
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

304 | P a g e

www.ijacsa.thesai.org

Hussein Search Algorithm: A Novel Efficient

Searching Algorithm in Constant Time Complexity

Omer H Abu El Haijia
1
, Arwa H. F. Zabian

2

University of Castilla–La Mancha, Toledo-España
1

Jadara University, Jordan-Irbid
2

Abstract—Hussein search algorithm focuses on the

fundamental concept of searching in computer science and aims

to enhance the retrieval of data from various data warehouses.

The efficiency of cloud systems is substantially influenced by the

manner in which data is saved and retrieved, given the vast

quantity of data being generated and stored in the cloud. The act

of searching entails the systematic endeavor of locating a

particular item within a substantial volume of data, and

searching algorithms offer methodical strategies for

accomplishing this task. There exists a wide array of searching

algorithms, each exhibiting variations in terms of the search

procedure, time complexity, and space complexity. The choice of

the suitable algorithm is contingent upon various aspects,

including the magnitude of the dataset, the distribution of the

data, and the desired temporal and spatial intricacy. This study

presents a novel prediction-based searching algorithm named the

Hussein search algorithm. The system is designed to operate in a

straightforward manner and makes use of a simple data

structure. This study relies on fundamental mathematical

computations and incorporates the interpolation search

algorithm, an algorithm that introduces a search by-prediction

method for uniformly distributed lists, it forecasts the precise

position of the queried object. The cost of prediction remains

consistent and, in numerous instances, falls under the O(1) range.

Hussein search algorithm exhibits enhanced efficiency in

comparison to the binary search and ternary search algorithms,

both of which are widely regarded as the best methods for

searching sorted data.

Keywords—Binary search; prediction search procedure;

prediction cost; constant time complexity

I. INTRODUCTION

On a daily basis, a substantial volume of data is generated
across many formats, including photographs, videos, and text.
This material is subsequently stored in cloud-based
repositories, serving as a collective resource for retrieval from
any given database. The increasing complexity of this matter
can be attributed to the substantial volume of data that is
generated and stored on a daily basis. The act of searching is
of significant importance in various contexts, regardless of
whether the item being sought is stored within a cloud-based
infrastructure or a localized database. In both scenarios, the
use of a search algorithm is essential for the successful
retrieval of the desired item. The process of searching is
commonly employed as a means of problem-solving, whereby
the problem is provided as input and a solution is generated in
the form of a sequential set of activities. Numerous instances
in practical contexts can be classified as searching problems,
such as the task of determining the shortest route between two

nodes. These types of problems can be effectively addressed
through the use of graph search algorithms. The act of
searching can be categorized into two main types: sequential
search and binary search. Various searching algorithms exist,
each employing distinct strategies and exhibiting variations in
terms of time and space complexity. Certain algorithms
employ an informed approach, while others adopt a uniform
approach, and a third category utilizes a partial information
strategy for the purpose of item retrieval. The uniformity of
the sequential search method arises from its lack of concern
for any prior knowledge regarding the distribution of items.
The binary search algorithm is considered an informed search
algorithm due to its reliance on a sorted array. In recent years,
there has been limited progress in enhancing the complexity of
the search algorithm. This is primarily due to the satisfactory
performance of the binary search algorithm in terms of
searching complexity. However, it is important to note that the
binary search algorithm does encounter challenges related to
sorting, as it can only operate on sorted arrays. Additionally, it
faces difficulties when dealing with comparison-based input
involving searching for candidate items. Hence, the temporal
complexity is intricately linked to the duration required for the
sorting process, resulting in a trade-off where the time saved
when searching is offset by the time invested in sorting. The
interpolation search algorithm has a temporal complexity of
O(1) when the items in the list are evenly distributed [1].
Therefore, in some scenarios, an interpolation search can
provide an accurate estimation of the closest solution to the
search problem. The ternary search method is a variant of the
binary search algorithm that has a slower temporal complexity
[1, 2]. The meta-binary search algorithm is a variant of the
binary search method that iteratively creates the index of the
desired value within the array. The approach operates in a way
akin to the binary search algorithm, exhibiting a time
complexity of O(log n) for locating the desired element. The
ternary search technique partitions the array into three
segments, utilizing the central point of each segment to locate
the desired element. The logarithmic complexity of the search
algorithm is determined by the number of steps required to
locate the desired element, which is logarithmically
proportional to the size of the array, denoted as n. However,
the search range, which represents the number of elements that
need to be examined during the search, is three times the size
of the array (3n). Consequently, the worst-case running time
of the algorithm can be expressed as the logarithm of three
times the size of the array (log3n), while the best-case running
time may be approximated as being linearly proportional to
the size of the array (O(n)). It is important to note that these

