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Abstract—The prevalence of autism has increased 

dramatically in recent years and many people around the world 

are facing this difficult condition. There is a need to develop an 

objective method to diagnose autism. Various analysis methods 

have been used to classify the EEG signals of people with autism, 

from linear methods in the time and frequency domain to 

nonlinear methods based on chaos theory. However, there is still 

no consensus on which method of EEG signal analysis can 

provide us with the best diagnostic accuracy and valid 

biomarkers for autism diagnosis. Therefore, in this study, we 

evaluate different feature extraction methods from EEG signals 

to diagnose autism from healthy individuals. For this purpose, 

EEG analysis was performed in time, time-frequency, frequency 

and nonlinear domains. Furthermore, the self-organizing map 

(SOM) method was used to classify features extracted from 

autistic and normal EEG. The data used in this study were 

recorded by the research team from 24 children with autism and 

24 normal children. The accuracies of 92.31, 93.57, 95.63 and 

97.10% were achieved through time and morphological, 

frequency, time-frequency and nonlinear analyzes, respectively. 

Indeed, the findings showed that nonlinear analysis could yield 

the best classification results (accuracy = 97.10%, sensitivity = 

98.80% and specificity = 97.02%) in the EEG discrimination of 

autistic children from typical children through the SOM neural 

network. 
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I. INTRODUCTION 

Autism is a severe psychiatric disease in which patients 
have serious problems in executive functions, social relations, 
cognition, normal behaviors and daily activities [1]. Its 
prevalence has grown in recent years drastically, and many 
people around the world are facing this difficult condition [2-
4]. However, psychiatrists and psychologists do not deal with 
the definitive state of this disorder, but they have to deal with 
autism spectrum disorder with different biological and 
behavioral symptoms [5, 6]. This causes doctors to choose 
different screening tools to diagnose patients with autism and 
therapists to choose different treatment approaches for each 
patient [7]. But most of the existing screening and diagnostic 
tools are subjective, and various types of research suggest the 
need to develop an objective method to diagnose autism [8]. 
For example, a review article highlighted various biomarkers, 
such as hormones, to develop reliable, objective methods for 
diagnosing autism [9]. A systematic review focused on the 

application of artificial intelligence in autism screening and 
diagnosis through validated questionnaire-based data such as 
the Autism Diagnostic Interview-Revised (ADI-R) and the 
Autism Diagnostic Observation Schedule (ADOS) [10]. 
Another systematic review showed that a combination of eye-
tracking technology and machine learning could be taken into 
account as a suitable approach for objective and early diagnosis 
of autism [11]. Lai et al. proposed an objective method for 
autism diagnosis based on automatic retinal image analysis and 
machine learning and reported a good accuracy of 97.4% for 
this purpose [12]. Zhao et al. proposed an automatic objective 
system based on the analysis of the movements of patients 
during a motor task and machine learning algorithms. They 
reported an accuracy of 88.37% for autism diagnosis [13]. 
Therefore, as we can see from the literature, many researchers 
around the world have tried to develop objective methods of 
autism diagnosis through various psychological, biological and 
physiological data. 

