
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1031 | P a g e

www.ijacsa.thesai.org

Application of Ant Colony Optimization Improved

Clustering Algorithm in Malicious Software

Identification

Yong Qian

International School of Technical Education, Sichuan College of Architectural Technology, Deyang, 618000, China

Abstract—Due to the increasing threat of malware to

computer systems and networks, traditional malware detection

and recognition technologies face difficulties and limitations.

Therefore, exploring new methods to improve the accuracy and

efficiency of malware identification has become an urgent need.

This study introduces ant colony algorithm to optimize

traditional clustering algorithms and algorithm parameters. The

experimental results showed that the improvement rates of the

improved algorithm in accuracy, echo value, and false alarm rate

were 0.253, 0.115, and 0.056, respectively. The accuracy on the

training and validation sets continued to increase and the loss

curve continued to decrease. In addition, the improved algorithm

had stronger modeling ability for data feature relationships and

temporal information. This is of great help in improving the

recognition ability of virus and worm software. The improved

algorithm had a lower occupancy rate of computing resources

compared to other algorithms, but it could also effectively

monitor device operation. Compared with traditional methods,

this method can more accurately identify malicious software and

effectively identify malicious software samples from large-scale

datasets. This is of great significance for protecting computer

systems and network security.

Keywords—Ant colony algorithm; clustering algorithm;

malicious software identification; computer security; optimization

algorithm

I. INTRODUCTION

In today’s digital age, malicious software poses a huge
threat to computer systems and networks. Malware refers to
software programs that implant, propagate, or execute
malicious behavior. Its purpose may involve stealing personal
information, disrupting system functionality, malicious
dissemination, etc.

[1-2]. The continuous evolution and

increase of malicious software make it very difficult to protect
computer systems and networks from attacks. Malware
detection and identification technology face significant
challenges [3-4]. Traditional signature and rule-based methods
are no longer adequate to cope with the increasing number of
malicious software. Due to the rapid mutation and diversity of
malicious software, feature extraction and classification
become extremely difficult. In addition, due to the
concealment and diversity of malicious software, its detection
and identification require a large amount of computing
resources and time [5-6]. This study utilizes Ant Colony
Optimization (ACO) to improve traditional clustering
algorithms and optimize their parameters. ACO is a swarm
intelligence algorithm that simulates ant behavior. It simulates

the behavior of ants when searching for food and establishing
pathways. ACO has been widely applied in optimization
problems and has achieved significant success in solving
fields such as travel salesman problems and network routing
optimization [7-8]. The main contribution of the research is
the proposal of an improved clustering algorithm based on ant
colony optimization algorithm (ACO-CA), which is
specifically designed to address the complexity of malware
identification. This is the first time the ACO algorithm has
been applied to the clustering problem of malicious software.
Necessary adjustments and optimizations are made to the
algorithm to adapt to this specific field. The ACO-CA
improves the dynamics and adaptability of the clustering
process by introducing ant tracking and pheromone
mechanisms. This enables it to effectively handle the
high-dimensional nature of malware features and the uneven
distribution of samples. The algorithm proposed in this paper
enhances the accuracy of malware detection and improves
processing speed, demonstrating its potential for identifying
malware. The deployment of the ACO-CA algorithm in
practical environments is also discussed in detail, providing
useful guidance for future research and application.

This study is divided into six sections. Section II provides
an overview of the characteristics and threats of malware, as
well as the current research status of malware identification
technology. Section III proposes the hierarchical ACO-CA,
which provides a detailed description of how to apply the
ACO algorithm to the hierarchical aggregation clustering
process. Section IV conducts empirical analysis on the
performance of improved clustering algorithms and malware
identification, and Section V includes discussion and analysis
of experimental results. Section VI summarizes the main
findings and contributions of the entire study, and explores
future research directions.

