
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

380 | P a g e  

www.ijacsa.thesai.org 

A Method for Extracting Traffic Parameters from 

Drone Videos to Assist Car-Following Modeling 

Xiangzhou Zhang, Zhongke Shi 

School of Automation, Northwestern Polytechnical University, Xi’an, China 

 

 
Abstract—A new method for extracting traffic parameters 

from UAV videos to assist in establishing a car-following model is 

proposed in this paper. The improved ShuffleNet network and 

GSConv module were introduced into the Yolov7-tiny neural 

network model as the target detection stage. HOG features and 

IOU motion metrics are introduced into the DeepSort multi-

object tracking algorithm as the tracking matching stage. By 

building a self-built UAV aerial traffic data set, experiments were 

conducted to prove that the new method improved a few 

detection and tracking indicators. In addition, it improves the 

false detection, missed detection, wrong ID conversion and other 

phenomena of the previous algorithm, and improves the 

accuracy and lightweight of multi-target tracking. Finally, gray 

correlation was applied to analyze the traffic parameters 

extracted by the new method, and the driver's visual perception 

of collision was introduced into the car-following model. Through 

stability analysis, small disturbance simulation and collision risk 

assessment, the newly proposed traffic flow parameter extraction 

method has been proven to improve the dynamic characteristics 

and safety of the car-following model, and can be used to 

alleviate traffic congestion and improve driving safety. 
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I. INTRODUCTION 

Traffic congestion leads to low transportation efficiency 
and air pollution. Frequent traffic accidents lead to casualties 
and economic losses. These problems are all important 
challenges facing the development of modern transportation. 
Researchers have developed numerous models based on traffic 
flow theory to explain traffic phenomena, thereby improving 
traffic efficiency and driving safety. Furthermore, the 
collection of data required for modeling has always been the 
basis and hot spot of research. UAV aerial video data is 
extremely informative both in content and time. The UAV is 
rapidly popularized due to its lightweight, easy operation, and 
low cost, making them increasingly important in the field of 
target detection and tracking [1-3]. It is often used in traffic law 
enforcement and monitoring in various countries. However, 
how to use drone aerial photography to assist in building a 
driver behavior model still needs to be explored. 

The key to the application of UAV aerial photography data 
collection lies in the video vehicle detection and tracking 
algorithm, which extracts its speed, trajectory and other 
information through vehicle position information at different 
times. With the rapid development of deep learning technology 
in recent years, in terms of vehicle target detection, researchers 
have proposed a variety of improved target detection neural 
networks for different scenarios and tasks. Among them, the 

yolo series of single-stage multi-target detection algorithms is 
widely used due to its obvious advantages. Makarov et al. [4] 
used the yolo V2 network to realize the recognition of cars, 
large vehicles and other objects from the UAV perspective. 
Hoslain [5] and others migrated YOLO V3 and SSD to the 
edge-side onboard GPU Jetson TX2. Jetson Xavier 
implemented UAV detection of vehicles and provided accurate 
target locations and vehicle types. In addition, the problems 
introduced by the drone aerial photography perspective have 
been optimized. For example, to address the problem of an 
increase in small targets caused by UAVs. Zhang et al. [6] 
inserted three Spatial Pyramid Pooling modules between the 
fifth and sixth convolutional layers in front of the three 
detection heads of the YOLO V3 network to design the silm-
yolo V3-SPP3 network. In order to solve the problem of low 
detection efficiency caused by the sparse and uneven 
distribution of target categories from the perspective of a drone. 
Li et al. [7] proposed DS YOLO V3, which added multiple 
detection heads connected to different layers of the backbone 
network to detect targets of different sizes. In addition, a multi-
scale channel attention fusion module is designed to utilize 
complementary channel information. 

In terms of UAV aerial photography target tracking, 
commonly used methods based on target trajectory mainly 
include Karman filtering and deepsort framework. Luo et al. [8] 
used yolov5 for feature extraction, Kalman filter to extract 
target motion information and update predictions, and 
Hungarian matching algorithm to obtain tracking results. 
Khalkhali et al. [9] proposed SAIKF (Situation Assessment 
Interactive Kalman Filter), which uses situation assessment 
information extracted from the traffic history of the same 
environment to improve tracking performance. The target 
trajectory prediction based on deepsort is as follows. Ning et al. 
[10] used yolov5 to obtain the real-time position of the target, 
and combined with the deepsort framework to achieve the 
speed measurement of the target. In addition to the above 
applications, many scholars have made various corresponding 
improvements to address the problems that arise in multi-target 
tracking from the UAV perspective. Du et al. [11] used OSNet 
to replace the simple feature extractor in Deep-SORT, used 
global clues to associate it with the trajectory, and proposed the 
EMA (Exponential Moving Average) strategy to achieve a 
more accurate association between small trajectories and 
detection results. Huang et al. [12] generated target bounding 
boxes through different prediction networks, performed 
cascade matching on all trajectories and detection results, 
performed unmatched tracking and detection through GIOU 
matching, and generated the final trajectory. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

381 | P a g e  

www.ijacsa.thesai.org 

By establishing a mathematical model of the relative 
motion relationship between vehicles, car-following models are 
often suitable for the development of autonomous driving 
systems and traffic flow simulations.  Therefore, it has been a 
hotspot in traffic flow research, and scholars have achieved 
rich achievements. Zhang [13] proposed a bi-directional visual 
angle car-following model considering collision sensitivity, 
which improved the dynamic characteristics and driving safety 
of car-following and lane-changing in the traffic flow. Zhang 
[14] proposed a small-radius curve following model that 
considers the driver's desired visual angle based on the impact 
of two-point preview steering decisions and parking sight 
distance on small-radius curve following behavior from the 
perspective of the driver's visual characteristics. Liu et al. [15] 
optimized traffic at signalized intersections by incorporating 
short-term driving memory on driver behavior. Ma et al. [16] 
introduced memory effect of headway changes into the driver 
behavior. Simulations demonstrate it has a significant effect on 
alleviating traffic congestion. 