 In the meantime, electroencephalogram (EEG) is one of 
the electrophysiological data that has received much attention 
from researchers and has been analyzed in various ways to 
develop objective methods for diagnosing autism [14]. EEG 
indicates the pattern of neural electrical activity in different 
areas of the brain, providing brilliant information about brain 
function in various healthy and unhealthy conditions [15, 16]. 
Therefore, EEG signals have been targeted by computational 
neuroscientists and biomedical engineers for various 
biomedical applications [17-23]. So far, various EEG 
biomarkers have been introduced to diagnose psychiatric and 
neurological disorders [24, 25]. Bosl et al. used a combination 
of nonlinear EEG analysis and different machine learning 
techniques, achieving a 95% accuracy in screening pediatric 
populations at risk for autism [26]. Haputhanthri et al. 
extracted statistical features from wavelet analysis applied to 
EEG signals of children with autism, achieving a diagnostic 
accuracy of 93% [27]. Ahmadlou et al. proposed a fuzzy 
synchronization likelihood wavelet approach, achieving an 
EEG classification accuracy of 95.5% for autism diagnosis 
[28]. Pham et al. applied the higher-order spectra bispectrum 
method to EEG signals and achieved a high accuracy of 98.7% 
using a probabilistic neural network for autism diagnosis [29]. 
Baygin et al. utilized a combined deep lightweight feature 
extraction method based on one-dimensional local binary 
patterns and deep features of the spectrogram images generated 
by the short-time Fourier transform. The 10-fold cross-
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validation algorithm showed an ability to identify children with 
autism with a support vector machine with 96.44% accuracy 
[30]. Alotaibi and Maharatna proposed an EEG classification 
system based on functional connectivity features 
conceptualized by graph theory and cubic support vector 
machine, achieving an accuracy of 95.8% for autism diagnosis 
[31]. Radhakrishnan et al. evaluated deep learning models for 
the diagnosis of autism from EEG signals, reporting an average 
accuracy of 81% using their methodology [32]. 

As can be seen in the literature, various analysis methods 
have been used to classify the EEG signals of people with 
autism, from linear methods in the time and frequency domain 
to nonlinear methods based on chaos theory. However, there is 
still no consensus on which method of EEG signal analysis can 
provide us with the best diagnostic accuracy and provide valid 
biomarkers for autism diagnosis. Therefore, in this study, we 
are going to evaluate different feature extraction methods from 
EEG signals in order to diagnose autism from healthy 
individuals. For this purpose, EEG analysis in time, time-
frequency, frequency, and nonlinear domains were performed 
through various analysis techniques. This paper is organized as 
follows. Section II provides the procedure proposed in the 
current study. Section III reports the experimental results. 
Section IV discusses the obtained results and makes a 
conclusion. 

II. METHODS 

In this section, various analysis methods applied to EEG 
signals for autism diagnosis were described. Fig. 1 shows the 
framework adopted in this study. 

A. Time and Morphological Analysis 

EEG signals have specific temporal characteristics that may 
be affected by different neuropathologies. As a result, 
according to these temporal characteristics, it is possible to 

extract features based on the signal waveform over time, which 
can be used to distinguish between the two classes of autism 
and normal. These features are simple and require very little 
computation. The advantage of such features is increasing the 
speed of the designed system and the possibility of using it in 
real-time [33-35]. The following features in this category were 
calculated from EEG signals. 
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where s(t) is the time series under analysis, n is the number 
of data points, μ is the mean of the time series, σ is the standard 
deviation, and E denotes the expectation operator. 

 

Fig. 1. Adopted framework in this study for EEG classification of autistic children and typically children. 
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B. Frequency Analysis 

Frequency features actually represent the rate of change in 
the signal. Methods such as the Fourier transform are used to 
convert the signal from the time domain to the frequency 
domain. Here, the Welch method was utilized to extract EEG 
sub-bands, including delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 
Hz), sigma (12-16 Hz), beta (16-30 Hz) and gamma (30-45 
Hz). This method is Fourier transform-based algorithm to 
estimate the power spectral density. After signal sub-bands 
extraction and power spectrum density estimation, we 
calculated mean, standard deviation, skewness, kurtosis, 
absolute power and relative power from each sub-band as 
frequency features. 

C. Time-Frequency Analysis 

We utilized this type of analysis to assess signals in the 
time and frequency domains concurrently. For this purpose, 
wavelet transform was used, which provides a time-frequency 
representation of EEG signals with good frequency and time 
localization. This technique decomposes time series into shifted 
and scaled versions of the basic wavelet function. The wavelet 
function can be written as: 

    ( )   
    (    (   )) (12) 

where ψ(t) denotes the wavelet function, a is the scale 
parameter, and b is the shift parameter. The discrete version of 
this algorithm decomposes EEG signals into high- and low-
frequency components at each level, known as detail and 
approximation coefficients [19]. In the current work, the Haar 
wavelet was employed to represent the time-frequency sub-
components of the signals. After calculating the detail and 
approximation coefficients, we calculated the mean, standard 
deviation, variance and entropy as time-frequency features. 