II. RELATED WORKS

The research on malware identification is an important
direction in the field of computer security. With the continuous
increase in the number of malicious software and the
continuous development of technology, the identification of
malicious software has become increasingly difficult.
Therefore, researchers have been striving to improve existing
malware identification techniques. Hu et al. proposed a deep
sub domain adaptive network with attention mechanism. The
experiment showed that the average accuracy of this method
reached 97.15%, and it could quickly converge without using

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1032 | P a g e

www.ijacsa.thesai.org

a large number of target domain training datasets [9]. Mario et
al. classified malicious software applications from system call
traces. The method demonstrated high robustness in
identifying infected applications and in code conversion and
major avoidance techniques [10]. Yuan et al. proposed an
anomaly detection method based on a dual head neural
network. After filtering, the identified samples, the accuracy
of malware detection increased by 8.62% and 13.12%
respectively [11]. Sanjeev et al. proposed a novel malware
detection architecture that utilizes image analysis and machine
learning. Numerous experiments have shown that the methods
of stacking global features and stacking local features have
achieved testing accuracy of 98.34% and 98.23%, respectively.
On the latest malware dataset in the real world, its testing
accuracy was 92.75%, with a low false alarm rate [12].
Somayyeh et al. proposed a malware detection method based
on short-term and short-term memory. Case studies have
shown that the model can even detect new malware with an
accuracy of over 90%. In addition, the model could detect
malicious software by capturing 50 connection flows, with an
AUC exceeding 99.9% [13]. Mahesh et al. proposed an
adaptive red fox optimization method based on convolutional
neural networks to detect whether malicious software
applications are benign or malicious. Comprehensive
experiments have shown that the detection accuracy of this
method is 97.29% [14]. Gao et al. developed a practical
system called HincTI for modeling network threat intelligence
and identifying threat types. Compared with the most
advanced baseline methods currently available, the proposed
method could significantly improve the performance of threat
type identification [15].

The basic version of ACO has matured and has been
widely applied. With the deepening of research, many scholars
have improved the efficiency and robustness of ACO by
improving algorithm parameter settings, introducing heuristic
information, and improving pheromone update strategies.
Chen proposed a method for balancing enterprise resource
information scheduling based on improved ACO. This method
had good resource information balance scheduling ability and
could effectively improve resource utilization [16]. Tan et al.
established a mathematical model for spot welding path
planning. The simulation analysis revealed that the ACO path
was improved under six different parameters, resulting in an
average path length of 10357.7509 millimeters. This is in
contrast to the 10830.8394 millimeters obtained by traditional
algorithms. The convergence analysis of improved ACO
showed that its average number of iterations is 17. Therefore,
the improved ACO had higher solution quality and faster
convergence speed [17]. Wang et al. proposed a progressive

randomization approach that combines exploration and
utilization with improved ACO for automatic detection of
snow melting on the surface of the Antarctic ice sheet. Further
validation of six automatic weather stations indicated that the
proposed method had higher accuracy [18]. Wang et al.
proposed an improved ant colony resource scheduling
algorithm. When the number of tasks reached 200, the
proposed algorithm used 17.52% less execution time and 9.58%
less resources than traditional algorithms, achieving a resource
allocation rate of 91.65% [19]. Saemi et al. designed a Meta
heuristic algorithm based on ACO. Compared with the
sequential method, this algorithm provided a solution for
comprehensive problems that reduced costs by 21.64% in a
reasonable amount of time. In addition, for small problems,
the average difference between the solution provided by the
ACO algorithm and the optimal solution (exact method) was
2.96% [20].

In summary, research on malware identification and ACO
is constantly developing and advancing, providing powerful
solutions for computer security and optimization issues. The
use of ACO-CA has potential in malware identification, but
there is a lack of relevant content in existing research, so
further research is still needed. This study aims to improve
ACO and achieve better results in the field of malware
detection and defense.

III. A HIERARCHICAL CLUSTERING MODEL FOR MALWARE

BASED ON IMPROVED ANT COLONY

The initial section extracts the characteristics of malicious
software and classifies its dynamic features through static
analysis. Then, the extracted malware features are
dimensionally reduced and centered through a vector feature
matrix. In the second section, a clustering objective function is
designed for ACO, and finally, pheromone update and
probability transfer mechanisms are introduced to optimize
ACO.

A. Malware Feature Extraction and Processing Methods

Malicious software feature extraction and processing refers
to the analysis and processing of malicious software samples,
extracting feature information from them, and performing
corresponding processing and encoding. The purpose is to be
used in security applications such as classification, detection,
and protection. The common features of malware are shown in
Fig. 1.

In Fig. 1, static features include file attributes (file name,
path, size), file hash value, and compilation timestamp, etc.
The static analysis process is shown in Fig. 2.

Malware Characteristics

Static characteristics

Dynamic characteristic

Network characteristic

Malicious Code Characteristics

Specific behavioural characteristics

Fig. 1. Classification of common malware features.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1033 | P a g e

www.ijacsa.thesai.org

Information

Extraction

Feature

Extraction

Eigenmodel

Matching

Determining

Malware

Show malware

types

Analyzing program

binary sequences

Binary string matching

with feature library

Fig. 2. Signature-based static analysis process.

