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Abstract—Integrating unmanned aerial vehicle (UAV) technol-
ogy with plant disease detection is a significant advancement in
agricultural surveillance, marking the beginning of a transfor-
mational era characterised by innovation. Traditionally, farmers
have had to rely on manual visual inspections to identify melon
leaf diseases, which proves to be a time-consuming and costly
process in terms of labour. This paper aims to use UAV technology
for plant disease detection to achieve notable progress in agri-
cultural surveillance. Incorporating UAV technology, specifically
utilising the You Only Look Once version 8 (YOLOVS) deep-
learning model, is revolutionary in precision agriculture. This
study uses UAV imagery in precision agriculture to explore
the utility of YOLOvVS, a powerful deep-learning model, for
detecting diseases in melon leaves. The labelled dataset is created
by annotating disease-affected areas using bounding boxes. The
YOLOvV8 model has been trained using a labelled dataset to
detect and classify various diseases accurately. Following the
training, the performance of YOLOvVS8 stands out significantly
compared to other models, boasting an impressive accuracy of
83.2%. This high level of accuracy underscores its effectiveness
in object detection tasks and positions it as a robust choice in
computer vision applications. It has been shown that rigorous
evaluation can help find diseases, which suggests that it could be
used for early intervention in precision farming and to change
how crop management systems work. This has the potential to
assist farmers in promptly identifying and addressing plant issues,
hence altering their crop management practices.

Keywords—Smart agriculture; plant disease; melon leaf disease;
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I. INTRODUCTION

The melon, scientifically known as Cucumis melo L., is
a significant horticultural commodity thriving in Malaysia,
categorized within the Cucurbitaceae family. Its cultivation is
widespread globally, particularly on subtropical and tropical
regions [1], [2]. Melons are esteemed for their delightful sweet
tastes, crisp textures, and distinct fragrances [3]. The flesh
of the melon is also very good for you because it is full of
ascorbic acid (vitamin C), which is a water-soluble vitamin that
is known to be one of the safest and most effective nutrients
[4], [5]. Numerous farmers extensively cultivate melon, a high-
value fruit commodity. Cultivating melons is challenging due
to the prevalence of various diseases associated with melon
plants. Leaf diseases in melon plants result in economic losses
for melon growers. Melon plant diseases are classified into two
categories according to their causes: insects and viruses.

One of the insects is called a leaf miner. Various

polyphagous leafminer flies pose a potential threat to vegetable
crops, and occasionally, even melons are susceptible to these
pests. Then, mines show up on the leaflets. The worst-affected
leaves may become yellow, wilt, and dry out. These leaves
might occasionally contain up to 20 larvae per. Thus, during an
infestation, a plant’s photosynthetic activity, growth, and yields
can all be significantly decreased [6]. Other than leaf miners,
aphids are also one of the insects that can form colonies on the
young leaflets of melon leaf. They usually establish colonies
when they develop on melon. They are particularly dangerous
since they can spread many viruses. Nutritional punctures
cause chlorotic punctures, which can deform young, rolled-
up, and somewhat bloated leaves.

To tackle this challenge, image processing, machine learn-
ing (ML), and deep learning (DL) methods offer a solution
for categorising plant disease levels on melon leaves, aiding
farmers in effectively managing these issues. These techniques
have been widely employed in identifying, detecting, and clas-
sifying different types of leaf diseases. Scholars have initiated
investigations into applying deep learning models for plant
detection and counting. This includes the utilization of popular
models such as you only look once (YOLO) [7], faster region-
based convolutional neural network (Faster R-CNN) [8], and
EfficientDet [9]. Several scholars have also implemented a
series of enhancements to achieve the objectives of plant
detection and counting jobs [10], [11]. Different methods were
used to classify leaf diseases: DenseNet and Inception catego-
rized four diseases for bananas, with DenseNet showing better
accuracy at 84.73% [12]. Grape leaves were classified into
healthy and leaf spot categories using deep forest, achieving
96.25% accuracy [13]. Cucumber leaf diseases were segmented
to identify disease points, reaching 97.23% accuracy using an
improved saliency method and deep feature selection [14].
Detecting and categorising leaf diseases involves extracting
features, which are then used for classification [15].

