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Abstract—This paper delves into the integration of motion 

tracking technology for real-time monitoring in 3D printing, with 

a focus on the popular fused filament fabrication (FFF) 

technique. Despite FFF's cost-efficiency, prevalent printing 

errors pose significant challenges to its commercial and 

environmental viability. This study proposes a solution by 

incorporating motion tracking nodes into the 3D printing 

process, tracked by cameras, enabling dynamic identification and 

rectification of printing failures. Addressing key research 

questions, the paper explores the applicability of motion tracking 

for failure detection, its impact on printed object quality, and the 

potential reduction in 3D printing waste. The proposed real-time 

monitoring system aims to fill a critical gap in existing 3D 

printing procedures, providing dynamic failure identification. 

The study integrates machine learning, computer vision, and 

motion tracking technologies, employing an inductive theoretical 

development strategy with active learning iterations for 

continuous improvement. Highlighting the revolutionary 

potential of 3D printing and acknowledging challenges in 

continuous monitoring and waste management, the suggested 

system pioneers real-time monitoring, striving to enhance 

efficiency, sustainability, and adaptability to diverse production 

demands. As the study progresses into implementation, it aspires 

to contribute significantly to the evolution of 3D printing 

technologies. 
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I. INTRODUCTION 

Since its creation in 1971, 3D printing has come a long 
way. However, it has just lately gained extreme popularity due 
to significant price reduction in both its equipment and 
materials. A technique of 3D printing known as fused filament 
fabrication (FFF) has grown in popularity making it the most 
widely utilized form of 3D printing to date [1]. This 
preeminence can be credited to its capacity to function without 
a heated print environment and possessing the ability to 
generate internal infills yielding a lightweight structure with 
enough support to have a strong shell [2]. Despite FFF cost-
efficiency the prevalence of printing errors remains significant, 
presenting challenges to the economic and environmental 
viability of the approach. Consequently, many endeavors have 
been undertaken to mitigate printing failures. Previous studies 
have utilized cameras and image examination to detect 
commonly occurring errors such as “blocked nozzle” and 
“incomplete print” allowing the monitoring of both the external 

shape of the printed object and internal structure of its 
layers [1], [3]. 

Real-time monitoring remains a feature not widely 
incorporated into 3D printing processes meaning that 
technologies and techniques for this purpose are 
underdeveloped. Currently, the most effective means of 
rectifying issues during printing involves manual adjustment of 
printing parameters. This process requires extensive human 
experience and thus is not scalable to the industrial level [2]. 

Motion tracking has been applied in recent years to a wide 
range of fields such as videogame development and medical 
application [4], [5], [6]. This technology uses nodes tracked by 
cameras to determine movement in their axes. In this paper, we 
explore an approach to implement real-time monitoring by 
integrating motion tracking nodes into the printing process. 
These nodes will later be tracked by cameras to identify 
printing failures based on the movement or misplacement of 
the nodes within their coordinates. Our research questions 
guide this exploration: Can motion tracking be applied for 
detection of failures in 3D printing? Does incorporating 3D 
motion tracking points affect the quality of the printed object? 
Does the utilization of motion capture technology result in a 
noticeable reduction in 3D printing waste produced by 
failures? 

By addressing these questions, we aim to shed light on the 
potential of motion tracking technology in revolutionizing real-
time monitoring for enhanced 3D printing processes. 

II. LITERATURE REVIEW 

A. Adaptive 3D Printing Error Detection 

The capacity to inspect objects in motion is central to 
various emerging additive manufacturing (AM) applications 
[7]. Through this work we are providing a novel approach for 
the automatic detection of a prints failure to reduce waste. The 
core component for the autonomous detection of failure in the 
system is a classification model which detects whether 
undesirable extrusion or deviations from the original CAD 
model exists [8]. 

By identifying errors as soon as they are produced the 
response rate of the system reaches or even surpasses the 
human reaction and the model can recognize inferior quality 
prints that humans will have a difficult time distinguishing with 
high accuracy. This self-diagnostic system has the potential to 
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be applied to other materials and manufacturing systems 
without human interaction [2]. 