In Fig. 2, the static analysis process analyzes the obtained
function signature information to predict code behavior and
potential defects. Dynamic characteristics refer to processes
such as process behavior, system calls, registry operations, etc.
Network characteristics involve network communication
behavior, network traffic patterns, etc. Malicious code features
include malicious code structure, invocation methods,
encryption, and obfuscation. Specific behavioral
characteristics refer to the encryption behavior of ransomware
and the monitoring behavior of spyware. Processing malware
features includes encoding, normalizing, dimensionality
reduction, and other operations on the extracted features to
facilitate subsequent machine learning algorithms for training
and classification. The characteristics of malicious software
can be represented by Hash encoding, as shown in Formula
(1).

 hash_value = hash_algorithm data (1)

In Formula (1), _hash algorithm is the selected Hash

algorithm. data is the malware feature data that needs to

calculate hash encoding. Assuming there is a malware feature
vector X containing n eigenvalues, then the Min-Max

normalization formula can be used to normalize the malware
features, as shown in Formula (2).

  

    

_ / 



normalized value value Min X

Max X Min X
 (2)

In Formula (2),  Min X and  Max X are the

minimum and maximum values of each feature, respectively.

value is an eigenvalue in the feature vector X . By applying

this formula, each eigenvalue can be mapped to the range of [0,
1]. Principal Component Analysis (PCA) is used to convert
high-dimensional feature vectors of malicious software into
low-dimensional representations, as shown in Fig. 3.

In Fig. 3, the horizontal axis represents the selected
principal components, and the vertical axis represents the
original data samples. Each point represents a malware sample.
The original data is projected onto the selected eigenvectors
after calculating the covariance matrix to obtain eigenvalues
and eigenvectors, resulting in dimensionality reduced data.

Assuming there are m malware samples, each with d

features, and the feature vector matrix is X m d（ ）. The

feature vector matrix is centralized as shown in Formula (3).

 '  X X mean X (3)

In Formula (3), 'X is the new centralization matrix.
Then to calculate the covariance matrix of the centralization
matrix 'X , as shown in Formula (4).

 1/ * '̂ * 'C m X T X (4)

In Formula (4), 'TX is the transpose matrix of 'X . *

represents multiplication of matrices. 1/ m is the

normalization factor, ensuring that each element of the
covariance matrix is within a reasonable range. Then to
calculate the eigenvalues and eigenvectors of the covariance
matrix, as shown in Formula (5).

* *C v v (5)

In Formula (5),  is the eigenvector corresponding to

the eigenvalues and v . Then, the eigenvalues  are sorted

in descending order. When sorting feature values, to use the
argsort function in the NumPy library. The feature values are

stored in a one-dimensional array _eig vals and the sorting

index of the feature values are calculated, as shown in
Formula (6).

 _ . _sorted indices np argsort eig vals (6)

In Formula (6), _sorted indices is the sorted feature

value index, and then the feature values are sorted according
to the sorting index to obtain Formula (7).

 _ _ _ _sorted eig vals eig vals sorted indices (7)

Z

Principal component

O
ri

g
in

a
l

d
at

a

Fig. 3. Sketch of the principal component analysis of malware features.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1034 | P a g e

www.ijacsa.thesai.org

In Formula (7), _ _sorted eig vals is the result sorted by

eigenvalues. To select the eigenvector corresponding to the

largest k eigenvalues, usually k d , as the principal

component, as shown in Formula (8).

_

_


topk eigvecs
V

topk eigvecs
 (8)

In Formula (8), _topk eigvecs is the first k

eigenvectors. The feature vector matrix X is multiplied by
the projection matrix V to obtain the dimensionality reduced

feature matrix as shown in formula (9).

*Y X V (9)

In Formula (9), the dimension of X is  m d . The

dimension of V is  d k . The dimension of Y is

 n k . The reduced feature matrix can be used for

subsequent malware feature analysis tasks, such as malware
classification and anomaly detection. The study examined the
effect of modifying a single parameter on the objective
function while holding all other parameters constant. To
systematically identify the optimal parameter combination and
enhance the accuracy and efficiency of the algorithm, the grid
search method was employed.