This research presents a novel approach to disease detection
in melon plants through a neural network using drone imagery
and an effective method known as YOLO. It is a novel strategy
for handling melon problems from above, assisting farmers in
more accurately identifying and controlling crop diseases. The
contributions of this paper are as follows:

e The research proposes a unique methodology for
disease detection in melon plants by employing a
neural network trained on drone imagery. This inno-
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vative approach aims to address the identified gap in
the literature and contribute to advancing agricultural
monitoring.

e  The study employs the YOLOv8 and YOLOvVS meth-
ods, demonstrating their effectiveness as an efficient
and accurate tool for identifying diseases in melon
plants.

e  The research contribution lies in its potential to sig-
nificantly improve the overall management of melon
plants by introducing a novel combination of un-
manned aerial vehicle (UAV) imagery and the YOLO
method.

As a result, this paper presents a novel method for
identifying diseases in melon plants, addressing the gap in
current investigations using the YOLO model. This method
can significantly improve the process by which farmers detect
and manage infections in melon crops, representing a notable
advancement in agricultural techniques.

II. RELATED WORKS

In precision agriculture, drones have been applied in vari-
ous ways, and new applications are always being investigated.
Numerous drone applications have been created for various
uses, including soil analysis, pest detection, crop yield esti-
mation, yield spraying, water stress detection, land mapping,
plant nutrient deficiency identification, livestock control, weed
detection, and protection of agricultural products [16]. Using
UAVs to detect plant leaf diseases has grown in popularity
over the past few years due to the industry’s rapid growth in
machine vision and UAV manufacture [17].

The effective use of DL technology in plant disease catego-
rization in recent years has given researchers a fresh perspec-
tive on the topic. Traditionally, disease diagnosis in farming
has depended on unaided eye observation, which is costly,
time-consuming, and highly skilled [18]. It is possible that
deep learning methods could help solve problems in feature
extraction, classification, and expert system development. This
could help farmers grow better fruit plants that produce more
fruit. Models like DenseNet-121 [19], ResNet-50 [20], and
MobileNet [21] are well-known and have been used in many
previous studies to find and classify images in the field of
diagnosing and identifying plant diseases. Sladojevic et al.
introduced a method for identifying plant diseases utilizing
a Convolutional Neural Network (CNN) within the Caffe DL
framework [22]. They gathered images from diverse origins
and employed data augmentation methods such as affine trans-
formation, perspective transformation, and rotation to create
additional images.

The YOLO model has gained considerable attention due to
its remarkable combination of accuracy and speed. Regression-
based object detection models commonly used are Single
Shot Multi-box Detector (SSD) [23], and YOLO [24]. YOLO
is a basic neural network that can simultaneously predict
bounding box coordinates and related class probabilities. Also,
YOLO frame detection is seen as a regression problem because
it finds targets from start to finish without the need for a
complicated pipeline [24], making it very efficient. Moreover,
YOLO outperforms other real-time systems regarding mean
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average precision (mAP) [25]. Goyal et al. proposed a model
based on the YOLOVS object detection system to sort fruit for
fruit detection and quality detection [26]. For fruit detection,
the model’s mAP was 92.80% in the first stage and 95.60%
and 93.10% for apples and bananas, respectively, in the second
stage. For pear counters, Parico and Ahamed employed depth
sorting and the YOLOv4 model to recognize and count pear
fruit in real time [11]. YOLOVS, the most recent iteration in
the YOLO series, not only retains its predecessors’ strengths
but surpasses them, thereby emerging as a powerful instrument
for professionals in plant science.