B. AI Applications for Trajectory Interpretation and 

Correction 

This research aims to employ physical camera systems and 
advanced image processing models to detect and identify errors 
occurring during the 3D printing process. These errors 
encompass phenomena such as printing misalignment, over-
extrusion, and filament wastage. The primary objective of this 
endeavor is to establish a real-time monitoring mechanism that 
can promptly halt the 3D printing process in response to 
detected anomalies. To achieve this, we intend to integrate 
digital markers into the digital file intended for printing. 
Subsequently, the camera system will be tasked with the 
responsibility of capturing and analyzing the printing process 
to discern any deviations from the specified parameters, 
thereby facilitating immediate intervention when errors are 
detected. 

Similar idea was described in research of Kucukdeger & 
Johnson: Prior to 3D scanning, three user-defined reference 
points (~1 mm diameter) were placed around the perimeter of 
the object using a black marker to provide reference points for 
the 3D printing frame. The object was then scanned using a 
calibrated single camera-projector structured light scanning 
system (HP 3D Structured Light Scanner Pro S2; HP) to 
acquire the point cloud data following our previously reported 
protocols [7]. 

C. Literature Gap Analysis 

3D printers can quickly translate 3D design data into 
sophisticated forms by avoiding traditional cutting tools, 
fixtures, and many production phases, successfully tackling the 
difficulty of producing complex parts. As technology 
progresses, 3D printing has found widespread use in a variety 
of industries, including consumer electronics, automotive, 
aerospace, healthcare, defense, geographic mapping, and 
creative creation. For instance, BMW adopted 3D printing 
technology at some of its larger dealerships to produce spare 
parts for classic cars [9]. 

Since the first 3D printer was invented by Charles Hull in 
1986. After that, a great achievement has been made in 3D 
printing [10]. In the year 2000, ZcorpÓ, an American company 
in collaboration with the RilecenÓ Institute, pioneered a color 

3D printer utilizing inkjet printing technology. Toward the 
close of that year, an Israeli firm named Object Geometries 
introduced the Quadra 3D printer, which merged 
stereolithography apparatus (SLA) with 3D inkjet technology 
[11]. In 2010, a significant milestone was achieved in the field 
of medical 3D printing when an American firm known as 
OrganoxoÓ collaborated with an Australian company named 
InvetechÓ to produce human tissues and organs using live 
cells. 

America in 2012, products in electronic area, automobile 
manufacturing, medical treatment and industrial machinery 
industry occupy a large share [10]. In this case, the 
manufacturer, BMWÓ, has invested in purchasing 3D printers 
and developing 3D designs. As a result, they were able to shut 
down its regular automobile production lines, which were only 
utilized to produce replacement parts. As a result, BMWÓ has 
adopted a make-to-order strategy, in which spare parts are 
produced only when there is a need for them. 

The manufacturing industry is experiencing a significant 
transformation driven by the increasing demand for 
personalized products. 3D printing has emerged as a powerful 
tool, allowing for individualized manufacturing on an 
unprecedented scale [12]. This technology not only enhances 
product personalization but also revolutionizes industries by 
changing traditional production methods. The adoption of 3D 
printing results in faster production and reduced costs, enabling 
consumers to have more influence on the final product's 
design. Additionally, manufacturing facilities utilizing 3D 
printing are located closer to consumers, promoting a more 
flexible and responsive production process with enhanced 
quality control. Moreover, 3D printing reduces the need for 
global transportation, as manufacturing sites can be closer to 
end destinations, and efficient distribution can be achieved 
through advanced tracking technologies [13]. 3D printing 
presents several benefits, yet it also poses challenges, including 
the necessity for continuous product monitoring and the 
management of waste generated from filament usage. These 
challenges hinder its adoption across sectors, as implementing 
this technology entails risks without a guarantee of a positive 
return on investment in the production system. Despite these 
hurdles, 3D printing continues to evolve as a flexible and 
powerful technique in advanced manufacturing, marking its 
ongoing progress in the industry [13]. The result of literature 
study based on the defined themes is discussed in Table I. 

TABLE I.  LITERATURE STUDY BASED ON THE MAIN THEMES 

Research 

Studies 
Adaptive 3D printing error detection AI models for analysis of deviations 

inclusion of sustainability analysis for 3D 

printing waste 

[14] 

Using optical images for real-time defect 

detection through image correlation for 
temperature monitoring and thermal image 

analysis. 