B. Improved Ant Colony and Hierarchical Clustering

Algorithm Optimization Design

After extracting features from malicious software through
feature extraction methods, ACO is used to optimize feature
selection and classifier training. Finally, hierarchical clustering
algorithm is used to cluster the extracted features and identify
different malicious software families. The specific process is
shown in Fig. 4.

Fig. 4 first extracts and processes the features of malicious
software, then identifies the features of all software, and then
determines whether all software has been recognized. The

above steps are repeated until the ant completes the search
task. Finally, to cluster the extracted features and determine
the division of malware families based on the clustering
results and thresholds. ACO is a heuristic optimization
algorithm that simulates the foraging behavior of ant
populations. Each ant selects the next location to move based
on the current pheromone and heuristic information, and the
ant colony routing mechanism is shown in Fig. 5.

There are two paths in Fig. 5, ABECD and ABFCD. In
path BFC, as ants increase and the amount of information
increases, the probability of path selection increases. In path
BEC, as time increases, the amount of information decreases,
and the probability of path selection decreases. To design a
clustering objective function based on internal indicators, as
shown in Formula (10).

   
2

11
,,

/
 

  
  
       

  j

kk
jj p Cii

D p cD c c
f

k k
 (10)

Input

Feature extraction

and processing

Malware identification

using ant colony

algorithms

Are all software

recognised?

No

Cluster analysis of

malware

Yes

End

Output malware

types

Fig. 4. Malware identification process.

A C D

30

15

30

15

F

15 15

E

A C D

30

30

30

30

F

E

B B

Fig. 5. Ant Colony pathfinding mechanism.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1035 | P a g e

www.ijacsa.thesai.org

In Formula (10),
ic is the centroid of the i -th cluster. c

is the centroid of all elements.
jC is the j -th cluster. D is

the proximity. k is the number of clusters after clustering is

completed. When clustering, not only distance information is
considered, but also pheromone concentration and probability
random mechanisms are introduced. The new transfer
probability is Formula (11).

 

 
 _

1

,

1

,










 
 
 
 


 
 
 
 



ij

i j

ij

ill Node Left

i j

u
d C C

p

u
d C C

 (11)

In Formula (11),  is the pheromone concentration

factor.  is the heuristic information factor.
iju is the

average pheromone concentration between cluster i and

cluster j , as shown in Formula (12).


 




 
i j

knk C n C

ij

i j

u
m m

 (12)

In Formula (12), k and n are two points in the path.

im and
jm are the number of ants in two clusters.  kn

 is

the concentration of pheromones between points k and n .

The algorithm process is Fig. 6.

Fig. 6 considers each point as a cluster and randomly
assigns a certain number of ants to these clusters based on the
proximity matrix and pheromone concentration matrix. Next,
using roulette wheel to select the clusters to merge and
calculate the merged result based on the objective function. If
the number of iterations is not less than the set number, to
output the optimal clustering merge scheme and clustering tree
graph. To accelerate the convergence speed of the algorithm,
the pheromone matrix is modified , as shown in Formula (13).

0   ij ij (13)

In Formula (13),  

ij is the initial pheromone

concentration from element i to element j .  ij
 is the

concentration coefficient.
0 is the basic pheromone

concentration. After optimizing the pheromone update
mechanism, it is shown in Formula (14).

     
1

1      


     

m k

ij ij ij ijk
t t (14)

In Formula (14),  is the coefficient of weakness.

   ij t is an additional pheromone on an excellent path, and

the calculation Formula is (15).

  ij

ij

Q
t

l
 (15)

Import

Initializing Pheromones

All ants are randomly

put into new clusters

Calculate the merger probability

for a randomly selected ant

Selecting clusters to merge

Is the number

of remaining clusters

as required?

Did all the ants

merge once?

Calculate the objective

function

Updating the pheromone

concentration matrix

Output the current optimal solution

and objective function

Is the number

of iterations

required met?

Output the current optimal

clustering scheme

Y

N

Y

N

N

Y

Fig. 6. Improvement of ant colony algorithm calculation flow.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1036 | P a g e

www.ijacsa.thesai.org

In Formula (15),
ijl is the distance between two points.

Q is the amount of pheromones. To simplify the parameter

optimization process, the algorithm uses a probabilistic model
to predict parameter performance. New parameters are then
selected for testing in regions where predicted performance is
improved. This approach helps balance the relationship
between exploration and exploitation, leading to more
efficient identification of optimal solutions.

