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Abstract—Within the domain of software development, the 

practice of software defect prediction (SDP) holds a central and 

critical position, significantly contributing to the efficiency and 

ultimate success of projects. It embodies a proactive approach 

that harnesses data-driven techniques and analytics to 

preemptively identify potential defects or vulnerabilities within 

software systems, thereby enhancing overall quality and 

reliability while significantly impacting project timelines and 

resource allocation. The efficiency of software development 

projects hinges on their ability to adhere to deadlines, budget 

constraints, and deliver high-quality products. SDP contributes 

to these objectives through various means. This paper introduces 

a novel SDP model that harnesses the combined capabilities of 

Convolutional Neural Networks (CNNs) and Long Short Term 

Memory (LSTMs) unit. CNNs excel at extracting features from 

structured data, enabling them to discern patterns and 

dependencies within code repositories and change histories. 

LSTMs, conversely, excel in handling sequential data, which is 

pivotal for capturing the temporal aspects of software 

development and tracking the evolution of defects over time. The 

outcomes of the proposed CNN-LSTM hybrid model showcase its 

superior predictive performance. Simulation results affirm the 

substantial potential of this model to bolster the efficiency and 

reliability of software development processes. As technology 

advances and data-driven methodologies become increasingly 

prevalent in the software industry, the integration of such hybrid 

models presents a promising avenue for continually elevating 

software quality and ensuring the triumph of software projects. 

In summary, the utilization of this innovative SDP model offers a 

transformative approach to efficient software development, 

positioning it as a vital tool for project success and quality 

assurance. 

Keywords—Data driven software development; proactive defect 
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I. INTRODUCTION 

In the modern world, software plays an essential role in 
every aspect of our daily existence. It includes defense, 
automobile, healthcare, insurance, finance, banking, 
telecommunication, government administration sectors. In 
other words, the normal functionality of these sectors gets 
affected with the software failure. Technical and managerial 
issues are the two different issues normally emerge during the 
software development process. Thirty percent of project 
failures occur mainly due to technical issues and 70% are 

management issues [1]. Some of the problems related to 
managerial issues are insufficient risk management, customer 
buy-in, limited project resources and inaccurate project 
structure etc. However, low product delay, high expense, and 
schedule delay are the issues encountered during software 
program development. Prior to the analysis of software project 
risk, an efficient risk mitigation scheme should be developed 
by the program developer. Based on the accurate management 
of risk, the success of the project can be determined [2]. 

SDP is a crucial aspect of modern software development, 
aimed at improving the effectiveness and efficiency of 
software projects. In an era where software plays an 
increasingly pivotal role in our daily lives, organizations strive 
to deliver high-quality software products while minimizing the 
time and resources invested in debugging and maintenance. In 
this context, SDP emerges as an indispensable tool for the 
modern software development landscape, fostering both agility 
and the delivery of robust software products. Any fault, error, 
mistake, in a computer program, or a defect or bug in the 
software can cause unexpected or inaccurate results which are 
otherwise called a software defect. In order to enhance 
software quality, high-risk components must be detected as 
soon as possible [3]. 

Software defects can lead to an increase in both the cost 
and time required for delivering the expected end product. Also 
identification and rectification of defects is a highly waste of 
time and a costly software process [4]. One of the persistent 
challenges within the Software Development Lifecycle 
(SDLC) has been the ability to predict and identify defects 
during the initial phases of a project. In the current situation, 
development of a fault-free software which is highly reliable is 
a difficult task, as the problems for which software is 
developed is more complex and the domains that are involved 
are constantly increasing to constraints such as uncertainty and 
development processes that are complex [5]. 

At first, a collection of project data takes place from the 
software repositories. From the data, factors are calculated. The 
locations are predicted through models, which have a better 
potential for the defects contained. Ultimately, using prediction 
models, various measures are evaluated, such as precision, 
recall, and explanative power [6]. 

SDP using Deep Learning (DL) holds immense 
significance in the realm of software project development. In 
an era where software systems underpin virtually every aspect 
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of modern life, ensuring their reliability and robustness is 
paramount. Deep learning methodology, leveraging their 
capacity to analyzes extensive datasets and detect subtle 
patterns, present a compelling approach for preemptively 
recognizing and addressing potential flaws before they escalate 
into severe problems. By harnessing the power of DL, software 
development teams can enhance their efficiency, reduce 
maintenance costs, and deliver higher-quality products to users, 
ultimately contributing to the successful and sustainable 
advancement of software projects in an increasingly 
interconnected world. The major contribution of the proposed 
work includes: 

 Software defect prediction utilizing CNN-LSTM hybrid 
model. 