Both thermal images using FLIR Thermal 

Studio Pro for color gradient adjustment 
and optical image based on feature 

extraction 

Mention of the advantage of in-process monitoring 

as a part of manufacturing because it provides the 
possibility of intervention or repair so that the 

print can be salvaged in this way preventing waste. 

[15] 

The pharmaceutical industry can utilize the 3D 

printing technology to print complex shapes to 
later determine their effectiveness in drug 

profile release by analyzing their volume and 
surface area. 

 

By the utilization of machine learning 
algorithms, they were able to determine 

the prediction of drug release profile of 
FDM printed formulations 

Machine Learning provides a suitable approach to 

modelling the 3D printing workflow. 

providing accuracies as high as 93% for values in 
the filament hot melt extrusion process in this way 

reducing the number of prints needed per trial. 

[16] 

 

The printer being utilized possess a Delta 3D 

printing Bed. 
The proposed approach has been evaluated on 

Utilization of sensors to collect 

information of different variables in both 
the 3-axis velocity sensors and 3-axis 

This work has proposed a new method for the 

construction of a fault detection model for 3D 
printers in this way they will be able to build a 
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two cases in 3D printers: fault detection of 12 

different join bearings, and fault detection in 3 
synchronous bands. 

angle sensors for error detection to test the 

proposed fCGAE technique to fault 
detection 

deep feature space from raw signals to identify 

flaws and prevent them from happening in future 
prints. 

[17] 

This paper proposes a data-driven fault 
detection framework for semi-supervised 

scenarios where labeled training data from the 

system under consideration is imbalanced, but 
data from a related system (the “source”) is 

readily available. 

The goal of this paper is to develop an 

efficient fault detection algorithm for 
cyber-physical systems operating in 

scenarios where there is imbalanced 

labeled training data generated by the 
actual plant under consideration, but 

where training data from a related system 

is readily available. 

This paper presents a domain-adaptation based 

technique capable of leveraging a small amount of 

labeled data generated by the real system together 
with data generated by an untuned simulator. 

The main result shows that optimization is 

possible to efficiently solve defects before they 
happen. 

[18] 

Solutions for the naturally occurring under-

extrusion in 3D printing resulting in 
mechanically weak prints as well as over-

extrusion causing excess use of material with 

little strength gain 

Utilization of deep-learning-based 

computer vision system to correct under- 
and over-extrusion issues commonly 

found in 3D printing technology such as 

the fused deposition modeling (FDM) 

The implementation of this model shows that the 
correction of under and over-extrusion errors when 

they happen thanks to the application of the 
developed system leads to a sixfold increase in 

print consistency while increasing print strength 

by up to 200%, reducing excess print material, and 
saving up to 40% material cost. 

[19] 

Use inexpensive webcams and a single multi-

head deep convolutional neural network to 
augment any extrusion-based 3D printer with 

error detection, correction, and parameter 

discovery for new materials. 

CAXTON system for autonomous data 
collection A network of eight FDM 3D 

printers were used for data collection. 

Creality CR-20 Pro printers were chosen 
due to their low cost, preinstalled 

bootloader and included Z probe. 

Training a multi-head neural network using 

images automatically labelled by deviation from 

optimal printing parameters. 
The thus trained neural network, alongside a 

control loop, enables real-time detection and rapid 

correction of diverse errors that is effective across 
many different 2D and 3D printers. 

[20] 

Use of soft sensor that was 3D printed, 

development of an AI-powered 3D printing 
system that adapts to changes and movements 

of target surface, and use of hydrogel-based 

EIT sensor to monitor lung deformations. 

Combination of “offline” and “online” 
machine learning vision-based tracking for 

estimating surface deformation. 

3D printing system that estimates the motion and 

deformation of the target surface to adapt the 
toolpath in real time. Therefore improving: 

Precision, energy efficiency, versatility and 

reducing waste. 

[21] 

SLA process uses a digital micromirror device 

to project a set of mask images onto the resin 
surface to cure layers. After solidification of 

each layer, the building platform moves down 

at a predefined amount for the next layer. 

