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Abstract—Assessing respiratory rate is a critical determinant
of one’s health status. The proposed approach relies on principal
component analysis (PCA) for the continuous monitoring of
breathing rate using an RGB camera. This method employs re-
mote plethysmography, a video-based technique enabling contact-
less tracking of blood volume fluctuations by detecting variations
in pixel intensity on the skin. These pixels encompass the red,
blue, and green channels, whose values, post-PCA dimensionality
reduction, encode the signal containing vital information about
the breathing rate. To assess the method’s performance, it was
tested on a group of seven volunteers, including individuals of
both genders. The results reveal a Mean Absolute Deviation of
0.714 BPM and a Root Mean Square Error of 2.035 BPM when
comparing the experimental measurements to the actual readings.
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I. INTRODUCTION

The respiratory rate is a vital indicator for the driver’s
current health state. It furnishes insights into clinical deterio-
ration, offers predictive capabilities for cardiac arrest, and aids
in the diagnosis of severe pneumonia. It exhibits sensitivity
to various pathological conditions like cardiac events as well
as stressors, including emotional stress, cognitive load, heat
and cold [1]. Alterations and deviations in respiratory rate
(RR) are not solely linked to respiratory disorders but also
serve as a reliable indicator that a patient is facing challenges
in maintaining homeostasis. Respiratory rate acts as an early
and highly effective indicator of physiological conditions like
hypoxia (insufficient cellular oxygen levels), hypercapnia (ele-
vated carbon dioxide levels in the blood), as well as metabolic
and respiratory acidosis. An adult’s respiratory rate ranges
between 12 and 20 breaths per minute [2]. At this specific
respiratory rate, the elimination of carbon dioxide from the
lungs matches the body’s production of it. However, breathing
rates that fall below 12 or exceed 20 may indicate a disturbance
in the typical breathing patterns. According to recent findings,
an adult who exhibits a respiratory rate exceeding 20 breaths
per minute is likely to be in an unhealthy state, while an adult
with a respiratory rate surpassing 24 breaths per minute is
more likely to be in a critically ill condition [3].

The measurement of the respiratory rate is achieved using
sensors, employing a technique that doesn’t require direct
contact. It quantifies the variation in the reflection of green,
blue, and red light from the skin’s surface, based on the dis-
tinction between specular and diffused reflections [4]. Remote
plethysmography (rPPG) is a non-contact method widely used.

It primarily comprises three components, a light source, human
skin and a video camera. The light source illuminates the hu-
man skin, while the camera records the variations in color [5].
C. Massaroni at al. 2019 presented a method for monitoring
the breathing pattern with an RGB camera. The changes in
the pixels’ intensity gives an overview on the variations of
the chest’s movements. The system has been tested on 12
volunteers. The Bland-Altman analysis revealed a bias of -
0.01 breaths per minute, with respiratory rate values ranging
from 10 to 43 breaths per minute [6]. Another method is to use
thermal imaging as in the work proposed by Y. Takahashi et
al. 2021. Their objective was to monitor the respiration of the
subject by measuring temperature variations during exhalation
and inhalation. To assess the proposed respiratory rate (RR)
estimation method, a study was conducted on seven subjects.
The results indicated a mean absolute error of 0.66 beats per
minute (bpm) [7]. F. Yang et al. 2022 used an infrared thermal
camera to estimate the respiratory rate. The nostril area was
chosen as the region of interest and the changes in temperature
give an indication on the breathing pattern. The absolute error
between the estimated RR and the reference RR from all
experiments is 1.47±1.33 breaths/min [8]. J. Kempfle et al.
2020 used a depth camera to estimate the respiratory rate. By
capturing and monitoring the subtle changes in distance from
the user’s chest over time. The findings demonstrate that the
method can accurately detect the breathing rate with a range of
92% to 97% from a distance of two meters [9]. P. S. Addison et
al. 2023 also used a depth camera. The Bland-Altman analysis
revealed limits of agreement of -1.42 to 1.36 breaths/min [10].
Z. El khadiri et al. 2023 proposed an efficient hybrid algorithm
for non-contact physiological sign monitoring [11].

In our work, we propose an algorithm that monitors
the respiratory rate through an RGB camera. The first part
focuses on the face detection and the forehead extraction.
The technique proposed by [12] was used for face detection
and the extraction of the region of interest. Thus, the box
blurring filter, the edge Sobel technique for edge detection, and
morphological operations were employed. After that, The raw
signal is obtained by computing the mean of each individual
channel (red, green, and blue). The signal is then filtered
to reduce the noise and the principal component analysis is
applied to reduce dimentionality. The resulting signal is then
filtered with a bandpass filter with cutoff frequencies of 0.5
and 0.1 Hz corresponding to the breathing rate. Finally, the
respiratory rate is calculated by multiplying the maximum
frequency after converting the signal to the frequency domain
by 60. The summary of our contribution is the proposition
of an approach for monitoring the respiratory rate using the
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principal component analysis (PCA).

