to spike 60 
times for the representing (true) class and 10 times otherwise 
(false class). The simulation time of SNN was 300 ms. The 
trained SNN was able to classify samples with processing 
delay of 150 ms. Although the process was more biologically 
plausible, its computational cost may be a disadvantage. 

TABLE II. THE ARCHITECTURE OF THE BASELINE SYSTEM 

Layer Parameters 

Input 34×34×2 

Conv1 12 kernels (5×5) 

Delay1 - 

Pool1 2×2 

Delay2 - 

Conv2 64 kernels (5x5) 

Delay3 - 

Pool2 2×2 

Delay4 - 

Fc1 10 

D. The Proposed System 

As an alternative we propose an approach using a software 
conversion of the MNIST dataset that may be widely available 
and without the need of a specialized hardware (in contrast to 
N-MNIST). 

The proposed architecture is again a SCNN similar to the 
baseline, except the input layer. The size of the input layer 
corresponds with the size and format of the MNIST image 
data. The structure of the model consists of convolutional 
layers followed by pooling. After each layer also a time delay 

layer is applied. The delay layer is used as a special layer in 
SNNs. The SCNN output layer is a spiking fully connected 
layer with 10 neurons corresponding with the number of 
classes to be recognized. The whole architecture is shown in 
Table III. 

The proposed system was trained from scratch for 80 
epochs. The time of the whole training process was around 2.5 
hours (using NVIDIA RTX 2060TI with 6GB of GPU 
memory). We used the Adam optimizer with starting learning 
rate of 0.001. The learning rate parameter was modified by the 
ReduceLROnPlateau learning rate scheduler, which modified 
the value of the learning rate based on criteria. The batch size 
of both train and test subsets was set to 32. 

To implement and train the proposed SCNN on the 
converted MNIST dataset we applied the Pytorch library along 
with the slayerPytorch library that includes an implementation 
of SNN training using Pytorch. SNNs implemented using this 
library consists of Spike Response Model spiking neurons. The 
architecture is trained using the Spike SLAYER algorithm. 
This algorithm uses a surrogate gradient approach to overcome 
difficulties with training SNNs. This library contained all 
building blocks to create a SNN. This includes special layers 
that were made of spiking neurons, spike processing and the 
surrogate gradient method. There are more parameters that 
were needed to be configured. Most of these parameters were 
related to the slayerPytorch library and were used to control 
the simulation of SNN. We used similar parameters as the 
baseline, except that our samples had different simulation 
length. Note, our proposed model was trained for temporal 
encoding, where a lower number of spikes were needed for the 
model to classify a sample than in the case of the rate encoding 
that was used in the baseline. 

TABLE III. ARCHITECTURE OF THE MODEL 

Layer Parameters 

Input 28×28 

Conv1 12 kernels (5×5) 

Delay1 - 

Pool1 2×2 

Delay2 - 

Conv2 64 kernels (5x5) 

Delay3 - 

Pool2 2×2 

Delay4 - 

Fc1 10 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The trained architecture was able to achieve accuracy of 
98.79% on the MNIST test set. The changes in accuracy and 
loss during the training process are shown in Fig. 3 and Fig. 4. 
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Fig. 3. Accuracy on subsets during the training process. 

 

Fig. 4. Loss of the model during the training process. 

The accuracy of the baseline system on the N-MNIST test 
set was 99.2%. The performance of the baseline system is 
comparable with other systems trained on N-MNIST and 
published. Although, the accuracy of our trained model was not 
higher than the baseline system, it is still a competitive number. 

The improvement of our model is in spike efficiency. Our 
trained model was able to classify MNIST samples with only 
average of 27 spikes on the output layer during the simulation 
time. The baseline system for N-MNIST used 150 spikes on 
average during the simulation time. Our proposed system uses 
a more energy-efficient temporal encoding method, while the 
baseline system used rate encoding. Also, the number of spikes 
that are on the input of the SNN is lower. Baseline system for 
N-MNIST used around 4100 spikes on average, while our 
system used only 784 spikes. When encoding an image, the 
spikes are first occurring on the indexes of pixels with higher 
brightness intensity, while spikes on indexes of pixels with 
lower brightness intensity occur later. Note, each represented 
pixel contains only one spike. This means, that for MNIST 
images with a resolution of 28×28 pixels only 784 spikes occur 
for each image. Such a number of spikes are much smaller than 
in the case of the N-MNIST dataset, in which each sample 
around 4100 spikes on average. 

Our proposed model is more energy efficient not only on 
the input spikes, but also on the output spikes. The comparison 

of the baseline system and our proposed system is summarized 
in Table IV. 

TABLE IV. COMPARISON OF THE BASELINE SYSTEM AND OUR PROPOSED 

SYSTEM 

 Baseline system Proposed system 

Dataset N-MNIST 

MNIST (converted 

with the proposed 
pipeline) 

Encoding Rate encoding Temporal encoding 

Number of spikes 

on input (average) 
4100 784 

Number of spikes 
on output 

150 27 

Accuracy 99.2% 98.79% 

Although our experiments are carried out on MNIST 
benchmark dataset, the methodology we present is versatile 
and applicable to other image datasets as well as to diverse data 
modalities, including audio or biological signals (e.g. in the 
form of spectrograms). 

VI. CONCLUSION 

In this paper we have presented a software conversion 
process that uses an energy efficient temporal encoding method 
to convert static image data into a format of spikes distributed 
in time. The proposed method was compared with a baseline 
method that used a specialized hardware for converting the 
same dataset. The baseline system used rate encoding. The 
functionality of the proposed method was examined on SNN 
that used a similar architecture to the baseline system. The 
results of the proposed solution in terms of accuracy were 
competitive with the baseline. However, the SNN trained using 
the proposed temporal encoding needs a significantly lower 
number of spikes in both input and output spike trains to 
correctly classify the dataset. 

We envise that the proposed pipeline will not only facilitate 
improved training and testing of SNNs but also inspire the 
development of larger datasets that cover a broader application 
domain. Through these efforts, we attempt to unlock the 
immense potential of SNNs and neuromorphic computing 
while advancing our understanding of brain-inspired 
computation. 

The future improvements for the proposed pipeline may be 
in experiments with more datasets to be converted into spike 
trains and then used for training SNNs. The length of samples 
in time may play a role in the accuracy of the trained model 
and would need to be further investigated. 
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