To predicting, learning, and compensating 
3-D shape deviations based on data, there 

was proposed shape deviation generator 

(SDG), a data-analytical framework to 
facilitate the learning and prediction of 3-

D printing shape accuracy. 

To predict, learn, and compensate for 3-D shape 

deviations using shape measurement data, it was 
proposed a shape deviation generator (SDG) under 

a novel convolution formulation to facilitate the 

learning and prediction of 3-D printing accuracy. 

 

The identified research gap stems from the absence of 
studies integrating motion tracking technology with cameras 
for failure detection in 3D printing processes. This void in the 
existing literature underscores the need for our research, as it 
addresses this deficiency by proposing an innovative approach 
that combines the application of motion tracking dots on prints 
that will later be analyzed by the cameras to autonomously 
identifying and halt a print one’s failure is detected. This 
scientific gap demonstrates the significance of our approach to 
failure detection in 3D printing, showcasing a unique 
contribution to the field. 

III. PROPOSED SOLUTION FOR AI BASED FAILURE DETECTION IN 

SUSTAINABLE 3D PRINTING 

A. Conceptual Model of Agents, System Elements Interacting 

with Each Other 

In the proposed solution, we foresee a dynamic interaction 
between many components, including 3D printer, motion 
tracking nodes, cameras, labeled and unlabeled data, and the 
monitoring system as illustrated in Fig. 1. The system’s main 
key is the 3D printer, which leads to additive manufacturing 
processes. Motion tracking nodes are strategically positioned 
on the 3D printer and play a crucial role in tracking its motions 
and the behavior of the manufactured product. Cameras are 
used to record the real-time movement of these nodes and 
provide us with unlabeled data. Two types of data (labeled and 
non-labeled) undergo a comparison process, by projecting one 
date onto another and looking for deviations. The monitoring 
system oversees analyzing data, identifying abnormalities, and 

terminating a printing process in real time. During the 3D 
printing process, motion tracking notes continuously record the 
position and orientation of the printer’s components during the 
3D printing process. Collected information is then transmitted 
to the cameras, which check the movement and the position of 
these nodes. Therefore, the camera data is analyzed by 
monitoring system and compared to the predicted motion 
patterns. If deviations are detected, the system intervenes in 
real-time to stop the printing process, to assure print quality 
and waste reduction. 

 

Fig. 1. The conceptual model 
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Our first hypothesis is that incorporating motion tracking 
technology into the 3D printing process can drastically 
improve the identification and mitigation of printing errors. 
Motion tracking technology, which has been used effectively in 
a variety of sectors, may be used to follow 3D printing in real 
time. It enables the detection of irregularities in the movement 
and location of printer components, which can serve as early 
warning signs of probable printing difficulties. 

Our suggested solution tackles a research gap by bringing a 
fresh technique to 3D printing failure identification. Existing 
solutions frequently rely on post-print inspection or inadequate 
fault detection while printing. We can monitor the whole 
process in real time by including motion tracking nodes and 
cameras, recognizing problems as they occur. This novel 
technique makes a significant addition to the discipline by 
minimizing waste and improving 3D printing quality. 

B. Framework for Detailed Solution 

This research is based on the ontological premise that 
reality can be observed and measured. We think an 
epistemological stance that prioritizes empirical evidence and 
data-driven conclusions. The axiological stance cares for 
sustainability, efficiency, and the reduction of waste in 3D 
printing processes. The approach to theoretical development is 
essentially inductive. We will collect unlabeled data from real-
world 3D printing processes, compare it with labeled data, and 
draw conclusions based on our findings. Additionally, we will 
apply a logical approach to expand on current ideas in 3D 
printing, motion tracking, and error detection. 

The strategy is incorporating motion tracking technology 
into 3D printing. Data gathering with the help of motion 
tracking nodes and cameras, data processing using computer 
vision and machine learning algorithms, and the construction 
of real-time monitoring system are all part of the methodology. 
The experiment design will incorporate probability sampling 
methods to ensure a representative and unbiased selection of 
participants or data points, with the plan to print 10 test models 
for comprehensive evaluation. 