The organization of this paper is as follows: Section II
provides an overview of recent advancements in contactless
respiratory rate monitoring. Section III outlines our methodol-
ogy. Subsequently, Section IV presents the results obtained
from testing the method on diverse subjects. Finally, the
conclusion summarizes the findings of this study and offers
insights into future perspectives.

II. RELATED WORK

Different methods exist to estimate the breathing rate. They
are divided into two main categories that are non-contact
methods and contact based methods. The first contact based
method involves manual human counting. The second method
utilizes a spirometer, which provides accurate measurements of
respiratory parameters but can interfere with natural breathing
and is not suitable for continuous RR monitoring. The third
contact based approach involves capnometry but it requires
contact with specialized equipment, which may not be com-
fortable for individuals [13]. Several contactless methods exist
to monitor the respiratory rate through a camera. It can be
thermal camera, a depth sensing camera or an RGB camera.

Observable fluctuations of the temperature in the region
of interest (ROI) that is the nostril or the mouth area are
generated by the process of inhalation and exhalation. Mi-
croelectromechanical sensors are utilized by thermal imaging
cameras to generate images based on heat. The human body
becomes distinct within the surrounding environment due to
its higher heat emissions. P. Jakkaew et al. 2020 proposed a
method that uses thermal imaging to monitor the respiratory
rate [14]. The method obtained a root mean square error
(RMSE) of 1.82±0.75 bpm. P. Jagadev et al. 2019 employed
a thermal camera to monitor the temperature variations across
the nostrils during the process of respiration [15]. To automate
the tracking of the nostrils (region of interest) despite con-
siderable head movement and object occlusion, a computer
vision algorithm called “Ensemble of regression trees” is
implemented. The algorithm had a precision of 98.76%. The
algorithm demonstrated its effectiveness in managing both
stationary and unpredictable head movements. A novel Breath
Detection Algorithm (BDA) was introduced to differentiate
between normal and abnormal breaths in the acquired breath-
ing waveform. This was achieved by employing predefined
thresholds, allowing the algorithm to determine the breaths
and calculate the breaths per minute (BPM). A. Kwasniewska
et al. 2019 used a Super Resolution (SR) Deep Learning (DL)
network to generate enhanced thermal image sequences, which
are subsequently analyzed. Despite the improved accuracy
achieved through the application of SR algorithms, there is
still a significant margin of error remaining [16]. C. B. Pereira
et al. 2016 also used infrared thermography (IRT) to monitor
the breathing rate. The algorithm takes into account not only
the temperature variations around the mouth and nostrils but
also the movements of both shoulders [17]. The method was
tested in different conditions. The first one is normal breathing
and the second one is when there is breathing disorders.
During the first condition, a mean correlation of 0.98 and a
root-mean-square error (RMSE) of 0.28 bpm was achieved.
ON the other hand, the second condition reached a mean
correlation of 0.95 and an RMSE of 3.45 bpm. Additionally,

this also showcases the ability of IRT (Infrared Thermography)
to effectively capture diverse breathing disorders. L. Chen et al.
2020 introduced a novel approach to non-contact breathing rate
(BR) monitoring through a collaborative respiratory detection
system. The system utilizes face and motion tracking methods
simultaneously to achieve accurate monitoring of the breathing
rate [18]. The algorithm showcases its remarkable accuracy
with a root mean square error of 0.71 bpm and 0.76 bpm,
along with a mean correlation of 0.97. M. Hu et al. 2018 used
a combination of near-infrared and thermal imaging techniques
for the measurements of breathing rate [19]. For tracking the
region of interest (ROI) in thermal video, a tracking algorithm
based on spatio-temporal context learning was employed.