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

305 | P a g e

www.ijacsa.thesai.org

running time estimates are valid only when the array is sorted
[3]. The jump search algorithm is a searching technique
designed for sorted arrays. It involves performing a fixed
number of jumps, denoted by k, on a block of data in order to
locate the target element. Within each block, linear search
operations are conducted to identify the desired element. The
algorithm under consideration is superior to the sequential
search method, but it falls short of the binary search technique.
Specifically, it requires m-1 additional comparisons compared
to sequential search, where m represents the size of the block
to be traversed [4]. The interpolation search algorithm is a
method that generates additional data points within a given
range of known data points. Its time complexity is O(log log
n) for datasets with uniform distributions, and O(n) in the
worst-case scenario. The proposed approach represents an
advancement over the binary search technique by employing
comparison-based approaches that leverage a mathematical
formula to approximate the location of the target element
based on its value. Subsequently, the search is conducted in
the vicinity of this estimated position. This alternative method
has the potential to outperform the binary search algorithm
under certain circumstances [5]. The exponential search
algorithm operates on a sorted array. It begins by selecting a
subarray of size 1, then doubles the size of the subarray in
each iteration. The algorithm compares the final element of
each subarray until the desired element is found. The
algorithm in question is commonly referred to as exponential
search, which exhibits a temporal complexity of O(log n) [6].
In the realm of searching for an item within an array of size n,
two commonly employed strategies can be identified. The first
strategy, known as sequential search, is applicable to unsorted
arrays. The second technique, known as binary search, is
exclusively applicable to arrays that have been sorted.

The study presented in this paper aims to introduce a novel
searching algorithm that operates on a sorted array, relying
solely on mathematical operations and a computed prediction
approach implemented through a straightforward data
structure. The search process in question exhibits a constant
time complexity. While the space complexity may exceed that
of sequential search, the time complexity can be lowered to
O(1) in numerous scenarios and to O(constant) in the worst-
case scenario. The algorithm relies on the computation of the
array's average, operating under the assumption of a uniform
distribution of items within the list. Additionally, it generates
supplementary arrays, one of which records the frequency of
successful matches, while the other stores the locations where
the sought-after items can be located. Part of process is similar
to the Knuth-Pratt-Morris algorithm, which is commonly used
for pattern matching [7]. The approach under consideration
aims to decrease the time complexity by minimizing the
number of comparisons and implementing a straightforward
prediction system that ensures the absence of collisions
through the utilization of error-free lookup tables and basic
arithmetic operations.

The primary objectives underlying this research endeavor
are to provide a straightforward predictive approach utilizing
search techniques and to execute a basic computation with
constant time complexity.

The subsequent sections of this study are structured as
follows: Section II presents a review of relevant literature
pertaining to searching algorithms. It is worth noting that the
process of locating sufficient recent works on searching
algorithms proved to be challenging. The majority of the
literature discovered consisted of dated publications or
encompassed broader discussions on binary search algorithms.
In Section 3, the proposed algorithm is introduced. In Section
IV are shown the results obtained from the proposed study,
followed by an examination of the algorithm employed.
Finally, the paper concludes with findings and discusses
potential avenues for further research in Section V.

II. RELATED WORKS

One of the main benefits of searching operations in
computer science is their capability to assist in finding
particular data from databases. The effectiveness of the search
process directly impacts the overall performance of the
system. Searching algorithms are widely employed in several
computer applications, such as problem-solving [9], data
analysis, and information retrieval, due to their ability to
efficiently search through extensive datasets within a limited
timeframe. Various searching techniques exist, including
sequential, binary, hashing, and graph search. The selection of
an appropriate algorithm is contingent upon the particular
situation at hand and the attributes of the data being queried
[10]. The authors of [5] introduce a hybrid search method
known as interpolated binary search (IBS), which integrates
the interpolation algorithm and the binary search algorithm to
accurately determine the precise position of the desired object.
The IBS algorithm commences by employing an interpolation
algorithm to estimate the approximate location of the item
being searched. It subsequently operates as a binary search
algorithm to precisely determine the location of the sought-
after item. The Inverse Binary Search (IBS) algorithm exhibits
a greater computational cost compared to both the binary
search algorithm and the interpolation technique. However,
when executed on uniformly distributed data, IBS
demonstrates a lower temporal complexity cost than the
aforementioned algorithms. Specifically, its time complexity
is O(log2log2n). On the other hand, when applied to non-
uniformly distributed datasets, IBS necessitates O(log2n)
operations. In [8], a comparison between different search
algorithms is presented, the authors analyze the performance
of various search algorithms, including uninformed search
algorithms (DFS, uniform cost search) and informed search
algorithms (A* and BFS), with a focus on their time
complexity and space complexity.