Besides, no existing methods are designed to detect disease
in this melon, representing a research gap in using DL with
UAV images for melon diseases. Although DL methods and
UAV imagery have been utilized in research to detect diseases
in other plants, melon diseases have not received as much
attention as they should. The realised gap highlights the
lack of thorough investigation into the potential advantages
of using UAV images for disease detection in melon crops.
This highlights the need for targeted research in this specific
area. Utilising deep learning to identify plant diseases may
overcome the drawbacks of manually selecting disease spot
characteristics. This approach enhances the objectivity of plant
disease feature extraction and accelerates research efficiency
and technological transition.

III. PROPOSED APPROACH

This study used a neural network model and an image
processing technique to develop a method for identifying
melon leaf diseases. Fig. 1The proposed approach. shows the
proposed approach. The details of the proposed method will
be discussed in the next section.

A. Data Acquisition

A dataset of melon leaf images was gathered from KMK
Agro Global Sdn. Bhd., Banting, Selangor, with the leaves
seen in their natural environment under a controlled green-
house. Moreover, the dataset has been extracted specifically
for analysing colour. The flowchart in Fig. 2The flowchart of
the system for disease detection using UAV images. describes
a systematic process for combining UAV-captured imagery
and the DL model YOLOV8 to detect diseases in melon
leaves. First, information is gathered using a UAV to take
recordings of the melon greenhouse. Pre-processing operations
are performed on the collected data, such as consistent image
expansion, image removal, and extracting video recordings
into their component frames for analysis. The images are then
labelled by highlighting spots that indicate illnesses on the
rock melon leaves and annotating locations of interest with
bounding boxes. The labelled dataset becomes the foundation
for training the YOLOV8 model. During this phase, the model
learns to recognise and classify different diseases affecting the
leaves. After training, the model is rigorously tested using a
different set of images. This evaluation step uses performance
metrics like accuracy, precision, and recall to see how well the
model can reliably find and classify illnesses in rock melon
leaves.

The melon dataset was collected using a high-resolution
UAV, DIJI Mavic Air 2s. Fig. 3 illustrates the UAV, DJI Mavic
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Fig. 2. The flowchart of the system for disease detection using UAV images.

Air 2s used during data collection. The UAV specifications
are shown in Table IDrone Specifications. When engaging in
the photographic documentation of melon leaves, it becomes
imperative to factor in technical intricacies. This involves
maintaining a precise distance centred on the leaf object,
within 15 cm to 20 cm. Ensuring that the leaf object remains
well-contained within the camera frame is crucial. From the
aerial perspective, the drone’s movement will be orchestrated
upward and downward along the plant, meticulously scrutin-
ising for any signs of disease. The height of the plant varied
from 1.5 m to 2.0 m. The drone captured images of healthy
plants and plants with diseases. The images captured must be
within 20 cm of the plant so that the leaves are visible in the
drone’s field of view (FOV).
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Fig. 4. The layout and drone flying direction in the KMK Agro Global Sdn.
Bhd. greenhouse for data collection.

Fig. 4 illustrates the greenhouse layout and the direction in
which the drone is flying. The recording is in 4K and at normal
speed to ensure the high quality of the images. The UAV flies
facing the plant and moves along the row. Throughout the
data collection, a UAV captured data in 4K resolution during
a 30-minute recording session. The video will be broken down
into frames to extract images of the melon plant at five-second
intervals. Fig. 5 depicts some of the images captured by UAV.

