
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

595 | P a g e

www.ijacsa.thesai.org

Revolutionizing Software Project Development: A

CNN-LSTM Hybrid Model for Effective Defect

Prediction

Selvin Jose G
1
, Dr. J Charles

2

Department of Computer Science, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India
1

Department of Software Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India
2

Abstract—Within the domain of software development, the

practice of software defect prediction (SDP) holds a central and

critical position, significantly contributing to the efficiency and

ultimate success of projects. It embodies a proactive approach

that harnesses data-driven techniques and analytics to

preemptively identify potential defects or vulnerabilities within

software systems, thereby enhancing overall quality and

reliability while significantly impacting project timelines and

resource allocation. The efficiency of software development

projects hinges on their ability to adhere to deadlines, budget

constraints, and deliver high-quality products. SDP contributes

to these objectives through various means. This paper introduces

a novel SDP model that harnesses the combined capabilities of

Convolutional Neural Networks (CNNs) and Long Short Term

Memory (LSTMs) unit. CNNs excel at extracting features from

structured data, enabling them to discern patterns and

dependencies within code repositories and change histories.

LSTMs, conversely, excel in handling sequential data, which is

pivotal for capturing the temporal aspects of software

development and tracking the evolution of defects over time. The

outcomes of the proposed CNN-LSTM hybrid model showcase its

superior predictive performance. Simulation results affirm the

substantial potential of this model to bolster the efficiency and

reliability of software development processes. As technology

advances and data-driven methodologies become increasingly

prevalent in the software industry, the integration of such hybrid

models presents a promising avenue for continually elevating

software quality and ensuring the triumph of software projects.

In summary, the utilization of this innovative SDP model offers a

transformative approach to efficient software development,

positioning it as a vital tool for project success and quality

assurance.

Keywords—Data driven software development; proactive defect

identification; software quality; predictive analytics; software defect

prediction; artificial intelligence; long short term memory

I. INTRODUCTION

In the modern world, software plays an essential role in
every aspect of our daily existence. It includes defense,
automobile, healthcare, insurance, finance, banking,
telecommunication, government administration sectors. In
other words, the normal functionality of these sectors gets
affected with the software failure. Technical and managerial
issues are the two different issues normally emerge during the
software development process. Thirty percent of project
failures occur mainly due to technical issues and 70% are

management issues [1]. Some of the problems related to
managerial issues are insufficient risk management, customer
buy-in, limited project resources and inaccurate project
structure etc. However, low product delay, high expense, and
schedule delay are the issues encountered during software
program development. Prior to the analysis of software project
risk, an efficient risk mitigation scheme should be developed
by the program developer. Based on the accurate management
of risk, the success of the project can be determined [2].

SDP is a crucial aspect of modern software development,
aimed at improving the effectiveness and efficiency of
software projects. In an era where software plays an
increasingly pivotal role in our daily lives, organizations strive
to deliver high-quality software products while minimizing the
time and resources invested in debugging and maintenance. In
this context, SDP emerges as an indispensable tool for the
modern software development landscape, fostering both agility
and the delivery of robust software products. Any fault, error,
mistake, in a computer program, or a defect or bug in the
software can cause unexpected or inaccurate results which are
otherwise called a software defect. In order to enhance
software quality, high-risk components must be detected as
soon as possible [3].

Software defects can lead to an increase in both the cost
and time required for delivering the expected end product. Also
identification and rectification of defects is a highly waste of
time and a costly software process [4]. One of the persistent
challenges within the Software Development Lifecycle
(SDLC) has been the ability to predict and identify defects
during the initial phases of a project. In the current situation,
development of a fault-free software which is highly reliable is
a difficult task, as the problems for which software is
developed is more complex and the domains that are involved
are constantly increasing to constraints such as uncertainty and
development processes that are complex [5].

At first, a collection of project data takes place from the
software repositories. From the data, factors are calculated. The
locations are predicted through models, which have a better
potential for the defects contained. Ultimately, using prediction
models, various measures are evaluated, such as precision,
recall, and explanative power [6].

SDP using Deep Learning (DL) holds immense
significance in the realm of software project development. In
an era where software systems underpin virtually every aspect

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

596 | P a g e

www.ijacsa.thesai.org

of modern life, ensuring their reliability and robustness is
paramount. Deep learning methodology, leveraging their
capacity to analyzes extensive datasets and detect subtle
patterns, present a compelling approach for preemptively
recognizing and addressing potential flaws before they escalate
into severe problems. By harnessing the power of DL, software
development teams can enhance their efficiency, reduce
maintenance costs, and deliver higher-quality products to users,
ultimately contributing to the successful and sustainable
advancement of software projects in an increasingly
interconnected world. The major contribution of the proposed
work includes:

 Software defect prediction utilizing CNN-LSTM hybrid
model.