To sum up, the target detection and tracking technology of 
drone aerial videos is relatively mature. However, there are still 
some limitations in using UAV aerial photography to collect 
information to assist in driving behavior modeling: (1) Due to 
the size limitations of UAV equipment, there is still room for 
improvement in high-speed and high-precision traffic 
information collection. (2) Vehicle data that can quantify the 
driver’s physiological and psychological behavior from a 
microscopic perspective is difficult to extract. (3) It is difficult 
to use traffic survey data to model driving behavior while 
optimizing the dynamic characteristics and safety of traffic 
flow. This study proposes a new method of assisted modeling 
of UAV aerial car-following images to solve the above 
problems. The method we proposed for the above problems 
has the following advantages: (1) The improved lightweight 
video detection network and improved target tracking method 
are conducive to improving the accuracy and speed of traffic 
information collection in UAV aerial videos. (2) A method that 
can collect the driver’s psychological following behavior is 
proposed. (3) A method is proposed to use collected traffic data 
to model driving behavior to simultaneously improve dynamic 
characteristics and safety. 

The remaining parts of this study are structured as follows:  
Our proposed method for extracting traffic parameters from 
UAV videos is described in detail in Section II. The 
improvements of the new traffic parameter extraction method 
in target detection, tracking and car-following behavior 
modeling are verified through experiments. The experiment 
results are described in the Section III. The collected traffic 
data is used to model the driver's psychological car-following 
behavior, and its dynamic characteristics and safety are 
improved in the Section IV. The work of this research is 
summarized and future work is prospected in Section V. 

II. MATTER AND METHODS 

Fig. 1 shows a new method of extracting traffic parameters 
from UAV video to assist in establishing a car-following model. 
The method is divided into four stages: image processing, 
target detection, target tracking and traffic flow modeling. We 
introduce them separately below. 

A. Transformation of Coordinate Systems 

The real traffic parameters are obtained by converting the 
image coordinates into real coordinates to calculate the traffic 
parameters. Establishing a transformation matrix between 
image coordinates and world coordinates is the basis for traffic 
parameter extraction. Therefore, one frame of image in each 

video is selected as the reference frame 0N of the video; 

several marker points are marked on the reference frame, their 
image coordinates are recorded, and the world coordinates of 
the same marker points are obtained. The same two sequences 
in the two coordinate systems have a corresponding 
relationship. The conversion between the two sets of 
coordinate systems can be achieved through the perspective 
projection matrix T of the reference frame image coordinate 
system and the world coordinate system. The coordinate 
relationship is as follows: 
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Fig. 1. UAV aerial images assist in establishing car-following models system. 
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where,  1u v  is the world coordinate, and  0 0 1x y  is the 

image coordinate of the reference frame. Since the image 
coordinates are two-dimensional coordinates, the coordinate 
system conversion problem is transformed into a single plane, 
so the elevation direction parameter in the three-dimensional 
coordinates is 1. Substituting the world coordinates and the 
image coordinates of the reference frame into the Eq. (1), the 
perspective projection matrix T  can be obtained. 

B. Image Matching 

In actual scenes, the camera may be subject to external 
interference (such as breeze) and undergo slight displacements 
and changes in pitch angle. Especially for drones, it is 
impossible to be completely still during the process of 
collecting data, and the image coordinates of the same fixed 
point in different frames will change. Therefore, after 
completing the conversion of image coordinates and world 
coordinates, it is necessary to obtain the rotation displacement 
matrix w  in the following formula to calibrate the 

correspondence between the n th frame and the reference 

frame w . 
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where,  ,n nx y is the image coordinate of the nth frame; 

 0 0,x y is the image coordinate of the reference frame 0N , 

C. Improved Target Detection Algorithm 

In the target detection stage, the improved yolov7-tiny 
target detection model is first used to identify the input image 
of each frame of the video, and the detecting bounding box is 
obtained by screening. Then, the detecting bounding box is 
extracted through the convolutional neural network model to 
obtain depth features and manual HOG features. These two 
features are called the appearance features of the detecting 
bounding box. Finally, the appearance characteristics of the 
detecting bounding box and the position information 

characterizing its motion characteristics are input into the 
tracking and matching stage. This article considers using a 
more lightweight feature aggregation scheme, which requires 
fewer parameters and less calculations while ensuring rich 
features. Therefore, an improved yolov7-tiny target detection 
model is proposed. First, we use the idea of ShuffleNet, a 
lightweight network for image classification, to improve 
Backbone to reduce dense connections and increase network 
depth. Reducing dense connections can reduce the overall 
calculation amount, while appropriately increasing the network 
depth can obtain richer features. Secondly, in the Neck part of 
the model, the lightweight module GSConv is used for feature 
aggregation and ELAN is improved to further reduce the 
amount of model parameters, calculation amount and size 
while ensuring that rich features are not lost. In this way, the 
improved YOLOv7-tiny network is shown in Fig. 2. 