IV. EMPIRICAL ANALYSIS OF ACO-CA PERFORMANCE AND

MALICIOUS SOFTWARE IDENTIFICATION

When testing the performance of the improved ACO
algorithm, the accuracy, echo value, and false alarm rate of
different algorithms are first compared. Next, the accuracy and
loss curves of the improved algorithm in the test and training
sets are compared, and finally, the specificity of the improved
algorithm and the traditional algorithm is compared. Empirical
analysis compares the recognition of malicious software and
CPU resource usage using different algorithms, and finally
uses the proposed algorithm to monitor a certain device.

A. Improved Algorithm Heating Performance Test

Experiment

The analysis of improving algorithm performance selected
the CICAlDroid2020 dataset as the test set and
CICAlDroid2019 as the training set. CICMalDroid2019 and
CICMalDroid2020 are datasets used to analyze malicious
Android applications, containing 5000 and 10000 Android
application samples, respectively. These samples are divided
into two categories: normal applications and malicious
applications. Table I shows the experimental environment for
this experiment.

Experiments are conducted using traditional clustering
algorithms and ACO-CA on CICCalDroid2020, and their
performance in indicators such as malware recognition
accuracy, recall rate, and false alarm rate were compared. The
results are shown in Fig. 7.

From the data in Fig. 7, ACO-CA outperforms traditional
clustering algorithms in terms of accuracy, echo value, and

false alarm rate. The accuracy of ACO-CA is 0.984, while the
traditional clustering algorithm is 0.731. ACO-CA can more
accurately classify samples and predict the categories of
malware and normal software. The echo value of ACO-CA is
0.789, while the traditional clustering algorithm is 0.674. This
indicates that ACO-CA performs better in terms of echo value.
The false positive rate of ACO-CA is 0.345, while the
traditional clustering algorithm is 0.401. The accuracy and
loss curves of the improved algorithm in the test and training
sets are shown in Fig. 8.

TABLE I. EXPERIMENTAL HARDWARE AND SOFTWARE ENVIRONMENT

Typology Configurations

Operating system Ubuntu 22.04.1

CPU Model Intel Core i5 1240P

Random access memory (RAM) 16G

Hard disk 512G

Python 3.9.13

Python Toolkit
Numpy+Pandas+Matplotlib+Scikit-learn
etc

Programming Environment Vscode+jupyter

0

0.2

0.4

0.6

0.8

1.0
S

ta
n

d
ar

d
 m

ea
su

re

ACO-CA TCA
Accuracy ReCall False Positive

0.984

0.789

0.345

0.731

0.674

0.401

Fig. 7. Metrics performance of different clustering algorithms.

1.00

0.98

0.96

0.94

0.92

0 20 40 60 80 100 120 140

Train acc
Val acc

0.20

0.15

0.10

0.05

0.00

0 20 40 60 80 100 120 140

Train loss
Val loss

A
cc

u
ra

c
y

L
o

ss

epoch epoch

(a) Improvement of the ACO-TCA accuracy curve (b) Improvement of the ACO-TCA loss curve

Fig. 8. Improvement of ACO-TCA accuracy versus loss curves.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1037 | P a g e

www.ijacsa.thesai.org

15 20 25 30 35 40 45 50 55

70

75

80

85

90

95

100

S
p
ec

if
ic

it
y

(%
)

Sample size(*100)
15 20 25 30 35 40 45 50 55

70

75

80

85

90

95

100

S
p
ec

if
ic

it
y

(%
)

Sample size(*100)
(a) TCA specific rate curve (b) ACO-TCA specific rate curve

y=-0.757x+98.654
y=-0.108x+99.124

Fig. 9. Different algorithms specific rate fitting curves.

From Fig. 8 (a), the accuracy curves of the improved
algorithm show an upward trend on both the training and
validation sets. This indicates that as the training progresses,
the algorithm gradually improves its accuracy during the
learning process. Especially when the epoch is around 80, the
accuracy tends to stabilize and remains at a high level. This
indicates that the improved algorithm can achieve good
classification results on both the training and validation sets,
and has high accuracy. Secondly, from Fig. 8 (b), the loss
curves of the improved algorithm on both the training and
validation sets show a downward trend, and have already
entered the range below 0.05 when the epoch is 20. Although
there were some fluctuations afterwards, the overall level
remained relatively low, not exceeding 0.1. This indicates that
the improved algorithm can effectively reduce the loss rate
during the training process, and a low loss rate indicates that
the model can accurately predict the category of samples. The
specificity between the improved algorithm and the traditional
algorithm is shown in Fig. 9.