D. Nonlinear Analysis 

Due to the nonlinear characteristics of EEG, nonlinear 
analyzes may reveal more details about the neuropathological 
mechanisms involved in autism. In the current study, we tried 
to calculate various nonlinear features for the signals, including 
large Lyapunov exponent, Lempel-Ziv measure, approximate 
entropy, sample entropy, Higuchi fractal dimension, and 
detrended fluctuation analysis. In this subsection, the 
mathematical notation of these nonlinear features was 
explained. 

1) Large lyapunov exponent: This feature is a chaotic 

concept to assess the trajectory divergence in dynamical 

systems. Lyapunov exponent determines the exponential 

divergence rate between the two adjacent trajectories. The 

mathematical notation of this exponent can be written as: 
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where dn and d0 denote the divergence/distance between 
sequential data points in the n

th
 and initial times, respectively. 

2) Lempel-Ziv measure: It is a complex feature to estimate 

new paradigms in EEG signals. This method converts a signal 

to a binary one by median thresholding and scans the binary 

signal for new subsequences in sequential symbols [36]. 
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where n is the number of data points and c(n) denotes the 
number of new subsequences. 

3) Approximate entropy: It is a measure to estimate the 

randomness of EEG fluctuations over time. 
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where Cm(r) denotes the repeating paradigms of length m in 
a signal of N data points according to the similarity index r. In 
this work, we set m = 2 and r = 0.2 standard deviation of EEG 
signals [37]. 

4) Sample entropy: Sample entropy: It is a modified 

algorithm of approximate entropy that reduces the self-

matching bias in the entropy calculation [38]. This algorithm 

depends on the length of the data and yields relatively 

consistent results in various conditions. 
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where r, m and N indicate tolerance, embedding dimension 
and the number of samples, respectively. B

m
(r) represents the 

probability that two series of data samples of length m have a 
distance smaller than the tolerance r, and A

m
(r) indicates a 

similar probability for two series of data samples of length 
m+1. 

5) Higuchi fractal dimension: Consider a time series S(N) 

= S(1), S(2),…,S(N) as an input. Higuchi algorithm builds a 

new time series based on S(N) as follows: 
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where m is the first sample of the time series and ⌊
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represents the integer part of the series. Length Lm(k) for   
  is 

obtained by: 
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where N represents the number of total samples in the time 

series and 
(   )

⌊
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 represents the normalization coefficient. The 

total mean length, L(k), is calculated for k1 to kmax for all k. 

6) Detrended fluctuation analysis: The DFA criterion is 

used to reveal the correlation of the time series with itself in 

the long-term time range [39]. To calculate the DFA in the 

time series, it must first be aggregated according to the 

following relationship. 

 ( )  ∑ , ( )          -
 
    (19) 

Then y(k) is divided into equal segments of length n. One 
line fits each segment. This line is denoted by yn(k), and yn(k) 
is subtracted from y(k). 
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To obtain the DFA, one must obtain the equivalent of F(n) 
for a suitable number of n. Then its graph is drawn in a 
logarithmic scale, and the slope of the scaling area is 
introduced as DFA. 

E. Classification 

In the current work, the self-organizing map (SOM) method 
was used to classify features extracted from autistic and normal 
EEG. This method is a popular unsupervised neural network 
with many applications in prediction, classification and 
clustering problems [40]. In this algorithm, a vector of weights 
is defined for every neuron i. The dimension of this vector is 
equal to the dimension of the input data. Firstly, a winner 
neuron is specified by the following equation: 

  ( )        *  ( ( ))+         ( ( ))  ‖ ( )    ( )‖

 (21) 

where wi(t) is the weight vector that must be updated based 
on the following equation: 
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where h(.) denotes the neighborhood function with the 
following definition: 

 (      )     ( ‖  ( )     ( )‖
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‖  ( )     ( )‖ defines the distance between i and i
*
, σ(t) 

is the neighborhood radius, and α(t) is the learning rate 
parameter. 