1) Improved shuffleNet network: In the two basic modules 

of the ShuffleNet [17] network, after the input features enter 

the right branch, Grouped Convolution (GConv) is first 

performed, then channel shuffle is performed, and then 

Depthwise Convolution (DW Conv) with a convolution kernel 

size of 3 is performed. Finally, perform a Grouped 

Convolution. The entire process can significantly reduce the 

parameters of the network, but the resulting feature map will 

lose semantic information and also cause some loss in 

accuracy. 

Based on the above analysis, the right branches of the two 
basic modules in Fig. 3(a) are improved. First, depthwise 
separable convolutions are replaced by group convolution 
modules. Through grouping, on the premise of increasing the 
amount of parameters, a certain amount of information can be 
exchanged between each channel of the feature map; secondly, 
the channel shuffling operation is changed to a standard 
convolution with a convolution kernel size of 1, and places it at 
the end of the branch. Standard convolution operations can 
play the same role, while also further enriching the semantic 
information of the feature map without adding parameters. 
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Fig. 2. Improved yolov7-tiny. 
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Fig. 3. Improved shufflenet. 

2) GSConv module: The GSConv[18] structure is shown 

in Fig. 4. The input and output channel numbers are C1 and 

C2 respectively. First, the number of channels is reduced to 

C2/2 due to a standard convolution, and then it goes through a 

depth-separable convolution, and the number of channels 

remains unchanged. The channel information is evenly 

disrupted by shuffling, and the extracted semantic information 

is enhanced. Then the expressive ability of image features is 

improved and enhanced with the fusion of feature information. 

When the network performs feature fusion at the Neck 
layer, semantic information will also be continuously 
transmitted downward. When the height, width and number of 
channels of the feature map are continuously compressed and 
expanded, the loss of part of the semantic information will 
affect the final prediction. This article introduces the GSConv 
module into the Neck layer of the network, using the GSConv 
module instead of standard convolution for upsampling and 
downsampling, reducing the amount of parameters and 
calculations of the model, and ensuring the sampling effect to 
the greatest extent. In addition, GSConv is also introduced into 
the ELAN module for improvement as shown in Fig. 4. The 
two convolutions before the Concat layer use the GSConv 
module to reduce the number of parameters of the model while 
ensuring detection accuracy and "slimming down" the ELAN 
module. 

Conv

DWConv Concat Shuffle

 
Fig. 4. GSConv module. 

D. Improved Target Tracking Algorithm 

The tracking matching stage obtains motion features and 
appearance features based on the target detection stage, and 
measures the similarity with the predicted motion features and 
appearance features of the existing tracked target. Then the 
correlation matrix is fused and cascade matching is performed. 

The detecting bounding box and tracking target that failed 
to complete the matching are matched again by IOU. Through 
two matching processes, the pairing of the current frame 
detecting bounding box and the existing tracking target is 
completed. Finally, the status flag of the tracking target in the 
tracker is updated, and the update and prediction of the Kalman 
filter are completed. 

1) Motion feature measurement based on IOU: In order to 

better measure the motion characteristics in multi-target 

tracking, this paper proposes to use the IOU measurement of 

the detecting bounding box and the tracking target prediction 

frame to replace the Mahalanobis distance measurement 

method in the DeepSORT algorithm. 

In DeepSort, the degree of matching between the detecting 
bounding box and the motion characteristics of the previously 
tracked target's predicted position is characterized by the 
Mahalanobis distance between the two. The Mahalanobis 

distance ( , )d i j  between the tracking target i  and the 

detection target j is expressed as, 

    
T

1( , ) j i i j id i j x y S x y    (3) 

where, 
jx  and iy  respectively are the observed quantities 

for detecting target j and the predicted quantities for tracking 

the motion of target i , and iS  represents the state covariance 

matrix of the Kalman filter. The larger the Mahalanobis 
distance, the greater the difference in motion characteristics 
between the two. False correlations can be excluded by setting 
a threshold for the Mahalanobis distance. 

However, this Mahalanobis distance measure only uses the 
distance relationship between the detecting bounding box and 
the tracking target, and cannot accurately describe the motion 
information of the two. When two targets with similar 
appearance characteristics are close to each other, it is easy to 
cause ID switching problems. At the same time, when the 
tracking target is After occlusion for a period, the Mahalanobis 
distance is affected by the increased uncertainty of Kalman 
filter prediction, making it difficult to reliably measure the 
motion state. The motion feature measurement based on IOU 
can more accurately describe the positional relationship 
between the detecting bounding box and the tracking target. 
The formula is: 
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The value range of ( , )IOU i j  is [0,1], and the IOU 

distance between the tracking target i  and the detection target 

j is 

 IOU ( , ) 1 ( , )d i j IOU i j   (5) 

Through the IOU measurement method, the difference in 
motion features between the detecting bounding box and the 
tracking target can be more accurately measured, and the 
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motion feature value threshold matrix expression can be 
obtained: 

  IOU IOU IOU( , ) ( , )b i j I d i j t „  (6) 

In the formula, I is the indicator function, which takes 1 
when the conditions are met, and 0 otherwise. After 

experiments, IOUt  is set to 0.9, which can eliminate most of the 

erroneous correlations between the detecting bounding box and 
the tracking target prediction frame, improve tracking accuracy, 
and reduce the number of ID switching times. 