In Fig. 9 (a), the specificity decrease rate of traditional
clustering algorithms is 0.757, while the specificity decrease
rate of ACO-CA is 0.108. ACO-CA performs better at the rate

of decrease in specificity and decreases more slowly. This
indicates that ACO-CA can maintain a higher level of
specificity when processing more samples. In Fig. 9 (b), the
longitudinal intercept of traditional clustering algorithms is
98.654, while the longitudinal intercept of ACO-CA is 99.124.
Therefore, ACO-CA has higher specificity values when the
sample size is small.

B. Empirical Experiment on Malicious Software

Identification and Classification

Malware can be classified into various types, including
viruses, worms, trojans, spyware, and adware, etc. This
malicious software may steal users’ personal information,
damage system files, and indiscriminately send spam, posing
serious risks and losses to computer systems and users. The
goal of malware identification and classification is to
accurately identify unknown software samples as malware or
legitimate software by constructing an accurate classification
model. The identification of malicious software in a dataset
using different algorithms is Fig. 10.

0

10

20

30

40

50

P
er

ce
n
ta

g
e

(%
)

0

10

20

30

40

50

P
er

ce
n
ta

g
e

(%
)

0

10

20

30

40

50

P
er

ce
n
ta

g
e

(%
)

0

10

20

30

40

50

P
er

ce
n
ta

g
e

(%
)

(a) ATC (b) ACO-CA

(c) CNN (d) RNN

viral worms trojan horse adware spyware

Fig. 10. Different algorithms for malware recognition statistics.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1038 | P a g e

www.ijacsa.thesai.org

In Fig. 10 (a), it can be concluded that among traditional
clustering algorithms, Trojan software has the highest
recognition rate, accounting for 38% of the total, followed by
advertising software and worm software. The recognition rates
of viruses and spyware are relatively low, accounting for 13%
and 8% respectively. In Fig. 10 (b), by using ACO-CA, the
recognition rates of viruses and worm software have been
improved, accounting for 22% and 28% respectively. The
recognition rate of Trojan software has decreased, accounting
for only 21%. The recognition rate of advertising software and
spyware remains unchanged. This indicates that ACO-CA can
improve the recognition ability of viruses and worm software
in certain aspects. In Fig. 10 (c), Compared with traditional
clustering algorithms, the CNN algorithm has a recognition
rate of 39% for viruses and 16% for advertising software,
which is significantly higher than other algorithms. In Fig. 10
(d), in the identification of malicious software based on RNN
algorithm, the recognition rates of viruses and advertising
software are relatively high, accounting for 27% and 26%
respectively. The CPU resources occupied by different
algorithms for recognition are shown in Fig. 11.

According to Fig. 11, based on ACO-CA and traditional
clustering algorithms, the CPU resource utilization remains at
a relatively low level (0.20-0.22 and 0.22-0.20) during the first
12 minutes of runtime. This may be the stage of algorithm
initialization and data preprocessing, requiring less
computational resources. After a running time of 12 minutes,
the CPU resource utilization based on ACO-CA and traditional
clustering algorithms rapidly increases, reaching levels of 0.78
and 0.75, respectively. The CPU resource utilization rate based
on CNN algorithm and RNN algorithm is relatively high in the
first 12 minutes of runtime (0.24 and 0.18). This may be
because these two algorithms typically require more
computing resources for convolution and loop operations. In
the following period, the CPU resource utilization rate based
on CNN algorithm and RNN algorithm gradually increases
and stabilizes at a higher level (0.80). The real-time
monitoring of the software operation of a certain device by
ACO-CA is shown in Fig. 12.

0 4 8 12 16 20 24

0.2

0.4

0.6

0.8

C
P

U
 r

es
o
u
rc

es

Running time (min)

ACO-CA
TCA
CNN
RNN

Fig. 11. Variation curve of CPU resources occupied by different algorithms.

viral
worms
trojan horse
adware

520 550 600 700
0

10

20

30

40

50

spyware

Time(min)

N
u

m
b

er
 o

f
m

al
w

ar
e

w
ar

n
in

g
s

Fig. 12. Detection diagram of a device compromised by malware.