B. Data Augmentation

After data collection, frames were extracted from the
video every five seconds to obtain appropriate images for
training. The dataset collected from the farm for melon plant
disease exhibits an imbalance, which may compromise the
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TABLE I. DRONE SPECIFICATIONS

No | Feature Specification

Drone DII Mavic Air 2s

4K: 3840 x 2160 at 24/25/30/48/50/60fps
Up to 34 Minutes

1/2-inch CMOS, 48 MP

Video Resolution

1
2
3. Max Flight Time
4

Camera Sensor

Fig. 5. Images of melon plants collected from UAVs before dataset training.

accuracy of the YOLO model. Data augmentation enhances
the model’s performance by generating diverse variations of
the training data. This reduces the problem of overfitting and
enhances the model’s capacity to form generalisations. In this
study, ImageDataGenerator by Keras library is used for data
augmentation. Using the ImageDataGenerator class in Keras
makes it easy to set up and apply random transformations to
image data, such as rotations, shifts, flips, and normalisation
operations. These changes can be made without interrupting
the training pipeline, which makes the model more flexible
and good at what it does.
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C. Data Annotation

After the data augmentation, the preprocessing stage aimed
to identify plants with diseases for the training process. Once
all the images were selected, the labelling process began.
When labelling images in computer vision, bounding boxes
annotate objects or regions of interest by enclosing them with
rectangles or other shapes. Neural network models find it
easier to locate, localise, and recognise items when using
these bounding boxes, which accurately show the location
and bounds of certain objects. Labelling is challenging as it
involves addressing imbalances in disease images, which could
impact training accuracy. Balancing diseased plant images with
normal ones ensures the YOLO model functions effectively.
Fig. 6Data labelling process: Annotated markings highlighting
disease-affected areas on melon leaf. shows the labelling
process of the melon leaf.

Fig. 6. Data labelling process: Annotated markings highlighting
disease-affected areas on melon leaf.

For this melon plant, five classes were utilized in the
labelling process. These classes include normal, unknown,
mosaic, leafminer, and aphid. All these types of diseases
commonly affect melon plants. Fig. 7(a) Aphid (b) Leafminer
(c) Mosaic (d) Unknown. displays the diseases that typically
affect melon plants. For a normal melon plant, the leaves are
green and devoid of white or yellow spots.

Fig. 7. (a) Aphid (b) Leafminer (c) Mosaic (d) Unknown.

D. Training the Dataset

The dataset has been divided into three distinct sections:
training, testing, and evaluation, each accounting for 80%,

www.ijacsa.thesai.org

1215|Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE II. PARAMETERS BEFORE DATASET TRAINING

Training Images 1200

Test Images 150

Size Images 640x640
Epoch 100

Class 5 classes
GPU NVIDIA GPU

10%, and 10%, respectively. Before the training phase, the
images undergo augmentation techniques to increase their
quantity. This involves resizing them uniformly to 640x640
and introducing rotations within the range of +15° and -15°.
The training dataset comprises 1200 images, while 150 images
have been allocated for testing and evaluation. This process
sets the stage for the model to excel in identifying elusive
diseases nestled within melon leaves.

1) YOLOv8 Model: YOLOVS is the latest cutting-edge
model within the YOLO series, suitable for object detection,
image classification, and instance segmentation tasks. The
influential and industry-shaping YOLOv5 model’s creators,
Ultralytics, are also responsible for creating the YOLOVS,
a significant advancement in this field. Consider utilizing
YOLOVS8 for your upcoming computer vision endeavour for
several compelling reasons. Firstly, its accuracy, assessed via
common objects in context (COCO) and Roboflow 100 met-
rics, stands notably high. Secondly, YOLOvV8 boasts a range
of developer-friendly features, including an intuitive CLI and a
well-structured Python package, enhancing usability. A robust
community within the YOLO framework, particularly around
the YOLOVS version, supports the model. This means that
people who work in computer vision can get much help and
advice. Notably, YOLOv8 demonstrates robust performance
on COCO benchmarks, exemplified by the YOLOv8m model
achieving a 50.2% mAP. Table IIParameters before Dataset
Training displays the comprehensive set of parameters em-
ployed specifically for training the YOLOv8 model.