 To employ CNN in feature extraction from structured 
data, particularly in code repositories and change 
histories. 

 To employ LSTM in handling sequential data, 
emphasizing their pivotal role in capturing the temporal 
aspects of software development and facilitating the 
tracking of defect evolution over time. 

The paper is systematized as follows: Section II offers are 
view of the existing literature and identifies areas where further 
research is needed. Section III outlines the methodology in 
detail. In Section IV, the comprehensive results of the 
suggested approach are discussed. Finally, in Section V and 
Section VI, the paper concludes with a discussion and 
summary respectively. 

II. BACKGROUND 

A. Literature Review 

Lei Qiao et al. [7] introduced an innovative methodology 
employing DL approaches for the anticipation of software 
system defects. This novel approach involves training a DL 
approach to predict the number of defects in software. Notably, 
when compared to widely adopted approaches such as Support 
Vector Regression, Feature-based Support Vector Regression, 
and Decision Tree Regression, the suggested method 
demonstrated a substantial enhancement in performance on 
established datasets. The improvement is notably reflected in a 
notable reduction in mean square error, ranging from 3% to 
13%, and an augmentation in the squared correlation 
coefficient. 

Pan et al. [8] introduced a range of CodeBERT models, 
specifically designed for SDP. The proposed research involved 
conducting empirical studies to assess the effectiveness of 
these approaches in cross-version and cross-project SDP 
scenarios. The findings demonstrated that leveraging pre-
trained CodeBERT models led to enhanced prediction accuracy 
and time savings. Additionally, incorporating sentence-based 
and keyword-based prediction approaches further improved the 
effectiveness of pre-trained neural language frameworks in the 
context of SDP. 

Geanderson Esteves et al. [9], delved into the realm of SDP 
models, harnessing the power of an efficiently implemented 
XGBoost variant, known as US-XGBoost. This endeavor 

generated a multitude of random models, each meticulously 
assessed for the accuracy and interpretability. The key take 
away from the findings is that SDP is inherently project-
specific. This means that the features constituting the most 
effective models can significantly differ from one project to 
another. Hence, comprehending the determinants behind model 
decisions becomes particularly vital. 

Lakshmi Prabha and N. Shivakumar [10] introduced a 
novel hybrid model that addresses the challenge of classifying 
massive datasets accurately. The proposed approach combines 
feature reduction using Principal Component Analysis (PCA) 
with an overall probability application to minimize data loss 
during PCA processing. The approach further employed a 
neural network classification method for program bug 
detection. The simulation results demonstrated the model's 
impressive efficiency, achieving an outstanding 98.70 percent 
Area under the Curve (AUC) accuracy, marking a substantial 
advancement over existing models. 

Hao Wang et al. [11] introduced GH-LSTMs, a novel DL 
framework for detecting potential code defects within software 
modules. GH-LSTMs leverage hierarchical LSTM architecture 
to simultaneously extract semantic and traditional features. A 
gated merge mechanism was employed to dynamically 
optimize the fusion of these features. Subsequently, a fully 
connected layer utilizes the combined features for within-
project defect prediction. Remarkably, GH-LSTMs outperform 
existing methods in terms of F-measure, particularly in non-
effort-aware cases. 

Bilal Khan et al. [12] presented a comprehensive analysis 
of seven widely employed Machine Learning (ML) approaches 
applied to SDP. These approaches encompass SVM, J48, RF, 
MLP, RBF, HMM, and CDT. The evaluation of these methods 
utilized various performance metrics, including MAE, RAE, 
RMSE, RRSE, recall, and accuracy. The findings from the 
experiments revealed that NB and SVM exhibited superior 
performance in terms of minimizing MAE and RAE, 
respectively. 

Shuo Feng et al. [13], delved into the robustness of 
SMOTE-based oversampling methods. This work not only 
probed the stability of these techniques but also introduced a 
set of novel and stable SMOTE-based oversampling strategies 
aimed at enhancing the reliability. These stable techniques 
minimize the inherent randomness in SMOTE by sequentially 
selecting defective instances, utilizing a distance-based 
approach for choosing neighbor instances, and ensuring an 
evenly distributed interpolation process. The proposed 
approach supported the findings with both mathematical proofs 
and empirical investigations across 26 datasets using four 
common classifiers. The simulation results demonstrated that 
the effectiveness of stable SMOTE-based oversampling 
approaches surpasses that of traditional SMOTE-based 
approaches in terms of stability and effectiveness. 