Graph search algorithms typically construct a graph based
on the given input data and traverse the nodes of the graph
using various strategies in order to locate the desired objects
[13]. The algorithms that were examined all exhibited a time
complexity of O(mb), where m represents the number of
offspring for each node (also known as the branching factor)
and b represents the solution depth, which is the length of the
path. The binary search algorithm utilizes a value of m equal
to 2 and assigns b as the logarithm base 2 of n.

The act of searching is a crucial and widely employed
process in several contexts. In order to obtain data of various

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

306 | P a g e

www.ijacsa.thesai.org

types, it is necessary to carry out two fundamental procedures:
searching and sorting. In order to address this concern, it is
worth noting that the majority of searching algorithms operate
on an array that has been sorted. However, it is important to
acknowledge that the computational expense of sorting the
data can vary significantly, ranging from a best-case scenario
of O(n log n) to a worst-case scenario of O(n^2). This
additional cost must be taken into consideration when
evaluating the overall efficiency of the search process. The
authors of [11] present a novel technique called the bound
sequential search (BSS) algorithm, which uses logical gates to
simultaneously search for two items. The primary concept is
around the utilization of Binary Search with Sorted Subarrays
(BSS) to concurrently search for about two items, hence
eliminating the need for executing the search process twice, all
without the involvement of parallel processors. In the context
of Binary Search Systems (BSS), the process of looking for
two items, X and Y, involves the utilization of an additional
key, Z. This key, denoted as Z, is determined by the logical
operation of the inclusive OR between X and Y.
Subsequently, Z serves as the key element for conducting a
search operation within an unsorted array, denoted as A,
which possesses a size of n. The search procedure commences
by evaluating each element in the array A against Z, provided
that Z AND A[i] != A[i] indicates that neither of the two
elements is present in A[i].

In the event of the most unfavorable scenario, the
computational complexity for locating two items in the BSS
(Binary Search Structure) is N, as opposed to 2N in sequential
search or (n2+ log n) in the binary search algorithm. The
Bubble Sort algorithm demonstrates superior performance in
terms of comparison count in both the best and worst case
scenarios, when compared to the Binary Search algorithm and
the Sequential Search method. A limitation of this algorithm is
its inability to perform a search for a single item, as it is
designed to search for about two objects simultaneously.

Hashing is a technique employed in the search of extensive
databases, wherein a distinct key is generated for each record
or item. This key serves to designate the specific area within
the database where the item is potentially kept. The time
complexity for retrieving an item from a big database using
hashing can range from constant time (O(1)) to linear time
(O(n)) in the worst-case scenario. The variable n represents
the size of the linked list, which is utilized for the purpose of
storing colliding data within a single slot, denoted as [12]. The
objective is to verify the presence of item X inside a given
dataset. As the volume of data expands, the intricacy of the
situation escalates. The problem of searching has been
introduced and elucidated by Levin and Solomonoff
throughout the time span of 1973 to 1984 [14,15, 16, and 17].
In reference [18], a novel quantum technique is presented for
the search problem, demonstrating a polynomial time
complexity. This algorithm utilizes XOR logical gates to
convert the data into a polynomial form, following the
amplification process provided in reference [19].
Consequently, the search operation may be executed within a
polynomial time frame relative to the input size, denoted as n.

In the cited work [20, 21], the authors introduce a
fractional cascade algorithm, which is a method aimed at

enhancing the efficiency of binary search algorithms. This
methodology achieves a reduction in the time complexity of
binary search algorithms to O(k + log n) while searching for k
elements within a sorted array of size n.