2) Appearance feature measurement based on HOG 

feature: In order to more accurately associate the matching 

detecting bounding box and the tracking target in the tracking 

and matching stage, this paper proposes to fuse the HOG 

feature distance in the cascade matching view feature 

measurement. The HOG feature is characterized by statistics 

and calculation of the gradient direction histogram of the local 

area of the image. It is often used to characterize the edge 

information of objects and is widely used in image recognition. 

It can maintain good invariance to geometric deformation and 

illumination changes of the detection frame. Moreover, 

extracting the HOG features of the calculated image requires a 

small amount of calculation, fast operation, and has little 

impact on speed performance. By introducing HOG feature 

distance fusion, it can better reflect the shallow image features 

of the target and improve the accuracy and robustness of 

appearance similarity measurement. 

In the target detection stage, the size of the obtained 
detection frame is adjusted to 256x128, the pre-trained ResNet-

18 network is input, and the 512-dimensional depth feature 
jD

is output. Then the HOG features of the detection frame are 

extracted and the 8505-dimensional HOG feature
jH  is output. 

The HOG feature distance uses the minimum cosine 
distance as the measurement criterion, and are only calculated 
for the features in the N  frames closest to the tracking target i . 

They can be expressed by the following formulas respectively. 

    T

HOG HOG HOG 1
( , ) min 1 ,

N
i i i i i

j k k k k
d i j H H H R R H


   ∣ (7) 

  HOG 1

N
i i

k k
R H


  (8) 

Similarly, the appearance feature distance measurement 

also has a threshold Ft to avoid false matching. Its expression 

is: 

  ( , ) ( , )F F Fb i j I d i j t „  (9) 

where, Ft  is usually set to 0.2. Combining the two 

thresholds of Eq. (5) and Eq. (7), the threshold function ( , )b i j  

is obtained, and its formula is as follows: 

 IOU( , ) ( , ) ( , )Fb i j b i j b i j  (10) 

In the formula, represents the Hadamard product of the 

matrix. The fusion coupling matrix 
,i jC can be obtained from 

the fusion appearance distance, and the expression is: 

 
, ( , ) ( , )i j FC d i j b i j  (11) 

The fusion correlation matrix is matched using the 
Hungarian matching rule to obtain the correct correspondence 
between the tracking target and the detecting bounding box. 

E. Gray Correlation Calculation 

We use gray correlation to analyze the correlation between 
the driver's visual factors and acceleration decisions during car- 
following. Gray relational analysis is well suited for studies of 
small sample size data sets and fleeting microscopic driving 
behaviors. The calculation steps are as follows. 

1) Determine the analysis sequence: We select the 

acceleration of the following vehicle as the reference 

sequence, { ( ) | 1,2 , }A A j j n  ; The newly introduced 

visual angle related parameters are selected as the comparison 

sequence,  ( ) | 1,2, ,i i j j n   . 

2) Dimensionless variables 
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3) Calculate gray correlation coefficient 

The gray correlation coefficient between 
( )ia j
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Let Δ ( ) ( ) ( )i ij y j x j  , the following can be obtained. 
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where, (0, )  is the resolution coefficient. Generally, 

the value range of   is  0,1 . Here we set 0.5  . 

4) Calculate gray correlation 

 
1

( ) , 1,2, ,
n

i i
j

r j n j n


    (15) 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

This experiment collected and annotated a video data set 
containing 12 groups of traffic scenes named UVACAR-MOT. 
The video data is 30 frames/s, and one frame is extracted every 
three frames to form a new video sequence. We selected eight 
groups as training sets and four groups as validation sets. The 
experimental setup employs the AutoDL cloud computing 
platform with a Linux system, 32GB of memory, and  PyTorch 
1.7 for deep learning. The graphics card is NVDIA Quadro 
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V100 with 32G of video memory. In the target tracking 
experiment parameter settings, the initial frame is three frames; 
the maximum threshold distance for IOU matching is 0.7; and 
the maximum retained frame for lost tracking is 30. The 
number of frames for calculating appearance characteristics is 
N=100. In the target detection experiment parameter settings, 
the detecting bounding box confidence threshold of yolov7-
tiny is 0.3, and the IOU threshold of NMS non-maximum 
filtering in yolov7-tiny is 0.5. 

A. Target Detection 

Table I shows that compared with the SSD algorithm and 
the yolov7-tiny algorithm, the improved yolov7-tiny algorithm 
has an increase in average accuracy and a decrease in 
parameter scale. The new algorithm has the characteristics of 
better detection accuracy, low parameters and low 
computational load. Compared with the mainstream yolo5s, it 
is more suitable for deployment on drones. Although the 
accuracy of the new algorithm is slightly lower than that of 
yolox-s, the parameters and model size are lower. 