Somya Goyal [14] introduced a pioneering Neighborhood-
based Under-Sampling (N-US) algorithm to address the 
challenge of class imbalance. The study aims to showcase the 
efficacy of this N-US framework in enhancing accuracy for 
predicting defective modules. The experimental results 
revealed that the N-US approach successfully reduces the 
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dataset size by 17.29% and lowers the Imbalance Ratio (IR) by 
19.73%. Consequently, it plays a vital role in augmenting 
classifier performance. 

Cong Jin [15] introduced an innovative distance metric 
learning framework that leverages cost-sensitive learning 
(CSL) to mitigate the challenges posed by class-imbalanced 
datasets. This novel method, initially developed to address 
class imbalance, assigns distinct weights to individual training 
classes. Subsequently, this CSL-based distance metric learning 
is integrated into the large margin distribution machine (LDM) 
to take over the conventional kernel function. Empirical results 
indicated that these enhancements enable CS-ILDM to exhibit 
not only excellent predictive performance but also the lowest 
misprediction cost. 

Kun Zhu et al. [16] introduced an innovative feature 
selection algorithm called EMWS, which optimally chooses a 
compact set of closely related features tailored to each software 
project. This approach effectively harnesses the local search 
capabilities of simulated annealing to augment the relatively 
weaker exploitation performance of the Whale Optimization 
Algorithm (WOA) while simultaneously capitalizing on 
WOA's strong global search abilities to enhance SA's 
exploration capabilities. A hybrid deep neural network model 
was also proposed. Empirical results substantiate that EMWS 
and WSHCKE consistently outperform various methods in 
various experiments. 

Ruba Abu Khurma et al. [17] introduced the Island Model 
as an enhancement to the Binary Moth Flame Optimization 
(BMFO) algorithm for addressing the Feature Selection 
problem in the context of SDP. This innovative approach 
segments the moth population into multiple islands, facilitating 
feature sharing among them through migration. This technique 
serves to bolster solution diversity and govern algorithm 
convergence. The experiments involved assessing the 
performance of KNN, NB and SVM classifiers with and 
without FS, using BMFO-FS, and employing Is BMFO-FS. 
Notably, across three experiments, the SVM classifier 
consistently outperformed others, closely followed by the NB 
classifier. 

Shuo Feng et al. [18] introduced a novel oversampling 
approach known as Complexity-based Oversampling 
Technique (COSTE). Instead of relying on inter-instance 
distances, COSTE assesses instance complexity to guide the 
selection of candidates for generating synthetic instances. The 
study evaluated COSTE's effectiveness against four other 
oversampling techniques using various classifiers, including, 
KNN, MLP, SVM and RF, across 23 imbalanced datasets. 
Remarkably, the simulation findings consistently demonstrated 
that COSTE outperformed the other methods across all 
performance metrics, highlighting its superior performance. 

Shiqi Tang et al. [19] introduced TSboostDF, an innovative 
transfer-learning algorithm designed to address the complex 
problem of CPDP (Cross-Platform Domain Prediction). 
TSboostDF effectively combines the BLS sampling method, 
which considers the sample's weight, with transfer-learning 
techniques to mitigate the limitations commonly associated 
with conventional CPDP algorithms. This novel approach has 
been demonstrated to outperform other CPDP algorithms that 

rely on transfer-learning methods, highlighting its superior 
performance in resolving this challenging problem. 

Liu Yang et al. [20] introduced an innovative hybrid 
algorithm that combines the strengths of SSA and PSO. This 
research involved a comprehensive analysis of the merits and 
limitations of swarm intelligence algorithms, aiming to devise 
strategies for enhancement. Notably, the empirical findings 
demonstrated that the hybrid approach integrating SSA and 
PSO, as presented in this work, significantly enhances the 
precision of software reliability model estimation and 
forecasting. Specifically, the proposed study focused on 
estimating and predicting software defects using the well-
known G-O model. Furthermore, a fitness function was 
introduced, which is capable of effectively managing the 
parameter 'b' during initialization by leveraging the maximum 
likelihood formula. 

An algorithm was presented by Nassif et al. [21] that aims 
to accomplish two significant tasks: learning and prediction. 
This approach has a high efficiency for other issues, such as 
software defect prediction, while being widely utilized in 
information retrieval. In this paper, two common output 
metrics namely bug density bug count were used as goal 
variables to compare various models. Additionally, it looked at 
how eight models with Grid Search optimization were affected 
by the use of imbalance learning and feature selection. The 
FPA scores of the bug density results have significantly 
improved with the usage of imbalance learning; however, the 
improvement in the bug count results has not been as great. 
Last but not least, applying feature selection with LTR 
decreased the bug density metric's FPA score but had no effect 
on the bug count findings. 