III. HUSSEIN SEARCH ALGORITHM

The Hussein search algorithm is designed to efficiently
locate an element in a sorted array. It achieves this by utilizing
a prediction table structure and a sequential search algorithm.
This approach reduces the time complexity from O(n) in
sequential search or O(log n) in binary search to O(1) [7]. The
algorithm achieves this improvement by employing only
arithmetic operations and a technique inspired by the
interpolation method for searching sorted lists [1]. It is
important to note that the algorithm assumes a uniform
distribution of elements in the list. The algorithm operates in
two distinct phases: the preprocessing phase and the searching
phase. During the preparation step, the entirety of the array
undergoes arithmetic operations in order to ready the data for
the subsequent prediction finding procedure. During the
preprocessing phase, an array of integers denoted as A, which
has a size of n is examined. The data within this array is
created in a random manner. During this phase, the operations
conducted involve the calculation of the average value of
variable A. The average can be determined by calculating the
mean of a set of values. To obtain the mean, each element in
array A should be divided by a given value t, and the resulting
values should be stored in a new array B. The size of array B
is denoted as n. Generate a novel array C, whose size is
determined by the floor function applied to the value of t. To
iterate through a set of counters starting from 0 to size (c), the
ceiling of each element B[i] is compared with the indices of C.
The number of matching values is determined, and the
resulting matching score is stored in a new list C1 at the
corresponding index of the matching item. The elements
contained within the array C1 will represent the respective
indices of the desired item within the original array. During
the searching phase, the following operations are performed to
determine whether an item X is present in an array: X is
divided by t, and the resulting value is compared with the
indices of C1 using the ceiling function. The value found in
the corresponding cell of C1 represents the index of the
searched item X in the original array. If the corresponding cell
is empty, it indicates that the item X is not present in the array.

The following example provides a comprehensive
elucidation of the functioning of the Hussein search method.
In this scenario, array A of size 16 is randomly produced by
[7], and the data within the array is uniformly dispersed. The
elements in set A are arranged in ascending order, while the
outcomes of dividing each element in set A by the average of
the average are recorded in set B (refer to Fig. 1(a)). A new
array, denoted as C, is to be created with a size of 30. This
array will contain the floor value of the average values
obtained from Fig. 1(b). The quantity of corresponding
elements in the array is stored in Fig. 1(c). Now, let us explore
the scenario where aim to search for item X, which has a value
of 310, within the table. Initially, the value of X is divided by
30.89. The resulting quotient is then rounded up to the nearest
whole number, denoted as 11. Subsequently, proceed to locate
the element within the array by referring to the index position

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

307 | P a g e

www.ijacsa.thesai.org

11. Upon examination, it is determined that the value at this
index is 0, indicating that the desired element is not present
inside the array. Let X be equal to 275. Next, perform a
division operation on X by t, and subsequently apply the
ceiling function. The resulting value, 9, is assigned to the
index 9 in array C. Upon further examination, we finally,
observe that the element at index 9 in array C is 1, indicating
that X is located at index 5 in the original array (as depicted in
Fig. 2).

Fig. 1. Hussein search algorithm simulation on random data generation.

Fig. 2. Testing the search operation using Hussein search algorithm.

A. Algorithm Description:

1) Preprocessing phase: Consider we have an array of

integers A of size n, where the data is randomly generated, in

this phase the following operations are performed:

 Calculate the average of A. average =

 Calculate the average of average: t=

 Divide all the elements of A by t and store it in a new
array B, the size of B is n

 Create a new prediction array C with size floor (t)

 For I counter that start from 0 to size (c), compare the
ceiling of B[i] with the indices of C, and count the

matching values and store the matching score in a new
list C1 in the corresponding index to the matching
item. The values stored in the array C1 will be the
corresponding index of the searched item in the
original array.

2) Searching phase: For searching an item X, if in the

array or not is performed the following operations:

 Divide X by t, S=

 Compare the ceiling of (S) with the indices of C1; the
value found in the corresponding cell will be the index
of the searched item (X) in the original array, if the
corresponding cell is empty that means the item is not
found in the array.

IV. RESULTS AND ANALYSIS

The proposed algorithm is simple and easy to understand
and implement. It is implemented and tested in MacBook air
i5 processor 1.3 GHz speed, 8 GB ram, using visual studio, C#
and in Python, and is tested for large input size list up to 16
mg . Furthermore, we have successfully implemented both the
binary search method and the ternary algorithm using the C#
programming language. These implementations were carried
out in an identical setting, with the input size being consistent
with that of the Hussein search algorithm. The objective of the
experiment was to conduct N iterations in order to seek a
randomly produced list with a size of N. The findings indicate
that the speed of the prediction searching method in all
evaluated algorithms exhibits a linear relationship with the
amount of input. However, it is noteworthy that as the input
size increases, the performance of the Hussein search
surpasses that of the other algorithms. The Hussein search
method exhibits a constant time complexity of O(1) for
finding an individual item.