IV. RESULT AND DISCUSSION

After the training process, the model is tested and eval-
vated. Performance metrics considered in this study are
mean average precision (mAP), precision, and recall. The
results are shown in Table IIIPerformance Evaluation for
Plant Disease. From Table IIIPerformance Evaluation for Plant
Disease, YOLOVS outperforms YOLOVS. The dataset used
during the training is the same. The superiority of YOLOVS
over YOLOVS5 is evident through substantial enhancements.
YOLOVS exhibits an mAP of 83.2%, precision at 84.3%, and a
recall of 73%. YOLOVS performs better than YOLOVS because
of several significant improvements and optimizations. These
enhancements could include improved network architectures,
feature extraction strategies, sophisticated training approaches,
or hyperparameter adjustments. It is possible that YOLOV8’s
more complex or effective backbone architecture allowed it to
extract more significant features from the data.

Furthermore, YOLOvV8 experienced extensive training pro-
cedures using bigger and more varied datasets, which improved
its capacity to generalize and precisely identify objects and
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resulted in greater precision and recall scores. Compared to
YOLOVS, YOLOVS performs better overall because of these
enhancements combined. Once the model is ready, it undergoes
rigorous testing to evaluate its performance and accuracy. Fig.
8Results of using YOLOVS on test images to spot diseases in
melons. depicts the output of the detection process, showcasing
the model’s performance. The evaluation of the system for
categorization included metrics such as mAP, precision, and
recall to measure its efficacy. MAP is a metric used to evaluate
the performance of object detection models. It measures the
average precision of an algorithm across multiple classes or
object categories. It considers the precision and recall of the
model’s predictions, offering a comprehensive assessment of
how accurately and completely the model detects objects in an
image across different categories.

After the training, other parameters can be employed to
evaluate the effectiveness of YOLOvS8 detection algorithms.
Once the dataset training is over, there is a difference in
the accuracy of class identification. In particular, the classes
related to mosaic illness and the unknown condition in this
investigation showed noticeably lower accuracy scores of are
75% and 76%, respectively, as shown in Fig. 9The outcomes
observed for each class after the training phase.. This decreased
accuracy is because several diseases have remarkably similar
traits, making it difficult for the model to discriminate between
them. These particular diseases are difficult to classify accu-
rately due to their intricate visual traits and similarities, which
is why these classes’ accuracy levels are lower. The area under
the precision-recall curve at different detection thresholds is
called AP. The mAP shows how accurate the system is for
each of the n object classes.

Fig. 8. Results of using YOLOvV8 on test images to spot diseases in melons.

all ) 83%
mosaic o 75%
normal IS 89%

unknown S 76%
aphid Gl 13%

Fig. 9. The outcomes observed for each class after the training phase.

The mAP% can be calculated using the equation [27]
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TABLE III. PERFORMANCE EVALUATION FOR PLANT DISEASE

Model Number of Images | mAP Precision | Recall
YOLOV5 1200 727% | 83.3% 65.7%
YOLOV8 1200 83.2% | 84.3% 73%

mAp = 2i AP (1)
n
1
AP = / xdy 2)
0

Precision and recall can be measured using true positive
(TP), true negative (TN), false positive (FP), and false-negative
(FN) indicators. The equation to calculate precision z, and
recall y are given by:

TP
T TP+ P 3)
and
TP
- 4
YT TPrEN’ “)

where x is precision and y is recall.

Other than YOLOVS, this study compares its performance
with YOLOVS. The YOLOvVS8 proposed method leaves the use
of predefined anchor boxes and instead employs an anchor-
free strategy to achieve enhanced item localization accuracy,
particularly for smaller objects. The Path Aggregation Network
(PANet) integrates several network-level features, enhancing
detection accuracy using multi-scale contextual information.
Fig. 10YOLOVS training development graph, highlighting re-
call, precision, and accuracy metrics during training. and Fig.
11YOLOVS training development graph, highlighting recall,
precision, and accuracy metrics during training. show the
training graph for YOLO. The training process involves it-
erating through the dataset 100 times, each iteration known
as an epoch. During these 100 epochs, the model learns and
refines its understanding of the data, gradually improving its
performance and accuracy through repeated exposure to the
information provided in the dataset.