TABLE I.  OTHER IMAGE DETECTION ALGORITHMS ON UVACAR-MOT 

 mAP_0.5% mAP_0.95/% Params/10
6 

Flops/10
9 

Size/MB 

SSD 49.1 29.2 40.3 371.2 267.6 

YoloV7-tiny 54.1 36.2 5.8 14.3 11.9 

Yolo5s 55.3 35.8 6.6 15.2 13.5 

Yolox-s 58.3 39.9 8.9 25.7 67.5 

ours 58.1 39.5 4.7 13.2 10.9 

Fig. 5 and Fig. 6 respectively show the improvement effect 
of the improved yolov7-tiny on missed detections and false 
detections. Fig. 5(a) shows the missed detection of car no. 5 
under occlusion for the yolov7-tiny algorithm. Fig. 5(b) shows 
that car no.5 is still detected under the improved yolov7-tiny 
algorithm. This shows that GSConv in the new algorithm 
enhances feature richness and makes detection more accurate. 
Fig. 6(a) shows that yolov7-tiny false detection curbstones as 
vehicles. The detection accuracy of the improved yolov7-tiny 
in the same detecting bounding box is shown in Fig. 6(b). This 
shows that the improved shuffleNet in the new algorithm 
effectively enhances the feature extraction capability and 
improves the accuracy of vehicle detection. 

    
               (a) yolov7-tiny                                  (b) Improved yolov7-tiny 

Fig. 5. Improved target detection algorithm improves missed detections. 

     
               (a)yolov7-tiny                                  (b) Improved yolov7-tiny 

Fig. 6. Improved target detection algorithm improves false detections. 

B. Target Tracking 

Table II shows that most of the indicators of improved 
yolov7-tiny+deepsort in the UAVCAR-MOT data set are better 
than the deepsort tracking algorithm. The improvement of 
specific MOTA and MOTP indicators shows that the tracking 
accuracy has been greatly improved. IDsw is reduced to two 
times, which proves that the number of ID switching times for 
tracking the same target is very small and the tracking retention 
ability is strong. 

TABLE II.  OTHER IMAGE TRACKING ALGORITHMS ON UVACAR-MOT 

 MOTA/% MOTP/% IDsw
 

MT/% FPS 

EAMTT 51.88 73.81 45 71 16.77 

POI 64.34 70.56 43 72 17.25 

Sort 58.45 74.79 39 70 29.92 

Deepsort 61.41 74.73 34 72 18.53 

Ours 62.02 76.51 2 74 28.83 

   
         (a) yolov7-tiny+deepsort                           (b) yolov7-tiny+deepsort 

    
(c) Improved yolov7-tiny+deepsort           (d) Improved yolov7-tiny+deepsort 

Fig. 7. Improved target tracking algorithm to improve ID hopping. 

  
       (a) yolov7-tiny+deepsort                       (b) yolov7-tiny+deepsort 

    
(c) Improved yolov7-tiny+deepsort          (d) Improved yolov7-tiny+deepsort 

Fig. 8. Improved target tracking algorithm improves false detection of 

shadow. 

Fig. 7 shows the different tracking effects of the improved 
front and rear tracking algorithms when blocked by trees. In 
Fig 7(a), the ID of the same vehicle in the two bounding box s 
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is switched from 3 to 2 when using the improved yolov7-
tiny+deepsort algorithm. However, no such switching occurs 
after using the yolov7-tiny+deepsort algorithm in Fig. 7(b). 
This reflects that the improved yolov7-tiny+deepsort algorithm 
has better tracking capabilities. Fig. 8 shows the impact when 
light and shadow changes occur. Fig. 8(a) shows the red arrow 
vehicle being given two tracking IDs and boxes of different 
sizes. However, such an error did not occur in Fig. 8(b). This 
shows that the fusion of appearance feature measurement with 
HOG feature distance can improve the accuracy of appearance 
feature measurement and tracking accuracy. 

C. Target Tracking 

In the traffic phenomenon investigation experiment, we 
chose Jinye Road, Xi'an City, China, and its satellite map is 
shown in Fig. 9. The aerial photography scene is shown in Fig. 
10.We chose clear and windless weather at 3 pm. Furthermore, 
there are more types and numbers of vehicles on this road, but 
there is no congestion. The image collection equipment uses a 
zoom drone, and the video quality is 1080p, 30fps.In order to 
avoid errors caused by image distortion in the later stage as 
much as possible, we hovered the drone at 90° directly above 
the road to shoot and kept the height at 145m. Table III shows 
one of our multiple sets of aerial traffic data. We selected the 
vehicle with ID 20 as the following car (width=1.6m) and 
extracted relevant image and driving data. 

The correlation between the driver's visual factors and 
vehicle acceleration in Table IV calculated from Table III are 
all above 0.65. This shows that they are strongly related. In 
addition, we found that when the driver makes the acceleration 
and deceleration decision, the consideration of the possibility 
of collision is more important than the headway and velocity. 

 

 
Fig. 9. Google maps for car-following. 

 
Fig. 10. Target tracking for car-following. 

TABLE III.  AERIAL TRAFFIC DATASET 

Pixel coordinates ( )na t  ( )nv t  ( )n t  ( )n t  m
t ( )  m

t ( )  m m m mt t t t   ( ) ( ) ( ) ( )  
m m

t t ( ) ( )  