Consequently, the search operation for n items may be
accomplished in linear time complexity of O(n). This stands in
contrast to the binary search strategy, which necessitates a
time complexity of O(n log n) for searching n items. Fig. 3
presents the outcomes achieved by the Hussein search
algorithm in contrast to the other algorithms when searching
for N items across varying input sizes. while considering input
sizes of 8 MB and 16 MB, it has been observed that the
Hussein search method exhibits a time requirement that is
20% lower than that of the binary search strategy, and 17.3%
lower than that of the ternary algorithm, while searching for
all items. Hussein's search method demonstrates a search
speed that is approximately 494% greater than that of binary
search when applied to a dataset of 16 MB. Table 1 illustrates
the speedup, which quantifies the extent to which the Hussein
search algorithm outperforms the binary search algorithm
across various input sizes. Table I illustrates the observed
increase in search speed across various input sizes.

In the Hussein search algorithm the searching process
about an item requires O (1), which means searching n items
requires only O(n) in comparison with the binary search
algorithm that requires O(n log n). Fig. 3, show the results
obtained by the Hussein search algorithm in comparison to the
other algorithms for different input size. For input size (8 M,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

308 | P a g e

www.ijacsa.thesai.org

16 M) searching all the items using the Hussein search
algorithm requires time that is 20% smaller than the binary
search algorithm and 17.3 % smaller than the Ternary
algorithm. The search speed in the Hussein search algorithm is
increased by about 494% than the binary search for 16 M of
data. Table I, and Fig. 3 show the speed up that represents
how much Hussein's search is faster than the binary search
algorithm in searching about all the input sizes.

TABLE I. THE SPEED UP IN SEARCHING DIFFERENT INPUT SIZE

 Binary Trenary Hussein Speedup

4 k 2 2 4 50%

8k 5 6 2 250%

16 k 4 6 2 200%

32 k 12 13 3 400%

64 k 27 24 5 540%

128 k 43 22 10 430%

256 k 89 109 20 445%

512 k 189 222 39 485%

1 MB 349 419 69 506%

2MB 703 825 140 502%

4MB 1398 1606 259 540%

8MB 3343 3568 629 531%

16MB 5813 6784 1176 494%

Fig. 3. Hussein search algorithm speed up.

Fig. 4. The implementation of mathematical operations in Hussein search

algorithm.

Implementation of Hussein Search Algorithm: as
mentioned previously Hussein Search algorithm is
implemented in C#, with binary search algorithm and ternary
algorithm on the same environment and the same data. Fig. 4
and 5 represent the implementation of the main functions of
the Hussein search algorithm.

Fig. 5. The implementation of the Hussein search algorithm.

V. CONCLUSION AND FUTURE WORKS

In this study, we introduce the Hussein search algorithm, a
novel informed search approach that leverages a
straightforward prediction method, basic arithmetic
operations, and a simple data structure. The findings
demonstrate that the Hussein search algorithm outperforms
previous search algorithms in terms of time complexity,
particularly when dealing with substantial data sets. Moving
forward, there are several avenues for future research. Firstly,
it would be valuable to explore the algorithm's performance
under different search scenarios and input distributions.
Additionally, investigating potential optimizations and further
enhancements to the algorithm could yield even more efficient
search capabilities. Finally, conducting comparative studies
with other state-of-the-art search algorithms would provide a
comprehensive evaluation of the Hussein search algorithm's
effectiveness. The procedure operates on an array that has
been sorted, with the underlying assumption that the data is
spread equally. The Hussein search algorithm has a time
complexity of O(n) for finding n items. In contrast, the binary
search algorithm has a time complexity of O(n log n), while
the sequential search technique requires O(nn) in the worst
case. Given the assumption of a sorted array, the proposed
technique offers a notable advantage in terms of
computational simplicity and a reduction in the number of
comparisons required for item search. Specifically, the
algorithm achieves a time complexity of O(1) when searching
for an item by index rather than by value. Fig. 6 presents a
comparison of the running times for various input sizes. The
future objective is to enhance the algorithm based on simple
prediction methods to operate with the same time complexity
for an unsorted array. Additionally, we aim to offer a sorting
algorithm that utilizes the same mathematical processes and
achieves linear time complexity in the worst-case scenario.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

309 | P a g e

www.ijacsa.thesai.org

Fig. 6. Running time comparison for different input size.