Moreover, the convolutional block attention module
(CBAM) has been enhanced to improve the feature extrac-
tion process. The dynamic adjustment of feature importance
achieves this by effectively suppressing noise and improving
the clarity of distinctions. The efficient backbone network
of YOLOV8 successfully preserves accuracy by reducing pa-
rameters and enhancing inference performance. The proposed
approach effectively separates the responsibilities of object
prediction and categorization, resulting in improved precision.
The system attains accelerated convergence and enhanced sta-
bility by employing network pruning, varied data augmentation
techniques, mixed precision training, and an enhanced training
framework. The unified architecture of YOLOvVS8 enables its
compatibility with many vision tasks, establishing it as a
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Fig. 10. YOLOVS training development graph, highlighting recall, precision,
and accuracy metrics during training.
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Fig. 11. YOLOVS training development graph, highlighting recall, precision,
and accuracy metrics during training.

robust and versatile tool for applications involving object
identification and image recognition.

V. LIMITATIONS OF THIS STUDY

The study highlights certain limitations that should be
recognised. Firstly, a limited annotated dataset was utilised
for training the YOLOvVS model. Using a restricted dataset
raises concerns regarding the possibility of overfitting, wherein
the model may exhibit good performance on the training data
but encounter difficulties in efficiently applying its knowledge
to new, real-world farming situations. Furthermore, in this
study, the influence of environmental factors was considered by
conducting data collection in a controlled atmosphere. Climatic
conditions might impact the quality of UAV footage and the
precision of the YOLOv8 model’s forecasts, underscoring the
necessity to tackle these obstacles for real-world implemen-
tations. Furthermore, it is necessary to carefully examine the
possible impact of environmental variables, such as changes in
lighting, on the performance of the UAV and YOLOvS8 model.

VI. CONCLUSION

In summary, this study has used UAV footage to highlight
the strong performance of YOLOVS in detecting diseases in
rock melon leaves. The deep learning model exhibits notable
levels of accuracy and efficiency, highlighting its potential as
a useful asset in precision agriculture. While acknowledging
problems like limited datasets and the effect of changes in
the environment on the performance of models, the study has
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highlighted the strong features of YOLOvV8 as a major step
forward in finding illnesses in agricultural settings. Overall,
YOLOvVS emerges as a pivotal technological advancement,
promising significant enhancements and advancements in agri-
cultural practices.

This study offers numerous tangible benefits for the agri-
cultural industry. Combining UAV data with a neural network-
based classification system greatly improves the identification
of melon leaf illnesses, allowing farmers to detect problems
at their initial stages. The efficiency of this technology is
especially advantageous for monitoring extensive agricultural
regions, resulting in time and labour savings compared to
conventional manual techniques. The neural network enables
rapid identification, timely intervention, and effective disease
management. The technology’s capacity to scale allows it to be
easily adjusted for large-scale farming operations, and the data-
driven decision-making process provides farmers with vital
knowledge to manage crops effectively. The research has the
potential to fundamentally transform disease control, resulting
in higher crop productivity, enhanced quality, and the adoption
of more sustainable farming methods in smart agriculture.

Further studies may considerably improve the performance
of the neural network-based classification system using other
types of DL models. Actively focusing on diversity in the
training dataset is one important approach. This study can
incorporate samples from various geographic regions, mete-
orological conditions, and growing seasons to create a more
comprehensive dataset. This diversity would strengthen the
model’s robustness and generalizability across many agricul-
tural contexts, as well as its capacity to adjust to various
environmental conditions. Then, further research could ex-
amine how UAV data can be integrated with other cutting-
edge sensing technologies. For example, drones have been
added to monitoring systems. This multidisciplinary strategy
might result in a more comprehensive and precise disease
detection solution for smart agriculture. Combining different
sensing technologies could lead to a more comprehensive
understanding of crop health and, ultimately, a more advanced
and efficient precision agriculture system.
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