 To employ CNN in feature extraction from structured
data, particularly in code repositories and change
histories.

 To employ LSTM in handling sequential data,
emphasizing their pivotal role in capturing the temporal
aspects of software development and facilitating the
tracking of defect evolution over time.

The paper is systematized as follows: Section II offers are
view of the existing literature and identifies areas where further
research is needed. Section III outlines the methodology in
detail. In Section IV, the comprehensive results of the
suggested approach are discussed. Finally, in Section V and
Section VI, the paper concludes with a discussion and
summary respectively.

II. BACKGROUND

A. Literature Review

Lei Qiao et al. [7] introduced an innovative methodology
employing DL approaches for the anticipation of software
system defects. This novel approach involves training a DL
approach to predict the number of defects in software. Notably,
when compared to widely adopted approaches such as Support
Vector Regression, Feature-based Support Vector Regression,
and Decision Tree Regression, the suggested method
demonstrated a substantial enhancement in performance on
established datasets. The improvement is notably reflected in a
notable reduction in mean square error, ranging from 3% to
13%, and an augmentation in the squared correlation
coefficient.

Pan et al. [8] introduced a range of CodeBERT models,
specifically designed for SDP. The proposed research involved
conducting empirical studies to assess the effectiveness of
these approaches in cross-version and cross-project SDP
scenarios. The findings demonstrated that leveraging pre-
trained CodeBERT models led to enhanced prediction accuracy
and time savings. Additionally, incorporating sentence-based
and keyword-based prediction approaches further improved the
effectiveness of pre-trained neural language frameworks in the
context of SDP.

Geanderson Esteves et al. [9], delved into the realm of SDP
models, harnessing the power of an efficiently implemented
XGBoost variant, known as US-XGBoost. This endeavor

generated a multitude of random models, each meticulously
assessed for the accuracy and interpretability. The key take
away from the findings is that SDP is inherently project-
specific. This means that the features constituting the most
effective models can significantly differ from one project to
another. Hence, comprehending the determinants behind model
decisions becomes particularly vital.

Lakshmi Prabha and N. Shivakumar [10] introduced a
novel hybrid model that addresses the challenge of classifying
massive datasets accurately. The proposed approach combines
feature reduction using Principal Component Analysis (PCA)
with an overall probability application to minimize data loss
during PCA processing. The approach further employed a
neural network classification method for program bug
detection. The simulation results demonstrated the model's
impressive efficiency, achieving an outstanding 98.70 percent
Area under the Curve (AUC) accuracy, marking a substantial
advancement over existing models.

Hao Wang et al. [11] introduced GH-LSTMs, a novel DL
framework for detecting potential code defects within software
modules. GH-LSTMs leverage hierarchical LSTM architecture
to simultaneously extract semantic and traditional features. A
gated merge mechanism was employed to dynamically
optimize the fusion of these features. Subsequently, a fully
connected layer utilizes the combined features for within-
project defect prediction. Remarkably, GH-LSTMs outperform
existing methods in terms of F-measure, particularly in non-
effort-aware cases.

Bilal Khan et al. [12] presented a comprehensive analysis
of seven widely employed Machine Learning (ML) approaches
applied to SDP. These approaches encompass SVM, J48, RF,
MLP, RBF, HMM, and CDT. The evaluation of these methods
utilized various performance metrics, including MAE, RAE,
RMSE, RRSE, recall, and accuracy. The findings from the
experiments revealed that NB and SVM exhibited superior
performance in terms of minimizing MAE and RAE,
respectively.

Shuo Feng et al. [13], delved into the robustness of
SMOTE-based oversampling methods. This work not only
probed the stability of these techniques but also introduced a
set of novel and stable SMOTE-based oversampling strategies
aimed at enhancing the reliability. These stable techniques
minimize the inherent randomness in SMOTE by sequentially
selecting defective instances, utilizing a distance-based
approach for choosing neighbor instances, and ensuring an
evenly distributed interpolation process. The proposed
approach supported the findings with both mathematical proofs
and empirical investigations across 26 datasets using four
common classifiers. The simulation results demonstrated that
the effectiveness of stable SMOTE-based oversampling
approaches surpasses that of traditional SMOTE-based
approaches in terms of stability and effectiveness.