B. Research Gap 

SDP models offer valuable insights and benefits, but they 
also come with several limitations. Some of the major 
limitations of existing SDP models are discussed below. These 
models heavily rely on historical data, which may be 
incomplete, inconsistent, or biased. Poor data quality can 
induce to inaccurate predictions. Software defect datasets often 
have imbalanced class distributions, with a small number of 
defective occurrences compared to non-defective ones. This 
can lead to model bias and lower predictive accuracy. Software 
systems, tools, and development practices evolve over time. 
Models trained on historical data may not effectively adapt to 
new technologies and practices. Creating relevant features 
from code repositories and other software data is a complex 
and manual process. Feature engineering can be time-
consuming and error-prone. Complex ML models can over fit 
the training data, making them less generalizable to new 
projects or software environments. These models identify 
correlations but not necessarily causation. Identifying the root 
causes of defects often requires domain expertise and 
additional analysis. Models may not be transferable to different 
software domains or projects due to the unique characteristics 
of each project. Software is continuously evolving, and defects 
can emerge or be resolved after the training data was collected, 
making predictions less accurate. Bias in training data and 
predictions can lead to discrimination or unfair treatment in 
software development processes. Training and deploying 
sophisticated ML models can necessitate remarkable 
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computational resources and expertise, which may not be 
readily available to all development teams. Addressing these 
limitations requires careful consideration and often a 
combination of techniques, including data preprocessing, 
model selection, and ongoing monitoring and validation of the 
model's performance. Despite these challenges, SDP models 
have the potential to significantly improve software 
development processes when appropriately applied and 
maintained. 

III. MATERIALS AND METHODS 

A CNN- LSTM based hybrid DL model is developed and 
analyzed for SDP for effective software project development. 
The detailed block schematic of the suggested work is 
illustrated in Fig. 1. The initial step of the work involves the 
dataset collection. It is followed by data preprocessing 
techniques. The preprocessed data is separate into training set 
and test set. The proposed hybrid model is trained and 
validated utilizing the training data and test data. Finally, the 
performance of the SDP model is analyzed. 

A. Dataset Description 

The proposed system utilizes SDP dataset collected from 
Open ML, an online platform and repository for ML datasets. 
The dataset contains 31 features of 224 instances. In this paper, 
the binary classifier is developed to predict software defects 
based on 31 inputs. 

B. Units Data Preprocesing and Exploratory Data Analysis 

Data preprocessing is a pivotal stage in data analysis, 
encompassing the tasks of cleansing, restructuring, and 
organizing raw data to make it appropriate for analysis or ML 
model training. The quality and efficacy of a learning model 
are substantially influenced by proper data preprocessing. Key 
techniques involved in this process include data cleaning, data 
transformation, handling missing values, addressing duplicate 
entries, and managing outliers. Among these techniques, the 
management of missing values stands out as a critical step. It 
involves handling data points that lack complete or relevant 
information. Various strategies can be employed for this 
purpose. One approach is to eliminate rows or columns with an 
excessive number of missing values, particularly if they do not 
significantly contribute to the analysis. An alternative method 
is imputation, which involves filling in the gaps with estimated 
or calculated values based on the data's distribution. For 
numerical data, this can involve mean, median, or mode 
imputation, ensuring that the dataset is more robust and 
suitable for analysis or modeling. 

Exploratory Data Analysis (EDA) serves as a vital initial 
step in the data analysis process, where data analysts and 
scientists employ both visual and statistical methods to delve 
into a dataset. Its primary goal is to unveil patterns, 
relationships, anomalies, and insights within the data. EDA 
entails a range of techniques, including data visualization tools 
such as histograms, scatter plots, and box plots, in combination 
with summary statistics like mean, median, standard deviation, 
and more. This multifaceted approach allows for a 
comprehensive understanding of data distribution, the detection 
of outliers, an evaluation of data quality, and the development 
of an intuitive grasp of the dataset's underlying structure. In 

practice, EDA plays a pivotal role in hypothesis formulation, 
guiding subsequent analytical processes, and informing 
decisions related to data preprocessing and modeling strategies. 
Ultimately, it aids in the discovery of valuable information and 
concealed patterns within the data. Summary statistics, which 
provide a concise summary of key dataset characteristics, 
include measures such as mean, median, mode, standard 
deviation, variance minimum and maximum values, quartiles 
including the first, second or median, and third quartiles, and 
counts or proportions for categorical variables. The summary 
statistics of SDP dataset is illustrated in Fig. 2. 