To be classified by SOM, the output neurons must be 
labeled. After training the SOM, a winner neuron is devoted to 
each training vector. Then, the label of each training vector is 
determined. Eventually, the label of the winner neuron is 
defined based on the most frequent class labels of the training 
vectors. In this work, the initial neighborhood parameter was 
defined as 3, which was reduced to 1 after 100 iterations. 
Moreover, α(t) was set at 0.8. 

F. EEG Data 

The data used in this study were recorded by the research 
team from 24 children with autism and 24 normal children. 
Participants ranged in age from 4-9 years, and all patients 
received a diagnosis of autism based on DSM-5 diagnostic 
criteria by experienced clinicians. The patient enrollment was 
administered in a psychiatric clinic. The research project was 
done in accordance with the principles of the Declaration of 
Helsinki (1996) and the current Good Clinical Practice 
guidelines. The goal and an overview of the project were 
characterized by the participants and their parents during the 
initial contact. For those who agreed to participate, all the 
necessary information was provided prior to signing written 
informed consent. Information about the subjects was utilized 
anonymously and for the purpose of the study. 

EEG was recorded for 10-18 minutes for each participant in 
one session. Given the difficulties of working with autistic 
patients and the difficulties of recording EEG from these 
patients in the awake state, the Emotiv Epoch headset device 

was employed in this research. Since the Emotiv Epoch headset 
is a wireless EEG device, the signal recording was conducted 
in autistic patients more easily. This EEG device uses a 
Bluetooth module for wireless communication. The Emotiv 
Epoch headset and Software Development Kit include 14 
electrodes (AF3, AF4, F7, F8, F3, F4, FC5, FC6, T7, T8, P7, 
P8, O1, O2 based on 10-20 international system) along with 
DRL/CMS references at P4/P3 locations. The sampling rate in 
this device is 128 Hz. The impedance of the electrode is 
reduced through saline liquid and alcohol pads. Emotive 
software was utilized to record EEGs and convert their format 
to MATLAB format. 

After signal recording, in the signal pre-processing step, a 
band-pass Hanning window with a finite duration and 
frequency range of 1-45 Hz was applied to the EEGs through 
MATLAB software. Furthermore, electrode interpolation was 
done through adjacent channels for low-quality electrodes. 
EEGs were re-referenced to the common average and then 
were decomposed via independent component analysis. 
Components with motion and muscle artifacts were identified 
and were then eliminated according to time courses and 
frequency scalp maps. The cleaned components were 
reconstructed, and a 50-second cleaned EEG signal was 
prepared for each participant. 

III. EXPERIMENTAL RESULTS 

After data conditioning, all mentioned analyzes were 
applied to EEG signals and different described features were 
extracted in both typically and autism groups. Fig. 2 shows an 
example of an EEG signal recorded from a child with autism 
before pre-processing. Fig. 3 shows the time-frequency 
representation of two channels, P7 and P8, for normal and 
autistic children obtained from wavelet analysis. As shown in 
this figure, there are clear differences in the frequency content 
of the EEG signals of normal and autistic children over time. In 
addition, Fig. 4 to 6 show the nonlinear features (i.e., sample 
entropy, DFA and Lempel-Ziv measure) extracted from EEG 
signals of normal and autistic children in the O1 channel. These 
graphs show that there is a clear difference between the 
nonlinear dynamics of the EEG signals of the two groups. The 
noteworthy point is that the values of nonlinear features in the 
normal group were generally higher than in the autism group. 