(723,351) 0.0500 12.1040 -0.0019 -0.0010 0.1294 0.0045 0.0348 -0.5498 

(724,351) 0.1750 12.2500 -0.0021 -0.0012 0.1303 0.0062 0.0479 -0.5852 

(726,352) -0.0125 12.3850 -0.0024 -0.0015 0.1316 0.0084 0.0635 -0.6620 

(728,353) 0.1000 12.5082 -0.0027 -0.0021 0.1332 0.0086 0.0644 -0.8065 

(730,353) -0.0875 12.4025 -0.0031 -0.0028 0.1350 0.0115 0.0854 -0.9518 

(732,354) -0.0250 12.1850 -0.0036 -0.0042 0.1373 0.0089 0.0652 -1.1941 

(735,356) -0.1000 11.7400 -0.0045 -0.0068 0.1391 0.0085 0.0614 -1.5910 

(737,357) -0.2000 11.3600 -0.0058 -0.0088 0.1408 0.0065 0.0459 -1.5991 

(739,356) -0.1750 10.9200 -0.0076 -0.0144 0.1421 0.0048 0.0335 -2.0249 

(743,357) -0.1875 10.6650 -0.0105 -0.1000 0.1430 0.0012 0.0081 -10.2236 

TABLE IV.  GRAY RELATIONAL DEGREE 

factor ( )nV t  ( )n t  ( )n t  m
t ( )  m

t ( )  m m

m m

t t

t t

 

 


( ) ( )

( ) ( )
 m

m

t

t





( )

( )
 

Correlation 0.807 0.820 0.802 0.711 0.790 0.794 0.873 
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IV. APPLICATIONS OF MODELING 

A. Baseline Model 

Based on the optimized speed following model, Jiang [19] 
proposed a classic full speed difference model with over a 
thousand references. 

  ( ) ( ) ( ) ( )n n n na t V x t v t v t         (16) 

where, and  are the sensitivity coefficient. ( )nx t and 

( )nv t  are respectively the relative distance and velocity 

between the front and rear vehicles. 

However, from the perspective of driver psychology, the 
most important perceptual information in car following 
behavior may be visual information. so Jin [20] replaces the 
traditional headway with the visual angle in following behavior. 

  ( ) ( ) ( ) d ( ) dn n n na t V t v t t t         (17) 

  Δ
n n

t w x t l  ( ) ( )  (18) 

where, ( )n t  is the visual angle of drivers. w and l are the 

width and length of leading vehicles. d ( ) dn t t  represents 

change rate of visual angles. ( )nV  is the optimized velocity.  

B. New Model Derivation 

The TTC is the time until vehicles crash assuming the 
collision path and velocity differential are maintained [21]. The 
driver of the following car will take control measures such as 
acceleration or deceleration according to the change in TTC 
with the leading vehicle [22]. The commonly used traffic 
accident alternative evaluation index TTC is used as our 
reference. We combine the correlation between the driver's 
visual psychology and driving operations in Table 4 to try to 
establish a more realistic and accurate car-following model to 
quantify the risk perception of collision accidents. Therefore, 
driver sensitivity to lateral collision is incorporated into the 
visual angle model to improve the stability and safety of traffic 
flow. The TTC expression for a single lane can be written as 

 1

1

) ( )
TTC ( )

( )

(

( )

m m

m m

m

m

m

x t x t
t

v t v t









 


 (19) 

where, 1( )mx t , ( )mx t  and 1( )mv t , 1( )mv t  are the position 

and velocity of vehicles. However, the car-following 
considering lateral influence has the following geometric 
relationship as shown in Fig. 11. 

 

Fig. 11. Car-following behavior with visual angle. 

 
 

L ( )
S ( ) sin

sin

m

m m

m

t
t t

t



                       (20) 

 
      

 

L ( )sin L ( )cos
S ( )

sin

m m m m m

m

m

t t t t t
t

t

  




  (21) 

where, L ( )m t  is the distance between the midpoint of tail 

of preceding vehicles and the midpoint of head of the 

following vehicles, S ( )m t is the distance between the head of 

preceding vehicles and the conflict point. The angle  m t  

defined by L ( )m t  and the distance to the collision point. We 

assume that the leading car maintains constant velocity and 

 m t  for the current brief time. we roughly think that

   tan m mt t  . Substituting Eq. (20) into Eq.(21) and 

eliminating the  sin m t . 

 
)

S ( ) ( )

S ( ) ( )

( )

(

mm m

m m m

t L t

t

t

L tt




   (22) 

Then the potential collision with side vehicle can be 
expressed. 

 
1

TTC

m m

m m

t t

t t

 

 
 

( ) ( )

( ) ( )
 (23) 

Therefore, we extend the TTC indicator in car-following 
behavior to car-following behavior, and can obtain a new 
visual angle model considering collision visual sensitivity: 

    

  1

= 1
m m m m m m

m m m

m m m m

m m m

a t V t t v

t t t
t

t t

t

t

t 

  
  

   

 
  



  
     

  

  

 



( ) ( ), ( )

(

(

( )

) ( ) ( )
( )

( ) ( ) )

( )

  (24) 

The comprehensive optimization velocity is as follows: 

 
     

  

1 2 1

2

( ), ( ) 2 t

t

an (

2

) 2

( )

tanh 1

an 2

m m m m

m m

V t t V V C w t

t Cw

  

 

  

 

    (24) 

These parameters 1 2 1, ,V V C
, 2C

were verified by Zhang [14]. 

C. Stability Analysis 

We assume that same size vehicles traveling on a ring road 
with a uniform flow as the initial state. Each vehicle maintains 

the same headway h with adjacent vehicles at a uniform 

velocity ( )V h .So, the initial moment can be considered as, 

 
0

0 0( ) ( , )mx t hn V t    (25) 

where
 0 2arctan 2w h l     ,

 0 2arctan 4 2w h l     . 