EDA relies heavily on the strategic use of graphical 
representations to delve into a dataset. Through the 
construction of diverse charts, plots, and graphs, including 
histograms, scatter plots, box plots and heatmaps, it becomes 
possible to visually examine data distributions, reveal 
underlying patterns, identify anomalies, and grasp the interplay 
between variables. The data visualization of counts of classes 
in the dataset is visualized in Fig. 3. 

 

Fig. 1. Block Schematics of Proposed SDP model. 

 
Fig. 2. Summary statics of SDP dataset. 

 

Fig. 3. Data visualization of SDP dataset. 
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Fig. 4. Heatmap visualization of dataset. 

Heatmap visualization serves as a powerful graphical tool 
for depicting data, representing information within a matrix by 
employing a range of colors. Its primary utility lies in the 
effective exploration of complex datasets, as each individual 
cell in the matrix corresponds to a specific data point, and the 
color intensity within these cells conveys the underlying data 
values, often using a color spectrum to illustrate the transition 
from lower to higher values. Fig. 4 illustrates the heatmap 
visualization of dataset. 

C. SDP Model using CNN-LSTM Hybrid Model 

The proposed defect prediction model is a hybrid system 
that leverages both CNNs and LSTM neural networks. This 
innovative approach aims to enhance the accuracy of 
identifying defects within software. CNNs are employed to 
detect spatial patterns in the code, such as relationships 
between different code segments, while LSTMs excel at 
modeling sequential dependencies over time. By amalgamating 
these two architectural components, the model becomes 
capable of understanding both localized and global patterns in 
the code base, enabling it to effectively pinpoint software 
defects. The approach involves encoding code as input 
sequences, which are then processed by CNN layers to capture 
spatial characteristics and subsequently by LSTM layers to 
capture temporal relationships. The resulting hybrid model 
offers a more precise and comprehensive defect prediction, 
which, in turn, supports the development of more dependable 
software systems. 

A CNN is a type of deep ANN that emulates the human 
visual perception process, making it particularly effective for 
analyzing visual data [22]. CNNs leverage various multi-layer 
perceptron algorithms to reduce the need for extensive 
preprocessing of input data, making them widely adopted in 
the field of DL. CNNs represent one of the most prevalent 
neural network architectures, typically comprising millions of 
interconnected neurons organized into hierarchical layers, as 
illustrated in Fig. 5. 

 
Fig. 5. Basic architecture of CNN. 

CNN consist of three fundamental layers: convolutional, 
pooling, and fully-connected layers. The hidden layers within 
the convolutional and FC layers play a pivotal role in accessing 
the network's capacity to learn. The depth of a CNN is defined 
by the number of layers it comprises, and the deeper these 
layers are, the more intricate and abstract features they can 
extract from the input data, especially in the context of high-
resolution images [23]. Within the CNN processing pipeline, 
the neurons in the input layer respond to visual stimuli, 
initiating the feature extraction process. The major aim of the 
convolutional layer is to capture these image features and 
propagate them to the subsequent hidden layers for 
computation, culminating in the extraction of results from the 
output layer. Activation functions often act as intermediaries 
between hidden layers, facilitating the transfer of valuable and 
essential information to inform the subsequent layers in the 
network. 

The Long Short-Term Memory unit a prominent 
component of DL belongs to the family of Recurrent Neural 
Networks (RNNs) [24]. This specialized RNN excels in 
understanding and capturing intricate order dependencies 
within sequence prediction tasks. It is specifically designed to 
manage long-term relationships and tackle challenging 
problems, particularly those where the input order plays a 
pivotal role. Over time, numerous variations of Deep RNNs 
have been devised to combat issues related to vanishing and 
exploding gradients. Among these, the LSTM network stands 
out as a unique solution. It achieves its exceptional capabilities 
by employing distinct activation functions for each of its gates, 
allowing it to remember essential information from the past 
while efficiently discarding irrelevant data. Furthermore, 
LSTM incorporates an internal cell state vector, which serves 
as a practical representation of the network's retained 
knowledge from prior inputs. The LSTM unit employs three 
distinct gates: Forget Gate (    Input Gate (   and the Output 
Gate (    Fig. 6 illustrates the core structural elements of an 
LSTM unit. 

 

Fig. 6. Basic architecture of LSTM. 
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In a hybrid CNN-LSTM model, the initial CNN stage 
operates on the input sequence, effectively pinpointing spatial 
patterns or local features at each point in time. The resulting 
CNN layer outputs are subsequently fed into the LSTM 
component, which is responsible for modeling the temporal 
dependencies and capturing the sequential patterns within the 
data. This combined approach enables the model to effectively 
assimilate both local and global information, making it a robust 
choice for tasks that entail complex spatial and temporal 
interactions in sequential data. The architectural representation 
of the proposed model is visually depicted in Fig. 7. 