Somya Goyal [14] introduced a pioneering Neighborhood-
based Under-Sampling (N-US) algorithm to address the
challenge of class imbalance. The study aims to showcase the
efficacy of this N-US framework in enhancing accuracy for
predicting defective modules. The experimental results
revealed that the N-US approach successfully reduces the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

597 | P a g e

www.ijacsa.thesai.org

dataset size by 17.29% and lowers the Imbalance Ratio (IR) by
19.73%. Consequently, it plays a vital role in augmenting
classifier performance.

Cong Jin [15] introduced an innovative distance metric
learning framework that leverages cost-sensitive learning
(CSL) to mitigate the challenges posed by class-imbalanced
datasets. This novel method, initially developed to address
class imbalance, assigns distinct weights to individual training
classes. Subsequently, this CSL-based distance metric learning
is integrated into the large margin distribution machine (LDM)
to take over the conventional kernel function. Empirical results
indicated that these enhancements enable CS-ILDM to exhibit
not only excellent predictive performance but also the lowest
misprediction cost.

Kun Zhu et al. [16] introduced an innovative feature
selection algorithm called EMWS, which optimally chooses a
compact set of closely related features tailored to each software
project. This approach effectively harnesses the local search
capabilities of simulated annealing to augment the relatively
weaker exploitation performance of the Whale Optimization
Algorithm (WOA) while simultaneously capitalizing on
WOA's strong global search abilities to enhance SA's
exploration capabilities. A hybrid deep neural network model
was also proposed. Empirical results substantiate that EMWS
and WSHCKE consistently outperform various methods in
various experiments.

Ruba Abu Khurma et al. [17] introduced the Island Model
as an enhancement to the Binary Moth Flame Optimization
(BMFO) algorithm for addressing the Feature Selection
problem in the context of SDP. This innovative approach
segments the moth population into multiple islands, facilitating
feature sharing among them through migration. This technique
serves to bolster solution diversity and govern algorithm
convergence. The experiments involved assessing the
performance of KNN, NB and SVM classifiers with and
without FS, using BMFO-FS, and employing Is BMFO-FS.
Notably, across three experiments, the SVM classifier
consistently outperformed others, closely followed by the NB
classifier.

Shuo Feng et al. [18] introduced a novel oversampling
approach known as Complexity-based Oversampling
Technique (COSTE). Instead of relying on inter-instance
distances, COSTE assesses instance complexity to guide the
selection of candidates for generating synthetic instances. The
study evaluated COSTE's effectiveness against four other
oversampling techniques using various classifiers, including,
KNN, MLP, SVM and RF, across 23 imbalanced datasets.
Remarkably, the simulation findings consistently demonstrated
that COSTE outperformed the other methods across all
performance metrics, highlighting its superior performance.

Shiqi Tang et al. [19] introduced TSboostDF, an innovative
transfer-learning algorithm designed to address the complex
problem of CPDP (Cross-Platform Domain Prediction).
TSboostDF effectively combines the BLS sampling method,
which considers the sample's weight, with transfer-learning
techniques to mitigate the limitations commonly associated
with conventional CPDP algorithms. This novel approach has
been demonstrated to outperform other CPDP algorithms that

rely on transfer-learning methods, highlighting its superior
performance in resolving this challenging problem.

Liu Yang et al. [20] introduced an innovative hybrid
algorithm that combines the strengths of SSA and PSO. This
research involved a comprehensive analysis of the merits and
limitations of swarm intelligence algorithms, aiming to devise
strategies for enhancement. Notably, the empirical findings
demonstrated that the hybrid approach integrating SSA and
PSO, as presented in this work, significantly enhances the
precision of software reliability model estimation and
forecasting. Specifically, the proposed study focused on
estimating and predicting software defects using the well-
known G-O model. Furthermore, a fitness function was
introduced, which is capable of effectively managing the
parameter 'b' during initialization by leveraging the maximum
likelihood formula.

An algorithm was presented by Nassif et al. [21] that aims
to accomplish two significant tasks: learning and prediction.
This approach has a high efficiency for other issues, such as
software defect prediction, while being widely utilized in
information retrieval. In this paper, two common output
metrics namely bug density bug count were used as goal
variables to compare various models. Additionally, it looked at
how eight models with Grid Search optimization were affected
by the use of imbalance learning and feature selection. The
FPA scores of the bug density results have significantly
improved with the usage of imbalance learning; however, the
improvement in the bug count results has not been as great.
Last but not least, applying feature selection with LTR
decreased the bug density metric's FPA score but had no effect
on the bug count findings.