In addition to the use of thermal imaging of the mouth
and the nostrils, another method is the surveillance of the
chest’s movements. The expansion of the rib cage occurs
during breathing as the diaphragm moves inward and outward.
Monitoring the chest movements gives an indication on the
number of breaths. In this case depth sensor can extract depth
information of the chest area. W. Imano et al. 2020 estimated
the respiratory rate from the depth value of the chest and
the abdomen. The resulting respiratory rate was compared
with the respiratory rate acquired using a spirometer. The
experimental results demonstrated that the algorithm achieved
a maximum error rate of 1.5% in estimating the respiratory
rate [20]. A depth-sensing camera system was also assessed
for its performance in continuously monitoring respiratory rate
without the need for physical contact in the work of M. Mateu-
mateus et al. 2019. The proposed algorithm involves detecting
subject movements using optical flow algorithms on an infrared
image. It then calculates the most appropriate region of interest
(ROI) that can be utilized by the depth camera to capture the
respiratory signal. The algorithm’s validity was established by
comparing it with a thorax plethysmography system, which
served as a reference system [21]. M. Martinez et al. 2017
also used a depth camera to monitor the respiratory rate. The
method demonstrates accuracy in 85.9% of the segments, which
is comparable to the performance obtained from a chest sensor
88.7%. These results indicate that their use of computer vision
is sufficiently precise for the given task.

The third type of cameras that can be used to monitor
the breathing rate is RGB cameras. C. Romani et al. 2021
used an RGB camera. Their system enables automated tracking
of chest movements associated with breathing, extracting the
breathing signal through optical flow and RGB analysis meth-
ods. It eliminates events unrelated to breathing from the signal
and identifies potential apneas. Additionally, it calculates the
respiratory rate value every second [23]. H-S. Hwang et al.
2021 proposed a method for respiration measurement utilizing
a region-of-interest detector based on machine learning, in
addition to a clustering-based technique to estimate respiration
pixels. The proposed approach comprises a model for classify-
ing pixels based on their variance to determine if they convey
respiration information. Additionally, a method is employed to
classify pixels with distinct breathing components by analyzing
the symmetry of the respiration signals [24]. It was established
that the average error remained within approximately 0.1
breaths per minute (bpm). H. Ernst at al. 2022 used different
combinations of RGB color channels using a hemispherical
surface grid search method [25]. The grid search process led
to the convergence towards the green channel in the baseline
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modulation approach. M. Van Gastel et al. 2016 introduced
a non-contact camera-based method for respiratory detection
that is capable of operating in both visible and dark lighting
conditions. The method relies on detecting the color variations
of the skin induced by respiration [26].

III. METHODOLOGY

The pulsation of the heart generates fluctuations in arterial
pressure as blood is pumped through the resistance of the
vascular system. Due to the elasticity of arteries, their diameter
changes in synchrony with these pressure variations. These
alterations in blood volume lead to varying light absorption.
Photoplethysmography (PPG) leverages this principle to op-
tically measure blood volume changes by capturing reflected
or transmitted light from illuminated skin, resulting in a PPG
waveform [27]. When the face is captured, each frame consists
of an image composed of three channels: red (R), green (G),
and blue (B). The results obtained from Photoplethysmography
(PPG) indicate that not only can pulsatility be determined, but
also phase information regarding the cardiovascular waveform
can be deduced from these three channels [28].

A. Region of Interest (ROI) Recognition

Fig. 1Face detection and ROI extraction. represents the face
detection and the extraction of the region of interest algorithm
proposed by H. El boussaki et al. 2023 [12].

Fig. 1. Face detection and ROI extraction.

The process begins by converting the RGB image to
grayscale and then applying a box blurring filter before using
the Sobel filter. In the next step, the resulting image is trans-
formed into a binary image, enabling contour detection. Once

the contours are identified, the third step involves filling the
interior of the contours with white and applying morphological
operations. Finally, the last step involves locating new contours
to determine the top extreme point, representing the top of the
head. Fig. 1Face detection and ROI extraction. represented the
diagram of the method proposed by [12]. After the top extreme
point is detected a value is subtracted from the x coordinate of
the top point, and another value is added to the y coordinate.
This adjustment enables us to obtain a Region of Interest that
starts slightly below the top of the head, precisely where the
forehead is located.

B. Signal Extraction

The raw signal is obtained from the image by employing
a function that computes the average of the pixels in each
channel (red, green, and blue). The averages of these channels
are then combined to form the signal. The RGB components
within the region of interest (ROI) are spatially averaged across
all pixels, resulting in an RGB component for each frame.
These averaged RGB components form the raw signals. As
new frames are processed, their values are added to the signal.
At this point, the signal reflects the variations in pixel values
from one frame to another.