 

Fig. 7. Proposed model architecture. 

The suggested hybrid model begins with a dense layer 
featuring 100 neurons and a Relu activation function. This is 
succeeded by two additional dense layers, one with 50 neurons 
and the other with 25 neurons, both utilizing ReLU activation. 
The final dense layer has of a single neuron with a sigmoid 
activation function. Subsequently, an LSTM layer with 64 
units is incorporated, followed by the application of a dropout 
layer with a 0.5 dropout rate to avoid over fitting. This is 
succeeded by another LSTM layer with 32 units. Finally, the 
model concludes with a dense layer consists a single neuron 
and a sigmoid activation function. This hybrid architecture 
combines a CNN with a recurrent neural network (RNN) using 
Time Distributed layers. The Time Distributed layers enable 
the application of feed forward network and flatten operations 
across each time step of the input sequence, effectively 
leveraging both spatial and temporal information for sequence-
based tasks. 

IV. EXPERIMENTAL ANALYSIS 

A. Hardware and Software Setup 

The proposed system utilizes SDP dataset contains 31 
attributes. Google Collaboratory and Microsoft windows 10 are 
chosen in this research to ensure a stable computing 
experience. The system is equipped with an Intel Core i7-
6850K 3.60 GHz 12- core processor, one NVIDIA Geforce 
GTX 1080 Ti GPU 2760 4MB. The dataset is split into two 
sets: training set (70%) and test set (30%). The entire 
procedure made use of Python and TensorFlow. The 'Adam' 
optimization function was used in the proposed model. The 
binary crossentropy is used as the loss function. The training 
process involved using a batch size of 32 for a total of 750 
epochs. Finally, the proposed model predicts software defects 
as TRUE or FALSE. 

B. Result 

The effectiveness of the suggested SDP model underwent 
an assessment using several key performance parameters, 
including accuracy, precision, recall, F1-score, specificity, and 
ROC AUC. Accuracy, a statistical measure, was employed to 
gauge the model's classification performance, representing the 
percentage of accurately predicted instances out of the entire 
dataset. 

          
       

             
         (1) 

Precision is a parameter utilized to find the model's 
capability to accurately predict positive outcomes. It quantifies 
the ratio of true positive predictions to all positive predictions, 
encompassing both accurate positive predictions and false 
positives. 

           
     

        
                                (2) 

Recall is a parameter that assesses a model's capacity to 
efficiently detect all pertinent examples of a specific class in a 
dataset. It quantifies the ratio of true positive predictions to the 
total number of actual occurrences belonging to that class. 

        
    

       
                                   (3) 

The F1-Score serves as a metric employed to evaluate how 
well precision and recall are balanced in binary classification 
tasks. 

           
                  

                  
                 (4) 

Specificity refers to the degree of precision or accuracy in 
targeting a particular characteristic, attribute, or aspect within a 
given context. The classification report of the proposed SDP 
model after simulation is tabulated in Table I. 

An accuracy plot is a graphical representation that shows 
how well a model's predictions match the actual outcomes or 
labels in a dataset. It is a visual tool utilized to assess the 
effectiveness of a model, with the x-axis usually representing 
different iterations or epochs of training, and the y-axis 
indicating the accuracy of the model's predictions. The 
accuracy plot of the suggested prediction model is visualized in 
Fig. 8. 

TABLE I.  PERFORMANCE EVALUATION OF PROPOSED SDP MODEL 

Performance Metrics Obtained Results 

Accuracy 95.58 % 

Precision 96.66 % 

Recall 93.54 % 

F1- Score 95.08 % 

ROC AUC 0.9542 

Specificity 97.29 % 

Cohens Kappa 0.9108 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

601 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 8. Accuracy plot of proposed SDP model. 

Loss plot typically shows how the loss function, a measure 
of the error between the predicted and actual values, changes 
over time as the model learns from the training data. The loss 
plot is a critical tool for assessing the training process. The loss 
plot of the proposed SDP model is visualized in Fig. 9. 

 
Fig. 9. Loss plot of proposed SDP model. 

A confusion matrix is a visual representation of a 
classification model's performance that helps assess its 
accuracy and error rates. This grid is structured in such a way 
that it assigns actual class labels to its rows and predicted class 
labels to its columns. The cells along the diagonal of the matrix 
account for the accurate predictions, encompassing both true 
positives and true negatives. Meanwhile, any discrepancies 
outside the diagonal signify errors, including false positives 
and false negatives. The confusion matrix obtained for the 
proposed SDP model is illustrated in Fig. 10. 