REFERENCES

[1] C. Blum, A. Roli: Meta Heuristic in combinatorial Optimization:
overview and Conceptual Comparison. ACM Computing Survey, vol 35,
No.3, PP: 268-308.2003.

[2] Brodrick Crwford, Ricardo So et al: Putting Continuous Meta Heuristic
to Work in Binary Search Spaces. Hindawi complexity. Volume 2017.
https://doi.org/10.1155/2017/8404231. PP:1-19.

[3] Manpreet Singh Bajwa, Arun Prakash Agarwal, Sumati Manchanda.
Tenary Search Algorithm: Improvement of Binary Search. 2nd

[4] International conference on Computing for Sustainable Global
Development (INDIACOM)11-13 March 2015. New Delhi. India.
Ieeexplore.org/document/7100542.

[5] Adnan Saher Mohammed, Sahin Emrah Amrahou, Fatin V. Celebi.
Interpolated Binary Search : An Efficient Hybrid Search Algorithm on
Ordered Datasets. Engineering Science and Technology, An
International Journal. Volume 24, Issue.5, October 2021, PP:1072-1079.
https://doi.org/10.1016/j/jestch.2021.02.009.

[6] Milos Simic. Exponential Search. Last modified 26 June 2022 available
at: https://ww.baeldung.com/cs/exponential-search.

[7] Knuth, Donald (1998). Sorting and Searching: The art of Computer
Programming. (2ned).MA. Addison- Wesley. ISBN:978-0-201-89685-5.

[8] Maharshi, J. Pthak, Romit L. Patel, Sonal P. Rmi. Comparative Analysis
of Search Algorithm. International Journal of Computer Applications.
Volume 179. No.50. June 2018. PP:40-43.

[9] Dhanya Thailappan. Introduction to Problem Solving Using Search
Algorithms for Beginners. Last modified 26th July 2022. Analytics
Vidhya. Available at: https://www.AnalyticsVidhya.com/blog/2021/an-
introduction-to-problem-solving-using-search-algorithms-for-beginners.

[10] Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education International. 4th Edition 2021. ISBN-13:
978-1292401133.

[11] Omer H. Abu El Hija, Azmi Alazzam. Bound Sequential Search (BSS).
Proceedings of the Worlds Congress on engineering and Computer
Science. 2012. Vol.1, WCES 2012. October 24-26/2012. San Francisco,
USA.

[12] George T. Heineman, Gary Pllice, Stanley Sekow. Algorithms in a
Nuthshell: A Practical Guide. 2nd Edition O’reilly Media (April, 12,
2016). ISBN-10: 1491948922.

[13] Thomas Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. 4th Edition (2022). The MIT press. ISBN-
10: 026204630X.

[14] M. R Gavey and D. S. Johnson. Computer and Intractability: A Guide to
the Theory of NP-Completeness. W. H. freeman, 1979.

[15] L. A. Levin. Universal Sequential Search Problems. Problems of
Information Transmission. 9(3): 265-266-1973.

[16] L. A. Levin. Randomness Conversation Inequalities. Information and
Independence in Mathematical Theories. Information and Control. 61:
15-37. 1984

[17] R. J. Salmonoff. Optimum Sequential Search. Memorandum, Oxbridge
Research Cambridge, Mass. June 1984.

[18] S. Iriyama, M. Ohya, and V. Velovich. On Quantum Algorithm for
Binary Search and its Computational Complexity. arXiv:1306.5039v1
[quant-ph] 21 June 2013.

[19] M. ohya and I. V. Vovich. Quantum Computing and Chaotic amplifier.
J.OPT.B, 5, No.6. 639-642.2003.

[20] Chazelle, Bernard, Liu, Ding. Lower Bounds for Intersection Searching
and Fractional Cascading in Higher Dimension.33rd ACM Symposium
on Theory of Computing. ACM. PP 322-329. Doi:
10:1145/380752.380818. ISBN:978-1-58113-349-3. Retrieved 30 June
2018.

[21] Chazelle Bernard, Liu, Ding (1 March 2004). Lower Bound for
Intersection Searching and Fractional Cascading in Higher Dimension.
Journal of Computer and System Sciences. 68(2): 269-284.
Doi:10.1016/j-jcs.2003.07.003. ISSN 0022-0000. Retrieved 30 June
2018.