When the perturbation ( )my t  appear, we can obtain  
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 0( ) ( ) ( )m m mx t x t y t   (26) 

Visual angles formed by the driver when he observes 
himself and the side vehicle, and angles formed by side vehicle 
and the collision position are respectively expressed as, 

  , 1( ) 2arctan 2 ( )m m mt w x t l 
      (27) 

  , 2( ) 2arctan 2 ( )m m mt w x t l 
      (28) 

  , 1( ) arctan tan ( ) tanm m mt d x t l  
       (29) 

To facilitate calculation of the visual angle expression is 
linearized using Taylor expansion Substituting Eq. (27) into Eq. 

(27), Eq. (28) and Eq. (29) higher-order terms of ( )my t  can 

be rounded off. Drivers' visual angles are expressed as follows 

 
     

, 12 2
( ) 2arctan ( )

2 2
m m m

w w
t y t

h l h l w
   

  
 (30) 

 

   
, 12 22

tan
( ) arctan tan

tan
( )

tan

m

m m

d
t

h l

d
y t

h l d h l


 






 
  

 

 
   

 (31) 

 
     

, 22 2
( ) 2arctan ( )

2 2
m m m

w w
t y t

h l h l w
   

  
 (32) 

Substituting  (31)~ (33) into (24), the following is obtained 

 

   

   

0 0 , 1 , 2

, 1 , 2

( ) , 1 ( ) ( )

( ) 1 ( ) ( )

m m m m

m m m m

m m m

m m

y t AV y t y t

y t A y t y t

  



 

 

 

 

    

     
(33) 

  , 1 , 1

, 1 , 1

( ) ( )
1

( ) ( )

m m m m

m m m m

m

y t y t

B y t C y t
 

 

 

   
           

, 2

, 2

( )

( )

m m

m

m

m

y t

B y t







   

 

where, 

 

   

   

   

2 2

2 2

2 22
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2
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tan tan
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w

h l w

h l w w

A

w h l

h l d h l d

d
C

h

B

l

 




 

 



     
 




 








 



(34) 

where,  
0 0

0 0 ,
, ( , ) ( )V dV d

   
    

 
 ,We expand  

( )my t exp( )B ikm zt   by Fourier series and substitute it 

into Eq. (34). 
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

 (35) 

Expanding z  according to
2

1 2( ) ( )z z ik z ik   ,we can 

obtain as follows: 
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
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

 (36) 

According to the hypothesis of long-wave expansion, if 2z  

is positive, traffic flow is still steady under small disturbances. 
Therefore, the stability curve is obtained. 

         
2 2

2 1 2 1 4 1

1 3

m m m

m

A V B C

BC

     




     
 


(39) 

 

Fig. 12. Stability curves at different . 

The stability curves of the car-following considering visual 
sensitivity to collision at different   are depicted in Fig. 12. 
The upper and lower sides of the stability curve respectively 
are stable and unstable regions. Stability curves of different 
collision sensitivity coefficients are depicted in Fig. 12. We 

set 1, 0.1, 3.6, 1.6b w     .When the parameters are

0, 0, 0b    , our model degenerates into the VAM and 
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the following vehicle only optimizes its own velocity 
according to leading vehicles on the current lane. The area 
formed by the x-axis and the stability curves of the new model 
shrinks as   increases, and is smaller than the area of FVDM 
and VAM in the Fig. 12. The order of areas formed by curves 
and x-axis in Fig. 12 is FVDM> VAM> SCVAM, and they 
gradually increase as  decreases. The findings indicate that 
the platoon is more stable if the visual collision factor is 
introduced into the car-following model. In addition, the 
stability gradually improves with the increase of visual 
collision sensitivity, and the dynamic performance is better 
than the full velocity difference (FVDM) and visual angle 
models (VAM). 

D. Simulation 

Within this part of the research, we performed a series of 
simulations on the evolution of small perturbations for the new 
visual model Eq. (24) to analyze its dynamic performance. To 
validate the theoretical results obtained above, numerical 
simulations of Eq. (15) with periodic boundary conditions is 
given. The time step is 0.1s . The initial setting was adopted. 

 

Δ (0) Δ (1) 5.0, ( 30,31)

Δ (0) Δ (1) 5.0 0.1, ( 30)

Δ (0) Δ (1) 5.0 0.1, ( 31)

i i

i i

i i

x x i

x x i

x x i






  

   

   

 (37) 

where 100 vehicles are traveling on a 1500m ring road. 

 
                      (a)                                                             (b) 

 
(c)                                                                (d) 

Fig. 13. Space-time graphs of headway at different  . 

 
                         (a)                                                       (b) 

Fig. 14. (a) Hysteresis loops with different   (b) Velocity images of all 

vehicles with different  . 

Fig. 13(a) to Fig. 13(d) reflect the temporal and spatial 
evolution of the car-following model considering the visual 
sensitivity of collision with different  from 2000s to 2300s. 

The parameters are 0.41, 3.6, 20, 2b w     . The vehicle 

platoon is unstable at 0,10,20,30   by stability condition 

Eq.(39). Small disturbances in the system will gradually 
amplify over time and cause vehicle platoon congestion, which 
can be clearly seen in Fig. 11(a) to Fig. 11(c). Especially when 

the lateral distance b and collision sensitivity  are not 

considered, the newly proposed visual angle car-following 

model Eq. (24) degenerates to VAM ( 0, 0)b   , the greatest 

fluctuation is in headway as shown in Fig. 11(a). When 30  , 

the stability condition is satisfied, and the local disturbance of 
the distance between the vehicles in the platoon will gradually 

return to stable state in Fig. 11(d). Similar， the areas of 

hysteresis loops decrease gradually when the visual sensitivity 
of collision  increase in Fig. 14(a). As the visual sensitivity 
of collision   increases, the velocity fluctuation decreases are 
depicted in Fig. 14(b). 