According to the data in Fig. 12, it is concluded that worm
like malware has the highest number of attacks on this device.
When the running time reaches 600 minutes, the number of
attacks reaches 46. This may be because the security measures
of the device are weak, allowing worm like malware to easily
invade and attack. Trojan viruses are the second most common
type of malware, with attacks fluctuating between 20 and 30
times. This may mean that the device has some protection
measures in terms of security, but it is still vulnerable to
Trojan virus attacks. Viruses are also a type of malware that
attacks more frequently when running for 600 minutes,
reaching 27 times. Advertising software and spyware have
relatively fewer attacks during this period, with an average of
less than 10 attacks. This may be because the purpose of
advertising software and spyware is different. The former
mainly obtains revenue through pop-up ads and other methods,
while the latter is mainly used to monitor user activities and
steal confidential information. The device may have taken
certain measures to suppress the intrusion of adware and
spyware.

V. RESULTS AND DISCUSSION

Malicious software identification plays a crucial role in the
field of network security, and traditional clustering algorithms
have certain limitations in dealing with complex and
ever-changing malicious software. Therefore, the study
proposed to use the ACO algorithm to improve clustering
methods, aiming to improve the accuracy and efficiency of
malware detection. The algorithm has been improved to
optimize the clustering process by simulating the behavioral
characteristics of ant colonies. The results showed that the
improved algorithm achieved a clustering accuracy of 0.984,
far exceeding the traditional algorithm's 0.731. The false alarm
rate has also been reduced from 0.401 in traditional algorithms
to 0.345, indicating a significant improvement in reducing
false positives. The accuracy improvement stabilized
gradually during the training process, and the loss rate
dropped below 0.05 by epoch 20. The specificity of the
improved ACO algorithm decreased to only 0.108, compared
to the traditional algorithm's 0.757. When processing small
sample data, its specificity also showed a high level. In
contrast, although CNN algorithm performed well in
identifying specific categories of malware and RNN algorithm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

1039 | P a g e

www.ijacsa.thesai.org

also demonstrated good classification ability, improved ACO
algorithm was more outstanding in overall performance. From
a resource consumption perspective, the improved ACO
algorithm maintained a low CPU usage rate during the initial
12 minutes. Although it increased thereafter, the trend of
higher CPU usage in the early stages and stable increase in the
later stages is relatively mild as compared to the CNN and
RNN algorithms. However, there are still shortcomings in the
research. Although the improved ACO algorithm has shown
advantages in multiple indicators, its ability to recognize
different types of malware needs further improvement. Future
work will focus on optimizing algorithms for universality and
efficiency on large-scale datasets, providing stronger technical
support for the dynamic identification of malicious software.

VI. CONCLUSION AND FUTURE WORK

The constant increase of malware poses a serious threat to
computer systems and network security. To solve this problem,
the improved ACO algorithm was used to enhance the
traditional clustering algorithm, aiming at improving the
performance in the task of malware recognition. The study
was processed in two stages. Firstly, the malware feature was
extracted by static analysis, and the dynamic feature set of the
malware was collected. Then the obtained features were
processed by dimensionality reduction and centralized by
vector eigenmatrix. Secondly, the clustering objective function
suitable for ACO algorithm was designed, introducing
pheromone updating and probability transfer mechanism to
optimize the clustering effect. The experimental results
showed that compared with the traditional clustering
algorithm, the improved ACO-CA has achieved better
performance in three aspects of accuracy, echo value and false
positive rate. The improvement rates were 0.253, 0.115 and
0.056, respectively. The improved algorithm achieved
recognition rates of 22% and 28% for virus and worm
software, respectively. Compared with the traditional
algorithm, the specificity decline rate was only 0.108,
indicating a slow decline trend in maintaining specificity.
From this, this paper had potential application value in
improving clustering performance and reducing false alarms,
providing a feasible technical approach for real-time
monitoring of device software operation status. The proposed
algorithm can be deployed in network security intrusion
detection systems to monitor and identify malicious software
behavior in real-time. The real-time monitoring capability of
algorithms can be integrated into existing firewalls, intrusion
detection systems, and intrusion defense systems. However,
there are still shortcomings. Further research directions can
combine ACO algorithm with other machine learning
algorithms to further enhance the accuracy and generalization
ability of malware identification, providing more specific
deployments for practical applications.

REFERENCES

[1] Nani L.Y.F, Aziah A, Masnida H. A Dynamic Malware Detection in
Cloud Platform. International Journal of Difference Equations, 2020,
15(2): 243-258.

[2] Ahmad A. Packing resistant solution to group malware binaries.