The Receiver Operating Characteristic (ROC) curve is a 
visual tool utilized to assess the effectiveness of models. It 
provides a graphical representation of how well a model can 
differentiate between positive and negative classes by depicting 
the balance between its true positive rate and false positive rate 

across various threshold settings. When examining a ROC 
curve, a flawless model would closely follow the upper-left 
corner of the plot, demonstrating high sensitivity and minimal 
false positives, whereas random guessing would produce a 
diagonal line running from the lower-left to the upper-right. 
The Area Under the ROC Curve (AUC-ROC) serves as a 
succinct metric summarizing the model's overall performance, 
with greater values indicating superior discriminatory 
capabilities. The ROC curve is visualized in Fig. 11. Table II 
shows the performance comparison of proposed model with 
existing model. 

 
Fig. 10. Confusion matrix of proposed SDP model. 

 

Fig. 11. ROC curve. 

TABLE II.  PERFORMANCE COMPARISON OF PROPOSED MODEL WITH 

EXISTING MODELS 

Author 

&Reference 
Methodology Result 

12 RF 88.32% 

14 KNN 94.6 

16 CNN and kernel extreme learning machine 93.5 

17 moth flame optimization 80% 

20 
Hybrid Particle Swarm Optimization and 

Sparrow Search Algorithm 
88% 

Proposed model CNN+LSTM 95.58% 
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V. DISCUSSION 

In the realm of software defect prediction, the findings of 
this study contribute valuable insights into the identification 
and mitigation of software defects. Through a comprehensive 
analysis and employing advanced learning algorithms, the 
study successfully establishes robust models for predicting 
potential defects in software development. The results reveal 
key predictors and patterns associated with defect occurrence, 
shedding light on critical areas that warrant attention during the 
software development life cycle. Feature extraction from 
structured data making them adept at identifying patterns and 
dependencies within code repositories, change histories. On the 
other hand, are well-suited for handling sequential data, which 
is crucial in capturing temporal aspects of software 
development and tracking the evolution of defects over time. 

Moreover, the study's exploration of different feature sets 
and model evaluation techniques enhances the reliability of the 
proposed defect prediction models. The simulation results 
demonstrated that the adoption of a CNN-LSTM hybrid model 
for SDP has the potential to significantly contribute to more 
efficient and reliable software development processes. 

VI. CONCLUSION 

SDP plays a pivotal role in ensuring efficient development 
in software projects. This approach is proactive in nature, 
utilizing data-driven methods and analytics to detect possible 
flaws or weaknesses in software systems prior to the escalation 
into critical problems. This contributes not only to the 
improvement of the software's overall quality and 
dependability but also exerts a substantial influence on project 
schedules and resource allocation. Efficient software 
development projects are characterized by their ability to meet 
deadlines, stay within budget constraints, and deliver a high-
quality product. SDP contributes to these goals in several key 
ways. This paper presented a SDP model utilizing both the 
benefits of CNN and LSTM. This approach leverages the 
power of CNN and LSTM to address the challenges associated 
with identifying and mitigating software defects, ultimately 
contributing to the improvement of software quality and 
project timelines. The CNN-LSTM hybrid model combines the 
strengths of both convolutional and recurrent neural networks. 
CNNs excel in feature extraction from structured data, making 
them adept at identifying patterns and dependencies within 
code repositories and change histories. LSTMs, on the other 
hand, are well-suited for handling sequential data, which is 
crucial in capturing temporal aspects of software development 
and tracking the evolution of defects over time. The proposed 
prediction model achieved better prediction results. The 
simulation results demonstrated that the adoption of a CNN-
LSTM hybrid model for SDP has the potential to significantly 
contribute to more efficient and reliable software development 
processes. As technology continues to advance and data-driven 
approaches become increasingly prevalent in the software 
industry, the integration of such models holds promise for 
continually enhancing software quality and the success of 
software projects. 

REFERENCES 

[1] Verner, J., Sampson, J., & Cerpa, N. (2008, June). What factors lead to 
software project failure?. In 2008 second international conference on 
research challenges in information science (pp. 71-80). IEEE. 

[2] Sangaiah, AK, Samuel, OW, Li, X, Abdel-Basset, M & Wang, H 2018, 
„Towards an efficient risk assessment in software projects-Fuzzy 
reinforcement paradigm‟, Computers & Electrical Engineering, vol. 71, 
pp. 833-846. https://doi.org/10.1016/j.compeleceng.2017.07.022. 

[3] Shukla, HS & Verma, DK 2015, „A Review on Software 
DefectPrediction‟, International Journal of Advanced Research in 
ComputerEngineering & Technology (IJARCET), vol. 4 no. 12, pp. 
4387-4394. 