In the next step, we tried to classify different features 
extracted from EEGs through various analyzes. In this step, the 
leave-one-subject-out cross-validation method was utilized to 
validate the efficiency of every analysis method as well as the 
performance of the SOM classifier for autism diagnosis. In this 
cross-validation method, a subject was left out to test, and the 
rest of the subjects were utilized to train the SOM. As a result, 
after implementing the 48 tests, the average accuracy was 
calculated over all the obtained accuracies. Specificities, 
sensitivities and averaged classification accuracies for each 
type of analysis are depicted in Table I. Accuracies of 92.31, 
93.57, 95.63 and 97.10% were achieved through time and 
morphological, frequency, time-frequency and nonlinear 
analyzes, respectively. Indeed, the findings showed that 
nonlinear analysis could yield the best classification results 
(accuracy = 97.10%, sensitivity = 98.80% and specificity = 
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97.02%) in the EEG discrimination of autistic children from typical children through the SOM neural network. 

 

Fig. 2. An example of EEG signals recorded from (A) a healthy child and (B) a child with autism. 

 

Fig. 3. Time-frequency representation of two channels, P7 and P8, for normal and autistic children. 
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Fig. 4. Calculated sample entropy at the O1 channel for typical and autistic children. 

 

Fig. 5. Detrended fluctuation analysis at O1 channel for typically and autistic children. 

 

Fig. 6. Calculated Lempel-Ziv measure at O1 channel for typically and autistic children. 
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TABLE I.  ACCURACY, SENSITIVITY AND SPECIFICITY FOR DIFFERENT ANALYZES USING SOM CLASSIFIER 

Type of analysis Accuracy (train) (%) Accuracy (test) (%) Sensitivity (%) Specificity (%) 

Time and morphological analysis 94.78 ± 4.25 92.31 ± 3.59 90.36 93.39 

Frequency analysis 96.13 ± 3.36 93.57 ± 4.61 93.00 94.69 

Time-frequency analysis 97.71 ± 2.06 95.63 ± 2.48 95.89 94.26 

Nonlinear analysis 99.54 ± 2.14 97.10 ± 1.95 98.80 97.02 

IV. DISCUSSION AND CONCLUSION 

Autism is a neurodevelopmental condition that is related to 
different neural and neurotransmission impairments in various 
brain areas. These functional abnormalities of the brain are 
supposed to play a critical role in the neuropathology of autism 
[41, 42]. Therefore, the search for a reliable biomarker through 
EEG analysis is a hot topic in autism research. In the present 
study, we aimed to explore the different types of EEG analysis 
for feature extraction for autism diagnosis. For this purpose, 
time and morphological, time-frequency, frequency and 
nonlinear features were extracted from EEG signals of typical 
and autistic children at resting-state. The obtained findings 
revealed that nonlinear features achieved the best classification 
results for autism diagnosis. Indeed, the proposed nonlinear 
features integrated with the SOM classifier yielded an average 
accuracy of 97.10% in detecting autism cases, which is a good 
result for improving research achievements in this field. This 
type of quantitative analysis is more consistent with the 
nonlinear and chaotic properties of brain signals. This finding 
is in line with previous studies [43-47]. In other words, based 
on the findings of the present study, it is recommended that 
future studies focus more on various nonlinear EEG analysis 
methods and their optimization in order to diagnose autism. 
Since none of the previous EEG studies on autism have 
conducted a comparative study between different linear and 
nonlinear analysis methods, the findings of the present study as 
the first example in this field can be a roadmap for future 
research. However, this study, like many other studies, has 
limitations. The limited sample size is one of the important 

limitations of the current research, which reduces the 
generalizability of the obtained findings. In this study, only five 
nonlinear analysis methods were investigated, while there are 
many more nonlinear methods and future studies should 
investigate different methods. In addition, we only analyzed 
resting-state EEG, while other recording protocols may have 
helped to improve the results. 