The fusion of labeled and non-labeled data in the context of 
3D printing failure detection involves a scientifically rigorous 
process to harness the strengths of both datasets. Our Labeled 
data, comprising the original 3D model, the G-code, provides 
explicit information about the expected finished product. Non-
labeled data, acquired from cameras during the printing 
process, captures a broader range of real-world scenarios. 

To facilitate the merging of labeled and non-labeled data 
detection, we propose a systematic approach. Initially, a 
machine learning model is trained using a labeled dataset that 
includes successful printing as well as varied failure 
occurrences. The model is then applied to unlabeled data in 
order to detect probable failure points. 

The temporal synchronization of our labeled data, 
represented by the G-code, and our unlabeled data, captured by 
the cameras, is a pivotal aspect facilitating their seamless 
integration. Both datasets are equipped with time stamps, 
allowing for precise alignment of events during the 3D printing 
process. The time stamps act as temporal markers, ensuring a 
correspondence between the specific instructions encoded in 

the G-code and the corresponding visual information recorded 
by the cameras. This temporal alignment not only establishes a 
coherent chronological sequence but also enables the creation 
of a unified temporal framework for our data. 

Active learning chooses samples with low model 
confidence for manual annotation, which enriches the labeled 
dataset. This merged dataset is utilized for model retraining, 
which improves the model’s capacity to detect faults. Iterative 
self-training uses high-confidence predictions on leftover 
unlabeled data to extend the classified dataset. This cycling 
process improves the performance of the model, resulting in a 
continual learning loop for robust 3D printing failure 
verification. Regular assessment ensures that the model 
generalizes successfully and adjusts to new data patterns. 

IV. EVALUATION SCENARIOS 

A. The Experiment Type for Your Research Project 

Building upon the innovative methodology presented in 
[22-24], our proposed approach extends the capabilities of AI-
based Computer Vision for failure detection in 3D printing. 
While the original work focused on identifying stringing 
defects during the printing process, our advancement involves 
the integration of labeled and non-labeled data using active 
learning and self-training. By incorporating time-stamped G-
code information and camera feed data into our model, we 
enhance its capacity to detect a broader spectrum of failures in 
real-time. 

This expansion not only allows for the identification of 
stringing but also facilitates the recognition of various other 
printing defects. Through a robust validation strategy, we aim 
to demonstrate improvements in both precision and recall, 
showcasing the efficacy of our approach in comparison to the 
existing model. Moreover, our proposed framework opens 
avenues for real-time adjustments to the printing process, 
enabling not only the termination of flawed prints but also 
corrective actions for parameters related to identified defects. 

To achieve our goal of refining 3D printing failure 
detection, our first step will be to collect a diverse dataset 
comprising labeled data (G-code) and non-labeled data 
obtained from cameras monitoring the 3D printing process. 
Ensuring that both datasets possess time stamps for 
synchronization. After that we will preprocess the labeled data 
by extracting relevant features from the 3D models, for our 
non-labeled data, we will employ computer vision techniques 
to process the camera feed, extracting meaningful visual 
information. 

Once we have our data, we will implement an active 
learning approach to strategically select informative instances 
from the non-labeled dataset for manual annotation. This 
iterative process optimizes the model's performance with 
minimal labeling effort. Moving forward we will apply self-
training to iteratively improve the model's understanding by 
incorporating confidently predicted but initially non-labeled 
instances into the training process. This step enhances the 
model's adaptability to diverse printing scenarios. Using this 
information we will train a machine learning model, such as a 
Deep Convolutional Neural Network, using the merged dataset. 
We will utilize the labeled data for supervised learning and the 
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active learning and self-training iterations to enhance the 
model's performance. 

In order to ensure the implementation of feature alignment 
techniques for compatibility between the labeled and non-
labeled data we will map the feature spaces of both datasets to 
a common domain, facilitating seamless integration. To 
validate our results, we will split the dataset into training, 
validation, and test sets. Employing cross-validation techniques 
and select appropriate evaluation metrics (precision, recall, 
etc.) for a comprehensive assessment of the model's 
performance considering real-world testing to evaluate the 
model's robustness. 