B. Research Gap

SDP models offer valuable insights and benefits, but they
also come with several limitations. Some of the major
limitations of existing SDP models are discussed below. These
models heavily rely on historical data, which may be
incomplete, inconsistent, or biased. Poor data quality can
induce to inaccurate predictions. Software defect datasets often
have imbalanced class distributions, with a small number of
defective occurrences compared to non-defective ones. This
can lead to model bias and lower predictive accuracy. Software
systems, tools, and development practices evolve over time.
Models trained on historical data may not effectively adapt to
new technologies and practices. Creating relevant features
from code repositories and other software data is a complex
and manual process. Feature engineering can be time-
consuming and error-prone. Complex ML models can over fit
the training data, making them less generalizable to new
projects or software environments. These models identify
correlations but not necessarily causation. Identifying the root
causes of defects often requires domain expertise and
additional analysis. Models may not be transferable to different
software domains or projects due to the unique characteristics
of each project. Software is continuously evolving, and defects
can emerge or be resolved after the training data was collected,
making predictions less accurate. Bias in training data and
predictions can lead to discrimination or unfair treatment in
software development processes. Training and deploying
sophisticated ML models can necessitate remarkable

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

598 | P a g e

www.ijacsa.thesai.org

computational resources and expertise, which may not be
readily available to all development teams. Addressing these
limitations requires careful consideration and often a
combination of techniques, including data preprocessing,
model selection, and ongoing monitoring and validation of the
model's performance. Despite these challenges, SDP models
have the potential to significantly improve software
development processes when appropriately applied and
maintained.

III. MATERIALS AND METHODS

A CNN- LSTM based hybrid DL model is developed and
analyzed for SDP for effective software project development.
The detailed block schematic of the suggested work is
illustrated in Fig. 1. The initial step of the work involves the
dataset collection. It is followed by data preprocessing
techniques. The preprocessed data is separate into training set
and test set. The proposed hybrid model is trained and
validated utilizing the training data and test data. Finally, the
performance of the SDP model is analyzed.

A. Dataset Description

The proposed system utilizes SDP dataset collected from
Open ML, an online platform and repository for ML datasets.
The dataset contains 31 features of 224 instances. In this paper,
the binary classifier is developed to predict software defects
based on 31 inputs.

B. Units Data Preprocesing and Exploratory Data Analysis

Data preprocessing is a pivotal stage in data analysis,
encompassing the tasks of cleansing, restructuring, and
organizing raw data to make it appropriate for analysis or ML
model training. The quality and efficacy of a learning model
are substantially influenced by proper data preprocessing. Key
techniques involved in this process include data cleaning, data
transformation, handling missing values, addressing duplicate
entries, and managing outliers. Among these techniques, the
management of missing values stands out as a critical step. It
involves handling data points that lack complete or relevant
information. Various strategies can be employed for this
purpose. One approach is to eliminate rows or columns with an
excessive number of missing values, particularly if they do not
significantly contribute to the analysis. An alternative method
is imputation, which involves filling in the gaps with estimated
or calculated values based on the data's distribution. For
numerical data, this can involve mean, median, or mode
imputation, ensuring that the dataset is more robust and
suitable for analysis or modeling.

Exploratory Data Analysis (EDA) serves as a vital initial
step in the data analysis process, where data analysts and
scientists employ both visual and statistical methods to delve
into a dataset. Its primary goal is to unveil patterns,
relationships, anomalies, and insights within the data. EDA
entails a range of techniques, including data visualization tools
such as histograms, scatter plots, and box plots, in combination
with summary statistics like mean, median, standard deviation,
and more. This multifaceted approach allows for a
comprehensive understanding of data distribution, the detection
of outliers, an evaluation of data quality, and the development
of an intuitive grasp of the dataset's underlying structure. In

practice, EDA plays a pivotal role in hypothesis formulation,
guiding subsequent analytical processes, and informing
decisions related to data preprocessing and modeling strategies.
Ultimately, it aids in the discovery of valuable information and
concealed patterns within the data. Summary statistics, which
provide a concise summary of key dataset characteristics,
include measures such as mean, median, mode, standard
deviation, variance minimum and maximum values, quartiles
including the first, second or median, and third quartiles, and
counts or proportions for categorical variables. The summary
statistics of SDP dataset is illustrated in Fig. 2.