[4] Gupta, V, Ganeshan, N & Singhal, TK 2015, „Developing SoftwareBug 
Prediction Models Using Various Software Metrics as the 
BugIndicators‟, International Journal of Advanced Computer Science 
&Applications, vol. 1, no. 6, pp. 60-65. 

[5] Vashisht, V, Lal, M, Sureshchandar, GS & Kamya, S 2015, 
„Aframework for software defect prediction using neural 
networks‟,Journal of Software Engineering and Applications, vol. 8, no. 
8,pp. 384-394. 

[6] Shihab, E 2012, An exploration of challenges limiting 
pragmaticsoftware defect prediction (Doctoral dissertation, Queen‟s 
University).Link:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.467.1447&rep=rep1&type=pdf. 

[7] Qiao, L., Li, X., Umer, Q., & Guo, P. (2020). Deep learning-based 
software defect prediction. Neurocomputing, 385, 100-110. 

[8] Pan, C., Lu, M., & Xu, B. (2021). An empirical study on software defect 
prediction using codebert model. Applied Sciences, 11(11), 4793. 

[9] Esteves, G., Figueiredo, E., Veloso, A., Viggiato, M., & Ziviani, N. 
(2020). Understanding machine learning software defect predictions. 
Automated Software Engineering, 27(3-4), 369-392. 

[10] Prabha, C. L., & Shivakumar, N. (2020, June). Software defect 
prediction using machine learning techniques. In 2020 4th International 
Conference on Trends in Electronics and Informatics (ICOEI)(48184) 
(pp. 728-733). IEEE. 

[11] Wang, H., Zhuang, W., & Zhang, X. (2021). Software defect prediction 
based on gated hierarchical LSTMs. IEEE Transactions on Reliability, 
70(2), 711-727. 

[12] Khan, B., Naseem, R., Shah, M. A., Wakil, K., Khan, A., Uddin, M. I., 
& Mahmoud, M. (2021). Software defect prediction for healthcare big 
data: an empirical evaluation of machine learning techniques. Journal of 
Healthcare Engineering, 2021. 

[13] Feng, S., Keung, J., Yu, X., Xiao, Y., & Zhang, M. (2021). Investigation 
on the stability of SMOTE-based oversampling techniques in software 
defect prediction. Information and Software Technology, 139, 106662. 

[14] Goyal, S. (2022). Handling class-imbalance with KNN (neighborhood) 
under-sampling for software defect prediction. Artificial Intelligence 
Review, 55(3), 2023-2064. 

[15] Jin, C. (2021). Software defect prediction model based on distance 
metric learning. Soft Computing, 25, 447-461. 

[16] Zhu, K., Ying, S., Zhang, N., & Zhu, D. (2021). Software defect 
prediction based on enhanced metaheuristic feature selection 
optimization and a hybrid deep neural network. Journal of Systems and 
Software, 180, 111026. 

[17] Khurma, R. A., Alsawalqah, H., Aljarah, I., Elaziz, M. A., & 
Damaševičius, R. (2021). An enhanced evolutionary software defect 
prediction method using island moth flame optimization. Mathematics, 
9(15), 1722. 

[18] Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., & 
Zhang, M. (2021). COSTE: Complexity-based OverSampling 
TEchnique to alleviate the class imbalance problem in software defect 
prediction. Information and Software Technology, 129, 106432. 

[19] Tang, S., Huang, S., Zheng, C., Liu, E., Zong, C., & Ding, Y. (2021). A 
novel cross-project software defect prediction algorithm based on 
transfer learning. Tsinghua Science and Technology, 27(1), 41-57. 

https://doi.org/10.1016/j.compeleceng.2017.07.022


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

603 | P a g e  

www.ijacsa.thesai.org 

[20] Yang, L., Li, Z., Wang, D., Miao, H., & Wang, Z. (2021). Software 
defects prediction based on hybrid particle swarm optimization and 
sparrow search algorithm. Ieee Access, 9, 60865-60879. 

[21] Nassif, A. B., Talib, M. A., Azzeh, M., Alzaabi, S., Khanfar, R., Kharsa, 
R., & Angelis, L. (2023). Software defect prediction using learning to 
rank approach. Scientific Reports, 13(1), 18885. 

[22] O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural 
networks. arXiv preprint arXiv:1511.08458. 

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 
521, no. 7553, pp. 436–444, 2015. 

[24] Sherstinsky, A. (2020). Fundamentals of recurrent neural network 
(RNN) and long short-term memory (LSTM) network. Physica D: 
Nonlinear Phenomena, 404, 132306. 

 