B. Validation Approach: Employing Data Augmentation and 

Model Evaluation in Real-Time Defect Detection 

After gathering training data for the stringing defect, we 
implemented various Data Augmentation techniques to 
increase the number of training instances. Data Augmentation 
comprises a set of techniques applied to existing datasets to 
generate new synthetic data with meaningful information real, 
and its application was deemed necessary in this context. 
Specifically, for each image in the initial training set, we 
employed scaling to reduce the size (image resize), horizontal 
flipping, random cropping, 90-degree rotation, and random 
brightness adjustments. By applying these five data 
augmentation techniques to each of the 500 original training 
images, we expanded the dataset to a total of 2500 images. 

There is a diverse selection of cutting-edge algorithms 
currently accessible, exhibiting differences in training speed, 
accuracy, and testing speed across benchmark datasets. In our 
case, we consider, use of cameras the necessity of striking a 
balance between achieving high accuracy and swift detection, 
given that the intended use of the model involves deployment 
in a real-time environment. In this investigation, the chosen 
model was the Single Shot Detector [22]. 

The Single Shot Detector running on 300 × 300 input 
(SSD-300), published in 2016, achieved a mean Average 
Precision (mAP) of 74.3% on benchmark Dataset VOC-2007 
at 59 frames per second (FPS) and a mean Average Precision 
(mAP) of 41.2% at an Intersection over Union (IoU) of 0.5 on 
benchmark Dataset of Common Objects in Context (COCO 
test-dev2015). 

V. CONCLUSION 

In conclusion, our current study addresses critical 
challenges in integrating motion tracking technologies for real-
time monitoring in 3D printing. While providing valuable 
insights, there remain opportunities for further exploration and 
improvement in this field. 

It is imperative to thoroughly evaluate the research 
questions posed in this study, identifying areas that warrant 
additional investigation. These areas include: 

 Extending the Scope of Motion Tracking: Explore the 
feasibility of incorporating advanced motion tracking 
technologies beyond the nodes-camera configuration to 

enhance precision and robustness in real-time 
monitoring. 

 The Influence on Printing Speed and Efficiency: 
Examine how motion tracking affects the overall speed 
and efficiency of the 3D printing process, investigating 
potential impacts on printing speed and total production 
efficiency. 

 Material Considerations: Investigate the interaction of 
various 3D printing materials with motion tracking 
systems, accounting for material differences and 
printing settings to assess the suggested system's 
flexibility across a wider range of materials. 

 Human Interaction and Intervention: Examine the role 
of human contact and intervention when combined with 
real-time monitoring, considering scenarios where 
human operators may need to act based on monitoring 
system feedback, with implications for scalability in 
industrial settings. 

 Economic and Environmental Consequences: Conduct a 
comprehensive examination of the economic and 
environmental consequences of incorporating motion 
tracking for real-time monitoring, comparing cost-
effectiveness and sustainability to standard mistake 
correction approaches. 

 User Acceptance and Experience: Investigate the user 
experiences and adoption of motion tracking-based real-
time monitoring by 3D printer operators. Explore 
factors influencing user adoption, potential challenges, 
and ways to enhance user acceptability. 

In summary, our study delves into the realm of 3D printing, 
which has evolved significantly since its inception in 1971, 
with fused filament fabrication (FFF) being the most widely 
used type today. Despite its affordability, FFF faces printing 
problems that threaten its commercial viability and 
environmental sustainability. Our proposed real-time 
monitoring system, utilizing motion tracking nodes and 
cameras, aims to address this gap by dynamically identifying 
and mitigating printing issues as they occur. 

This research envisions a robust system for real-time 
intervention, ensuring print quality and waste reduction by 
integrating labeled G-code data with non-labeled data from 
cameras. The proposed framework employs an inductive 
theoretical development strategy, combining machine learning, 
computer vision, and motion tracking technologies. The 
experimental design includes active learning and self-training 
iterations, demonstrating the model's improved flaw detection 
over time. Our findings align with the transformative potential 
of 3D printing, emphasizing the need for individualized and 
flexible production. In conclusion, our suggested system 
pioneers real-time monitoring in 3D printing, utilizing motion 
tracking, computer vision, and machine learning. As we move 
into the implementation phase, we anticipate that our study will 
contribute to the evolution of 3D printing technologies, 
enhancing efficiency, sustainability, and adaptability to diverse 
production demands. 
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