EDA relies heavily on the strategic use of graphical
representations to delve into a dataset. Through the
construction of diverse charts, plots, and graphs, including
histograms, scatter plots, box plots and heatmaps, it becomes
possible to visually examine data distributions, reveal
underlying patterns, identify anomalies, and grasp the interplay
between variables. The data visualization of counts of classes
in the dataset is visualized in Fig. 3.

Fig. 1. Block Schematics of Proposed SDP model.

Fig. 2. Summary statics of SDP dataset.

Fig. 3. Data visualization of SDP dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

599 | P a g e

www.ijacsa.thesai.org

Fig. 4. Heatmap visualization of dataset.

Heatmap visualization serves as a powerful graphical tool
for depicting data, representing information within a matrix by
employing a range of colors. Its primary utility lies in the
effective exploration of complex datasets, as each individual
cell in the matrix corresponds to a specific data point, and the
color intensity within these cells conveys the underlying data
values, often using a color spectrum to illustrate the transition
from lower to higher values. Fig. 4 illustrates the heatmap
visualization of dataset.

C. SDP Model using CNN-LSTM Hybrid Model

The proposed defect prediction model is a hybrid system
that leverages both CNNs and LSTM neural networks. This
innovative approach aims to enhance the accuracy of
identifying defects within software. CNNs are employed to
detect spatial patterns in the code, such as relationships
between different code segments, while LSTMs excel at
modeling sequential dependencies over time. By amalgamating
these two architectural components, the model becomes
capable of understanding both localized and global patterns in
the code base, enabling it to effectively pinpoint software
defects. The approach involves encoding code as input
sequences, which are then processed by CNN layers to capture
spatial characteristics and subsequently by LSTM layers to
capture temporal relationships. The resulting hybrid model
offers a more precise and comprehensive defect prediction,
which, in turn, supports the development of more dependable
software systems.

A CNN is a type of deep ANN that emulates the human
visual perception process, making it particularly effective for
analyzing visual data [22]. CNNs leverage various multi-layer
perceptron algorithms to reduce the need for extensive
preprocessing of input data, making them widely adopted in
the field of DL. CNNs represent one of the most prevalent
neural network architectures, typically comprising millions of
interconnected neurons organized into hierarchical layers, as
illustrated in Fig. 5.

Fig. 5. Basic architecture of CNN.

CNN consist of three fundamental layers: convolutional,
pooling, and fully-connected layers. The hidden layers within
the convolutional and FC layers play a pivotal role in accessing
the network's capacity to learn. The depth of a CNN is defined
by the number of layers it comprises, and the deeper these
layers are, the more intricate and abstract features they can
extract from the input data, especially in the context of high-
resolution images [23]. Within the CNN processing pipeline,
the neurons in the input layer respond to visual stimuli,
initiating the feature extraction process. The major aim of the
convolutional layer is to capture these image features and
propagate them to the subsequent hidden layers for
computation, culminating in the extraction of results from the
output layer. Activation functions often act as intermediaries
between hidden layers, facilitating the transfer of valuable and
essential information to inform the subsequent layers in the
network.

The Long Short-Term Memory unit a prominent
component of DL belongs to the family of Recurrent Neural
Networks (RNNs) [24]. This specialized RNN excels in
understanding and capturing intricate order dependencies
within sequence prediction tasks. It is specifically designed to
manage long-term relationships and tackle challenging
problems, particularly those where the input order plays a
pivotal role. Over time, numerous variations of Deep RNNs
have been devised to combat issues related to vanishing and
exploding gradients. Among these, the LSTM network stands
out as a unique solution. It achieves its exceptional capabilities
by employing distinct activation functions for each of its gates,
allowing it to remember essential information from the past
while efficiently discarding irrelevant data. Furthermore,
LSTM incorporates an internal cell state vector, which serves
as a practical representation of the network's retained
knowledge from prior inputs. The LSTM unit employs three
distinct gates: Forget Gate (Input Gate (and the Output
Gate (Fig. 6 illustrates the core structural elements of an
LSTM unit.

Fig. 6. Basic architecture of LSTM.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

600 | P a g e

www.ijacsa.thesai.org

In a hybrid CNN-LSTM model, the initial CNN stage
operates on the input sequence, effectively pinpointing spatial
patterns or local features at each point in time. The resulting
CNN layer outputs are subsequently fed into the LSTM
component, which is responsible for modeling the temporal
dependencies and capturing the sequential patterns within the
data. This combined approach enables the model to effectively
assimilate both local and global information, making it a robust
choice for tasks that entail complex spatial and temporal
interactions in sequential data. The architectural representation
of the proposed model is visually depicted in Fig. 7.