Table II summarizes the characteristics of the studies on 
autism diagnosis using EEG analysis and machine learning. As 
shown in this table, previous studies used different methods for 
feature extraction from EEG signals, from linear frequency 
analysis to various nonlinear approaches such as recurrence 
quantification analysis and fractal dimension. The obtained 
results showed that future studies should work on the nonlinear 
dynamics of EEG signals and the combination and optimization 
of nonlinear features for autism diagnosis. Support vector 
machine (SVM) is the most frequently used classifier in these 
works to classify EEG features. Moreover, some studies used 
neural networks such as radial basis function and probabilistic 
neural networks for this purpose. Most studies have achieved 
an autism classification accuracy of 90% or higher, which 
shows the high potential of this approach for the objective 
diagnosis of autism. However, most of these studies suffer 
from important limitations that reduce their generalizability. 
Small datasets, complex implementation processes and low 
accuracy are some of these limitations. In addition, the results 
obtained in the present study compared to previous works show 
that the nonlinear approach adopted along with the SOM 
classification has a very good ability to diagnose autism.

TABLE II.  CHARACTERISTICS OF THE STUDIES ON AUTISM DIAGNOSIS USING EEG ANALYSIS AND MACHINE LEARNING 

Study Population Feature Extraction Classifier Results 

Ahmadlou et al. (2010) [48] 
Nine autistic and eight non-
autistic children 

Higuchi and Katz fractal 

dimension, wavelet-chaos 

neural network 

Radial basis function (RBF) Accuracy = 90% 

Bosl et al. (2011) [49] 
46 infants at high risk for 
autism and 33 healthy 

controls 

Modified multiscale entropy 
Support vector machine 

(SVM) 
Accuracy = 90% 

Ahmadlou et al. (2012) [28] 
Nine autistic and nine healthy 
children 

Fuzzy synchronization 
likelihood 

Enhanced probabilistic neural 
network 

Accuracy = 95.5% 

Sheikhani et al. (2012) [50] 
17 autistic children and 11 

healthy children 
Short-time Fourier transform KNN Accuracy = 96.4% 

Jamal et al. (2014) [51] 
12 subjects in each autism 

and normal group 
Brain connectivity 

Linear discriminant analysis 

(LDA) and SVM 
Accuracy = 94.7% 

Eldridge et al. (2014) [52] 
19 autistic children and 30 

healthy children 
Modified multiscale entropy 

SVM, Logistic regression, 

Naïve Bayes 
Accuracy = 79% 

Bosl et al. (2018) [26] 
99 infants with an older 

sibling diagnosed with autism 

Wavelet analysis, Sample 
entropy, DFA, Recurrence 

quantitative analysis 

SVM Accuracy = 95% 

Heunis et al. (2018) [45] 
Seven autistic children and 

seven non-autistic children 

Recurrence quantitative 

analysis 
SVM Accuracy = 92.9% 

Kang et al. (2018) [53] 
52 autistic children and 52 

non-autistic children 
Fast Fourier transform SVM Accuracy = 91.38% 
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Haputhanthri et al. (2019) 

[27] 

Ten autistic children and five 

non-autistic children 
Wavelet analysis 

Logistic regression, SVM, 

Naïve Bayes, Random forest 
Accuracy = 93% 

Pham et al. (2020) [29] 
40 autistic children and 37 

healthy children 

higher-order spectra (HOS) 

bispectrum 

LDA, SVM, k-nearest 

neighbor (KNN), 

probabilistic neural network 
(PNN) 

Accuracy = 98.7% 

Baygin et al. (2021) [30] 
61 autistic subjects and 61 
healthy subjects 

one-dimensional local binary 

pattern and deep features of 

the spectrogram images 

SVM Accuracy = 96.44% 

Alotaibi et al. (2021) [31] 
12 autistic children and 12 

healthy children 
Brain connectivity SVM Accuracy = 95.8% 

Our proposed approach 
24 autistic children and 24 

healthy children 

Time, time-frequency, 

frequency, and nonlinear 
analysis 

Self-organizing map (SOM) Accuracy = 97.1% 
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