International Journal of Security and Networks, 2020, 15(3): 123-132.

[3] Amanul I, Fazidah O, Nazmus S, Hafiz M.H.B. Prevention of
Shoulder-Surfing Attack Using Shifting Condition with the Digraph
Substitution Rules. Journal of Computational and Cognitive Engineering,
2023, 1(1): 58-68.

[4] Aslan, O, Samet R. A Comprehensive Review on Malware Detection
Approaches. IEEE Access, 2020, 8(1): 6249-6271.

[5] Saleh M.S, Ahmed H.E.F, Mohamed S.T, Tamer H.F, Nesrin A.A.
Android Malware Prevention on Permission Based. International Journal
of Applied Engineering Research, 2020, 15(1): 5-11.

[6] Mouhamed B.B, Yanjun Q, Clement K.K, Kevin M.N. Evaluation of
Factors Affecting Road Maintenance in Kenyan Counties Using the
Ordinal Priority Approach. Journal of Computational and Cognitive
Engineering, 2023, 2(3): 260-265.

[7] Monojit D, Arnab D, Avishek B, Ujjwal K.K, Samiran C. Construction
of Efficient Wireless Sensor Networks for Energy Minimization Using a
Modified ACO Algorithm. International Journal of Sensors, Wireless
Communication and Control, 2021, 11(9): 928-950.

[8] Kumar D, Jha V.K. An improved query optimization process in big data
using ACO-GA algorithm and HDFS map reduce technique. Distributed
and parallel databases, 2021, 39(1): 79-96.

[9] Hu X, Zhu C, Cheng G, Li R, Wu H, Gong J. A Deep Subdomain
Adaptation Network with Attention Mechanism for Malware Variant
Traffic Identification at an IoT Edge Gateway. IEEE internet of things
journal, 2023, 10(5): 3814-3826.

[10] Mario L.B, Marta C, Fabrizio M.M. Data-aware process discovery for
malware detection: an empirical study. Machine learning, 2023, 112(4):
1171-1199.

[11] Yuan C, Cai J, Tian D, Ma R, Jia X, Liu W. Towards time evolved
malware identification using two-head neural network. Journal of
information security and applications, 2022, 65(Mar): 1-11.

[12] Kumar S, Janet B, Neelakantan S. Identification of malware families
using stacking of textural features and machine learning. Expert Systems
with Application, 2022, 208(Dec): 1-18.

[13] Somayyeh F, Amir Jalaly B. Android malware detection using network
traffic based on sequential deep learning models. Software: Practice and
experience, 2022, 52(9): 1987-2004.

[14] Mahesh P.C.S, Hemalatha S. An Efficient Android Malware Detection
Using Adaptive Red Fox Optimization Based CNN. Wireless personal
communications: An Internaional Journal, 2022, 126(1): 679-700.

[15] Gao Y, Li X, Peng H, Fang B, Yu PS. HinCTI: A Cyber Threat
Intelligence Modeling and Identification System Based on
Heterogeneous Information Network. IEEE Transactions on Knowledge
and Data Engineering, 2022, 34(2): 708-722.

[16] Chen S. A Balanced Scheduling Method of Smart City Enterprise
Resource Information Based on Improved Ant Colony Algorithm.
Journal of Testing and Evaluation: A Multidisciplinary Forum for
Applied Sciences and Engineering, 2023, 51(3): 1265-1276.

[17] Tan Y, Ouyang J, Zhang Z, Lao Y, Wen P. Path planning for spot welding
robots based on improved ant colony algorithm. Robotica: International
journal of information, education and research in robotics and artificial
intelligence, 2023, 41(3): 926-938.

[18] Wang X, Guo Z, Zhang H, Wang C, Wang Y. Snowmelt detection on the
Antarctic ice sheet surface based on XPGR with improved ant colony
algorithm. International journal of remote sensing, 2023, 44(1/2):
142-156.

[19] Wang Y, Liu J, Tong Y, Yang Q, Liu Y, Mou H. Resource scheduling in
mobile edge computing using improved ant colony algorithm for space
information network. International journal of satellite communications
and networking, 2023, 41(4): 331-356.

[20] Saemi S, Komijan A.R, Tavakkoli M.R, Fallah M. Solving an integrated
mathematical model for crew pairing and rostering problems by an ant
colony optimisation algorithm. European Journal of Industrial
Engineering, 2022, 16(2): 215-240.