Fig. 7. Proposed model architecture.

The suggested hybrid model begins with a dense layer
featuring 100 neurons and a Relu activation function. This is
succeeded by two additional dense layers, one with 50 neurons
and the other with 25 neurons, both utilizing ReLU activation.
The final dense layer has of a single neuron with a sigmoid
activation function. Subsequently, an LSTM layer with 64
units is incorporated, followed by the application of a dropout
layer with a 0.5 dropout rate to avoid over fitting. This is
succeeded by another LSTM layer with 32 units. Finally, the
model concludes with a dense layer consists a single neuron
and a sigmoid activation function. This hybrid architecture
combines a CNN with a recurrent neural network (RNN) using
Time Distributed layers. The Time Distributed layers enable
the application of feed forward network and flatten operations
across each time step of the input sequence, effectively
leveraging both spatial and temporal information for sequence-
based tasks.

IV. EXPERIMENTAL ANALYSIS

A. Hardware and Software Setup

The proposed system utilizes SDP dataset contains 31
attributes. Google Collaboratory and Microsoft windows 10 are
chosen in this research to ensure a stable computing
experience. The system is equipped with an Intel Core i7-
6850K 3.60 GHz 12- core processor, one NVIDIA Geforce
GTX 1080 Ti GPU 2760 4MB. The dataset is split into two
sets: training set (70%) and test set (30%). The entire
procedure made use of Python and TensorFlow. The 'Adam'
optimization function was used in the proposed model. The
binary crossentropy is used as the loss function. The training
process involved using a batch size of 32 for a total of 750
epochs. Finally, the proposed model predicts software defects
as TRUE or FALSE.

B. Result

The effectiveness of the suggested SDP model underwent
an assessment using several key performance parameters,
including accuracy, precision, recall, F1-score, specificity, and
ROC AUC. Accuracy, a statistical measure, was employed to
gauge the model's classification performance, representing the
percentage of accurately predicted instances out of the entire
dataset.

 (1)

Precision is a parameter utilized to find the model's
capability to accurately predict positive outcomes. It quantifies
the ratio of true positive predictions to all positive predictions,
encompassing both accurate positive predictions and false
positives.

 (2)

Recall is a parameter that assesses a model's capacity to
efficiently detect all pertinent examples of a specific class in a
dataset. It quantifies the ratio of true positive predictions to the
total number of actual occurrences belonging to that class.

 (3)

The F1-Score serves as a metric employed to evaluate how
well precision and recall are balanced in binary classification
tasks.

 (4)

Specificity refers to the degree of precision or accuracy in
targeting a particular characteristic, attribute, or aspect within a
given context. The classification report of the proposed SDP
model after simulation is tabulated in Table I.

An accuracy plot is a graphical representation that shows
how well a model's predictions match the actual outcomes or
labels in a dataset. It is a visual tool utilized to assess the
effectiveness of a model, with the x-axis usually representing
different iterations or epochs of training, and the y-axis
indicating the accuracy of the model's predictions. The
accuracy plot of the suggested prediction model is visualized in
Fig. 8.

TABLE I. PERFORMANCE EVALUATION OF PROPOSED SDP MODEL

Performance Metrics Obtained Results

Accuracy 95.58 %

Precision 96.66 %

Recall 93.54 %

F1- Score 95.08 %

ROC AUC 0.9542

Specificity 97.29 %

Cohens Kappa 0.9108

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

601 | P a g e

www.ijacsa.thesai.org

Fig. 8. Accuracy plot of proposed SDP model.

Loss plot typically shows how the loss function, a measure
of the error between the predicted and actual values, changes
over time as the model learns from the training data. The loss
plot is a critical tool for assessing the training process. The loss
plot of the proposed SDP model is visualized in Fig. 9.

Fig. 9. Loss plot of proposed SDP model.

A confusion matrix is a visual representation of a
classification model's performance that helps assess its
accuracy and error rates. This grid is structured in such a way
that it assigns actual class labels to its rows and predicted class
labels to its columns. The cells along the diagonal of the matrix
account for the accurate predictions, encompassing both true
positives and true negatives. Meanwhile, any discrepancies
outside the diagonal signify errors, including false positives
and false negatives. The confusion matrix obtained for the
proposed SDP model is illustrated in Fig. 10.