Fig. 13 and Fig. 14 show that the stability of the vehicle 
platoon is well maintained when taking into account the 
collision visual sensitivity to the lateral and longitudinal 
leading vehicles. As the sensitivity  increases, the stability 
gradually increases. 

E. Safety Assessment 

The traffic conflict theory can observe a large amount of 
non-accident data before the accident, and estimate the 
dangerous action highly related to the accident by analyzing 
the vehicle. Numerous indicators have been developed for 
alternative safety measures to evaluate collisions risk. TTC is 
the most used indicator among them. However, traditional 
traffic conflict alternative indicators have two shortcomings: 1) 
They do not start from the driver's real visual perspective. The 
vehicle is regarded as a point, and the impact of its size on 
collision is not considered. 2) The potential risk of collision 
with the two vehicles in front is not considered when following 
a car. Therefore, we propose a new car-following collision risk 
indicator STTC, which is expressed as follows. 

  STTC= 1 m m m

m m

m m m

t t t

t t t

  
 

  

 
   

 

( ) ( ) ( )

( ) ( ) ( )
 (38) 

We also use the small perturbation evolution scenario in 
previous section to study potential collision risks. When the 
30th vehicle in the uniform traffic flow suddenly suffered a 
small disturbance, we selected it and five vehicles at the front 
and rear, a total of eleven vehicles, for potential collision risk 
assessment. Since the simulation step in car-following behavior 
is small and the velocity difference between nearby vehicles is 
small, we use a larger range of STTC to evaluate the risk. 
Similar to the common threshold standard of the TTC index, 

we define STTC<30sFrequency  as the traffic environment with 

potential collisions. With reference to the common 

international standards of TTC, STTC<3sFrequency and 

STTC<5sFrequency  are defined as the frequency of serious 

traffic conflicts and relatively serious traffic conflicts. 
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The safety of the entire platoon is evaluated by the 
dispersion of velocity and headway. The standard deviation of 
velocity and headway can be calculated by following formulas. 

       SD 1 SD 1, ,

1 1 1 1

v v M T h h M T

T M T M

v t m h t m

t m t m

       

   

 ，  (39) 

where v and h are the average velocity and headway. 

  

           (a) 0 0b  ，                                              (b) 10   

 

(c) 20                                               (d) 30   

Fig. 15. Statistical distributions for STTC with different   

TABLE V.  TOTAL OCCURRENCES OF STTC FOR DIFFERENT   

  0( 0)   10 20 30 

STTC<3sFrequency  720 441 0 0 

STTC<5sFrequency  952 875 0 0 

STTC<30sFrequency
 

2189 1646 442 0 

TABLE VI.  SD OF HEADWAY AND VELOCITY WITH DIFFERENT   

  0 ( 0)   10 20 30 

Velocity 4.61 3.03 0.49 0.05 

Headway 6.15 3.59 0.52 0.07 

Fig. 15 shows that when the collision sensitivity is not 

considered ( 0, 0)b   , the frequency of VT 3s  is the 

highest, and the risk of serious collision conflict is the highest. 
In addition, the frequency of dangerous driving within 5s 
threshold and the potential collision conflict within 30s 
threshold are also the highest. However, as the driver's 
sensitivity   to the collision of two vehicles intersecting in 
front increases, the frequency of the three safety evaluation 
indicators within the threshold gradually decreases until it 
completely enters a safe driving state. 

The STTC values of different collision sensitivities at 
different risk thresholds are counted in Table V. The standard 
deviation of the headway and velocity at different collision 
sensitivities   are descriptive statistics in Table VI. This 
shows that increasing the sensitivity to the collision of 

horizontal and longitudinal leading vehicles can reduce 
dispersion of headway and velocity, thereby improving driving 
safety. 

Through the above simulation experiments and statistical 
analysis, we found that after analyzing the traffic behavior data 
collected by flexible and convenient drone images, the newly 
established car-following model can describe the collision risk 
of driving behavior. And by enhancing the sensitivity of the 
newly introduced visual collision factor in the model as in 
Eq.(24), the driver's safety in car following behavior will be 
improved. This puts forward new ideas for safety modeling and 
evaluation of driving behavior. 

V. CONCLUSION 

To sum up, the method in this article for extracting traffic 
parameters from UAV video and applying it to assist in 
establishing a car-following model can improve the accuracy 
and lightweight of multi-target detection and tracking. The 
improved ShuffleNet network and GSConv module introduce 
the Yolov7-tiny target detection stage to reduce the number of 
parameters and calculations of the model and ensure accuracy. 
HOG features and IOU motion metrics are introduced into the 
DeepSort multi-target tracking algorithm to improve the target 
appearance representation capabilities and the accuracy of 
tracking targets. The traffic parameters extracted by the new 
method can be used to analyze driving psychology and car-
following behavior, and the analysis results can be used to 
model car-following behavior with the aim of enhancing both 
the safety and stability of traffic flow. This will in turn ease 
traffic congestion and reduce driver collision risks. In the 
future, we will further improve vehicle tracking in more 
complex traffic scenarios, and verify the accuracy of traffic 
parameter extraction through on-board comparison. 
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