C. Signal Filtering

The signal underwent additional denoising using a band-
pass filter. This filter had a lower cutoff frequency of 0.1
Hz and a higher cutoff frequency of 0.5 Hz. When multiple
channels are employed, the signal’s dimensionality is com-
monly decreased by combining the channels in a linear manner.
The Principal Component Analysis (PCA) is a well-known
for its ability to reduce dimensionality. The PCA is applied
on the filtered signal. It generates three linearly uncorrelated
components, which are obtained by combining the three RGB
signals in a linear fashion. The PCA is then a linear technique
for reducing dimensionality, transforming a set of correlated
features from a high-dimensional space into a sequence of
uncorrelated features in a lower-dimensional space [29]. These
uncorrelated features, known as principal components, are
produced as a result [30]. It is a linear transformation that
is orthogonal, indicating that all the principal components
are perpendicular to one another. It reshapes the data in a
manner where the first component endeavors to account for
the highest amount of variance present in the original data.
PCA aids in identifying the most prominent feature within a
dataset, simplifies the representation of data in 2D and 3D
plots, and facilitates the discovery of a sequence of linear
combinations of variables [31]. The central aspect of PCA is
dimensionality reduction, which involves reducing the number
of dimensions within a given dataset. When the data exhibits
a clear linear trend and directed points, applying PCA allows
for straightforward reduction of the dimensional data into a
lower-dimensional representation. The objective of PCA is to
identify a new matrix that represents the principal components.
This matrix captures the essential information and structure of
the original data represented by X, an m × n matrix. Y is an
m × n matrix that is connected through a linear transformation
represented by P and is a re-representation of X as shown in
Eq. (1) [32].

Y = PX (1)
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Where P represents the matrix that transforms Y into X.

Then the covariance of X is computed. The covariance
quantifies the strength of the linear relationship between two
variables. A high value indicates a strong positive relationship,
while a low value suggests a weak or no relationship. It is
represented in Eq. (2) [33].

Cx =
1

n− 1
XXT (2)

Where Cx is the square symmetric matrix, the diagonal terms
of Cx are the variance of particular measurement types and
the off-diagonal terms of Cx are the covariance between
measurement types.

Cx encompasses the correlations among all potential pairs
of measurements, with the correlation values indicating the
presence of noise and redundancy in our measurements. The
objective is to acquire a matrix Y in such a way that the
covariance matrix exhibits the highest variance. PCA oper-
ates under the assumption that P is an orthonormal matrix.
Additionally, it assumes that the directions with the highest
variances correspond to the most significant signals, making
them the principal directions. Cy in terms of our variable P is
represented in Eq. (3).

Cy =
1

n− 1
Y Y T =

1

n− 1
PAPT =

1

n− 1
PXXTPT (3)

Cy is a symmetric matrix, whose eigenvalues are arranged on
the principal diagonal of the matrix A in descendent order, and
the eigenvectors constitute the columns of the matrix P. The
principal components of X are the eigenvectors of XXT or the
rows of P.Performing PCA on a dataset X involves subtracting
the mean of each measurement type and then computing the
eigenvectors of the matrix XXT [33].

Fig. 2Signal filtering. represents the filtering algorithm and
summarizes the previous steps. The signal goes through a
denoising filter and a normalization, then a bandpass filter and
the principal component analysis and a moving average filter.

Fig. 2. Signal filtering.

Typically, the PCA technique uses tabular information and
data, the rows stand in for the observations you want to incor-
porate and embed in a place with less dimensional space, while
the columns correspond to the features for which you are look-
ing for a reduced approximation. The principal components are

generated by performing the singular value decomposition after
the algorithm has calculated the covariance matrix in minute
detail. Since smaller data sets are easier to examine, explore,
visualize, and make analyzing data much easier and faster for
machine learning algorithms without extraneous variables to
process, the trick in dimensionality reduction is to trade a little
accuracy for simplicity. For more convenience, the following
pseudo-code illustrates the prominent steps for the Principal
Component Analysis (PCA) technique:

Algorithm 1 Principal Component Analysis - PCA
Consider Z to be a data array of size nxm
Center and standardize the data array

Y ← Z − µ

σ
while µ is the mean, and is the standard

deviation
Calculate the covariance matrix of Y
Y ←Y TY
Calculate the eigenvectors and eigenvalues of Y TY
Sort the eigenvalues from largest to smallest
λ1 > λ2 > . . . > λp

Sort the eigenvectors in the matrix P accordingly
Y ∗ ← Y P
Calculate the proportion of variance explained for each feature
Add features with the highest explained proportion of variation
until it reaches a certain threshold

D. Respiratory Rate Estimation

A discrete Fourier transform is used to convert the resulting
signal to the frequency domain [34]. The maximum of the
frequency index is extracted as the frequency corresponding
to the breathing. The respiratory rate is calculated with Eq.
(4) [35]. The algorithm takes a sequence of images as input
and identifies a Region of Interest (RoI). For each pixel within
the region of interest, it constructs a trajectory in the time
domain. This trajectory represents the pixel values across the
entire sequence.