The Receiver Operating Characteristic (ROC) curve is a
visual tool utilized to assess the effectiveness of models. It
provides a graphical representation of how well a model can
differentiate between positive and negative classes by depicting
the balance between its true positive rate and false positive rate

across various threshold settings. When examining a ROC
curve, a flawless model would closely follow the upper-left
corner of the plot, demonstrating high sensitivity and minimal
false positives, whereas random guessing would produce a
diagonal line running from the lower-left to the upper-right.
The Area Under the ROC Curve (AUC-ROC) serves as a
succinct metric summarizing the model's overall performance,
with greater values indicating superior discriminatory
capabilities. The ROC curve is visualized in Fig. 11. Table II
shows the performance comparison of proposed model with
existing model.

Fig. 10. Confusion matrix of proposed SDP model.

Fig. 11. ROC curve.

TABLE II. PERFORMANCE COMPARISON OF PROPOSED MODEL WITH

EXISTING MODELS

Author

&Reference
Methodology Result

12 RF 88.32%

14 KNN 94.6

16 CNN and kernel extreme learning machine 93.5

17 moth flame optimization 80%

20
Hybrid Particle Swarm Optimization and

Sparrow Search Algorithm
88%

Proposed model CNN+LSTM 95.58%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

602 | P a g e

www.ijacsa.thesai.org

V. DISCUSSION

In the realm of software defect prediction, the findings of
this study contribute valuable insights into the identification
and mitigation of software defects. Through a comprehensive
analysis and employing advanced learning algorithms, the
study successfully establishes robust models for predicting
potential defects in software development. The results reveal
key predictors and patterns associated with defect occurrence,
shedding light on critical areas that warrant attention during the
software development life cycle. Feature extraction from
structured data making them adept at identifying patterns and
dependencies within code repositories, change histories. On the
other hand, are well-suited for handling sequential data, which
is crucial in capturing temporal aspects of software
development and tracking the evolution of defects over time.

Moreover, the study's exploration of different feature sets
and model evaluation techniques enhances the reliability of the
proposed defect prediction models. The simulation results
demonstrated that the adoption of a CNN-LSTM hybrid model
for SDP has the potential to significantly contribute to more
efficient and reliable software development processes.

VI. CONCLUSION

SDP plays a pivotal role in ensuring efficient development
in software projects. This approach is proactive in nature,
utilizing data-driven methods and analytics to detect possible
flaws or weaknesses in software systems prior to the escalation
into critical problems. This contributes not only to the
improvement of the software's overall quality and
dependability but also exerts a substantial influence on project
schedules and resource allocation. Efficient software
development projects are characterized by their ability to meet
deadlines, stay within budget constraints, and deliver a high-
quality product. SDP contributes to these goals in several key
ways. This paper presented a SDP model utilizing both the
benefits of CNN and LSTM. This approach leverages the
power of CNN and LSTM to address the challenges associated
with identifying and mitigating software defects, ultimately
contributing to the improvement of software quality and
project timelines. The CNN-LSTM hybrid model combines the
strengths of both convolutional and recurrent neural networks.
CNNs excel in feature extraction from structured data, making
them adept at identifying patterns and dependencies within
code repositories and change histories. LSTMs, on the other
hand, are well-suited for handling sequential data, which is
crucial in capturing temporal aspects of software development
and tracking the evolution of defects over time. The proposed
prediction model achieved better prediction results. The
simulation results demonstrated that the adoption of a CNN-
LSTM hybrid model for SDP has the potential to significantly
contribute to more efficient and reliable software development
processes. As technology continues to advance and data-driven
approaches become increasingly prevalent in the software
industry, the integration of such models holds promise for
continually enhancing software quality and the success of
software projects.

REFERENCES

[1] Verner, J., Sampson, J., & Cerpa, N. (2008, June). What factors lead to
software project failure?. In 2008 second international conference on
research challenges in information science (pp. 71-80). IEEE.

[2] Sangaiah, AK, Samuel, OW, Li, X, Abdel-Basset, M & Wang, H 2018,
„Towards an efficient risk assessment in software projects-Fuzzy
reinforcement paradigm‟, Computers & Electrical Engineering, vol. 71,
pp. 833-846. https://doi.org/10.1016/j.compeleceng.2017.07.022.