BPM = Max ∗ 60 (4)

Where Max is the maximum frequency
Fig. 3Respiratory rate estimation. represents the respiratory
rate calculation algorithm. The discrete Fourier transform is
applied to the signal. Then, if there is enough data and that
means that the signal is large enough, the power spectrum with
the highest magnitude is extracted. The value is used in Eq.
(4) to calculate the respiratory rate.

www.ijacsa.thesai.org 1028 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 9, 2023

Fig. 3. Respiratory rate estimation.

IV. EXPERIMENTAL RESULTS

A dataset was gathered, comprising seven volunteers, in-
cluding four females and three males with a mean age of 37.8
years and an age range of 18 to 58 years. All participants pro-
vided informed consent for the test experiment. The volunteers
was positioned at a distance of approximately 1 meter from
the camera and instructed to blink and breathe naturally. This
work was implemented on an Intel i7-1165G7 desktop using
its camera. The respiratory rate was calculated through the
proposed algorithm and compared with the values obtained
by counting the number of breaths for one minute. In this
paper, the performance of the respiratory rate measurement
method is evaluated using the following indicators: the Mean
Absolute Deviation (MAD) [36] and Root Mean Square Error
(RMSE) [37]. The first metric represents the average absolute
error between the estimated respiratory rate and the reference
estimation. It provides insights into the accuracy of the mea-
sured respiratory rate compared to the desired respiratory rate
and is calculated with Eq. (5) [38].

MAD =
1

n
Σ|RRi

rppg −RRi| (5)

Where RRrppg is the respiratory rate estimated through an
RGB camera and RR is the respiratory rate calculated manu-
ally. The second metric is calculated with equation 6 [38].

RMSE =

√
Σ(RRi

rppg −RRi)2

n
(6)

Table IRespiratory Rate Obtained in Different Subjects
represents the breathing rate obtained from seven volunteers
that consists of three males and four females. The respiratory
rate obtained using the method proposed was than compared
with the respiratory rate acquired by counting the number of
breaths per minute.

TABLE I. RESPIRATORY RATE OBTAINED IN DIFFERENT SUBJECTS

Subjects Gender Respiratory rate
estimated (BPM)

Reference (BPM)

Subject 1 M 15 16

Subject 2 F 17 18

Subject 3 F 20 20

Subject 4 F 21 20

Subject 5 M 17 17

Subject 6 M 22 17

Subject 7 F 23 22

The evaluation metrics to assess the deviation of the
measurement results from the reference breathing rate were
employed to verify the accuracy of the measurement results.
The calculated Mean Absolute Deviation (MAD) is 0.714 bpm
and the calculated Root Mean Square Error is 2.035 bpm. Y.
Takahashi et al. 2021 used a thermal camera and their method
was tested on seven subjects with a mean absolute error of
0.66 beats per minute. Yang et al. 2022 used an infrared
thermal camera and the absolute error is 1.47±1.33 breaths
per minute. P. Jakkaew et al. 2020 proposed a method that
uses a thermal camera and obtained a root mean square error
of 1.82±0.75 bpm. C. B. Pereira et al. 2016 also used infrared
thermography and achieved a root-mean-square error (RMSE)
of 3.45 breaths per minute. C. Romano et al. 2021 used an
RGB camera and obtained a bias of -0.03±1.38 bpm and -
0.02±1.92 bpm in the Bland Altman analysis. H-S. Hwang
and E. C. Lee 2021 proposed a method that was tested and
evaluated using data from 14 men and women in a real-world
environment using convolutional neural networks. During this
evaluation, it was found that the correlation coefficient between
the contactless signal and the reference signal being 0.93 on
average indicates a strong positive linear relationship between
the two signals. This suggests that our method’s performance
was quite accurate compared to others cited before. Our
method gives a nearly same or an even higher performance
compared to the use of other methods. However, the use of
convolutional neural networks gives better performances.

V. CONCLUSION

This paper introduces a non-contact heart rate monitoring
algorithm designed to measure the respiratory rate of the driver.
The proposed method shows a Mean Absolute Deviation of
0.714 BPM and a Root Mean Square Error of 2.035 BPM.
The approach consists of detecting the top extreme point of
the head through image filtering, contour finding and morpho-
logical operations. When the top extreme point is detected, it
is easy to determine the region of interest as it is located under
the top extreme point. The signal is extracted from the changes
in the pixels’ intensity. Then, the signal is filtered and the
principal component analysis is applied. Future works consist
of evaluating the algorithm’s processing time, improving it
through parallel programming and implementing it in various
embedded architectures.
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