[3] Shukla, HS & Verma, DK 2015, „A Review on Software
DefectPrediction‟, International Journal of Advanced Research in
ComputerEngineering & Technology (IJARCET), vol. 4 no. 12, pp.
4387-4394.

[4] Gupta, V, Ganeshan, N & Singhal, TK 2015, „Developing SoftwareBug
Prediction Models Using Various Software Metrics as the
BugIndicators‟, International Journal of Advanced Computer Science
&Applications, vol. 1, no. 6, pp. 60-65.

[5] Vashisht, V, Lal, M, Sureshchandar, GS & Kamya, S 2015,
„Aframework for software defect prediction using neural
networks‟,Journal of Software Engineering and Applications, vol. 8, no.
8,pp. 384-394.

[6] Shihab, E 2012, An exploration of challenges limiting
pragmaticsoftware defect prediction (Doctoral dissertation, Queen‟s
University).Link:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.467.1447&rep=rep1&type=pdf.

[7] Qiao, L., Li, X., Umer, Q., & Guo, P. (2020). Deep learning-based
software defect prediction. Neurocomputing, 385, 100-110.

[8] Pan, C., Lu, M., & Xu, B. (2021). An empirical study on software defect
prediction using codebert model. Applied Sciences, 11(11), 4793.

[9] Esteves, G., Figueiredo, E., Veloso, A., Viggiato, M., & Ziviani, N.
(2020). Understanding machine learning software defect predictions.
Automated Software Engineering, 27(3-4), 369-392.

[10] Prabha, C. L., & Shivakumar, N. (2020, June). Software defect
prediction using machine learning techniques. In 2020 4th International
Conference on Trends in Electronics and Informatics (ICOEI)(48184)
(pp. 728-733). IEEE.

[11] Wang, H., Zhuang, W., & Zhang, X. (2021). Software defect prediction
based on gated hierarchical LSTMs. IEEE Transactions on Reliability,
70(2), 711-727.

[12] Khan, B., Naseem, R., Shah, M. A., Wakil, K., Khan, A., Uddin, M. I.,
& Mahmoud, M. (2021). Software defect prediction for healthcare big
data: an empirical evaluation of machine learning techniques. Journal of
Healthcare Engineering, 2021.

[13] Feng, S., Keung, J., Yu, X., Xiao, Y., & Zhang, M. (2021). Investigation
on the stability of SMOTE-based oversampling techniques in software
defect prediction. Information and Software Technology, 139, 106662.

[14] Goyal, S. (2022). Handling class-imbalance with KNN (neighborhood)
under-sampling for software defect prediction. Artificial Intelligence
Review, 55(3), 2023-2064.

[15] Jin, C. (2021). Software defect prediction model based on distance
metric learning. Soft Computing, 25, 447-461.

[16] Zhu, K., Ying, S., Zhang, N., & Zhu, D. (2021). Software defect
prediction based on enhanced metaheuristic feature selection
optimization and a hybrid deep neural network. Journal of Systems and
Software, 180, 111026.

[17] Khurma, R. A., Alsawalqah, H., Aljarah, I., Elaziz, M. A., &
Damaševičius, R. (2021). An enhanced evolutionary software defect
prediction method using island moth flame optimization. Mathematics,
9(15), 1722.

[18] Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., &
Zhang, M. (2021). COSTE: Complexity-based OverSampling
TEchnique to alleviate the class imbalance problem in software defect
prediction. Information and Software Technology, 129, 106432.

[19] Tang, S., Huang, S., Zheng, C., Liu, E., Zong, C., & Ding, Y. (2021). A
novel cross-project software defect prediction algorithm based on
transfer learning. Tsinghua Science and Technology, 27(1), 41-57.

https://doi.org/10.1016/j.compeleceng.2017.07.022

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

603 | P a g e

www.ijacsa.thesai.org

[20] Yang, L., Li, Z., Wang, D., Miao, H., & Wang, Z. (2021). Software
defects prediction based on hybrid particle swarm optimization and
sparrow search algorithm. Ieee Access, 9, 60865-60879.

[21] Nassif, A. B., Talib, M. A., Azzeh, M., Alzaabi, S., Khanfar, R., Kharsa,
R., & Angelis, L. (2023). Software defect prediction using learning to
rank approach. Scientific Reports, 13(1), 18885.

[22] O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458.

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[24] Sherstinsky, A. (2020). Fundamentals of recurrent neural network
(RNN) and long short-term memory (LSTM) network. Physica D:
Nonlinear Phenomena, 404, 132306.

