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Abstract—Vision Transformers (ViTs) have become increas-
ingly popular in various vision tasks. However, it also becomes
challenging to adapt them to applications where computation
resources are very limited. To this end, we propose a novel multi-
path hybrid architecture and develop a series of lightweight ViT
(MH-LViT) models to balance well performance and complexity.
Specifically, a triple-path architecture is exploited to facilitate
feature representation learning that divides and shuffles image
features in channels following a feature scale balancing strategy.
In the first path ViTs are utilized to extract global features
while in the second path CNNs are introduced to focus more
on local features extraction. The third path completes the
representation learning with a residual connection. Based on
the developed lightweight models, a novel knowledge distillation
framework IntPNKD (Normalized Knowledge Distillation with
Intermediate Layer Prediction Alignment) is proposed to enhance
their representation ability, and in the meanwhile, an additional
Mixup regularization term is introduced to further improve
their generalization ability. Experimental results on benchmark
datasets show that, with the multi-path architecture, the devel-
oped lightweight models perform well by utilizing existing CNN
and ViT components, and with the proposed model enhancement
training methods, the resultant models outperform notably their
competitors. For example, on dataset minilmageNet, our MH-
LViT_M3 improves the top-1 accuracy by 4.43% and runs 4x
faster on GPU, compared with EdgeViT-S; on dataset CIFA10,
our MH-LViT_M1 improves the top-1 accuracy by 1.24% and
the enhanced version MH-LViT_M1# by 2.28%, compared to the
recent model EfficientViT_M1.

Keywords—Multi-path hybrid; lightweight ViT; normalized
knowledge distillation; Mixup regularization

I. INTRODUCTION

In recent years, Vision transformers (ViTs) [1] have re-
ceived increasing attention in many visual tasks, achieving
remarkable results in tasks such as image classification [1], [2],
[3], target detection [4], [S], [6], [7] and semantic segmentation
[81, [9], [10], [11], [12], [13]. However, the computational
overhead of the self-attention mechanism makes ViTs less
efficient than Convolutional Neural Networks (CNNs) [14] on
memory and computationally constrained devices. The huge
model size and computational cost make it challenging to adapt
them to real-time applications. Therefore, researchers tend to
build lightweight and efficient ViT models.

Some approaches aim to build lightweight versions of
ViT models by reducing the number of feature channels or
self-attentive heads. Nevertheless, such approaches usually
lead to significant performance degradation. The author in
[15] successfully improves the performance of existing tiny
ViTs by introducing a plugin that groups and shuffles feature
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channels. Alternatively, some researchers have attempted to
improve model performance through specific designs, such
as combining computationally expensive self-attention with
efficient convolutional operations to create hybrid efficient
ViTs [16], [17], [18], [19], [20]. Among them, MobileViT
[16] combines the image-specific inductive bias of CNNs
and the global information processing capability of ViTs to
encode both local and global information efficiently. EdgeViT
[19] combines the attention mechanism and CNNs through
the implementation of local-global-local (LGL) blocks. Nev-
ertheless, most of these methods serially stack self-attention
and convolutional layers, and the extraction of global fea-
tures often compromises previously extracted local features,
failing to take full advantage of global and local features. To
overcome this problem, several studies have begun to explore
the application of parallel structures in feature extraction. The
parallel structure allows the self-attention and convolutional
layers to work simultaneously and extracts global and local
features independently, and then fuses them in some way. This
structure can maintain the integrity of local features while
combining global features to achieve a more comprehensive
feature representation. For example, TransXNet [20] efficiently
extracts and fuses global and local features by combining
self-attention and convolution in parallel to achieve excellent
performance.

Therefore, this paper adopts a parallel structure approach
to extract both global and local features, fully exploiting the
diversity of features to enhance the model performance. Unlike
previous parallel structures, we have added an additional resid-
ual branch to enhance the learning ability of feature representa-
tion, without explicitly increasing parameters or computational
overhead. Specifically, we exploit a feature scale balancing
strategy to divide input features into three parts. The first one
is fed into the Transformer branch to extract global features,
the second one is fed into the CNN branch to extract local
features, and the last one is directly used to form the Residual
branch. Subsequently, the feature fusion module is employed
to shuffle extracted features and balance their chances to be
processed in different branches. Based on this, we conclude
that the tiny model has strong features representation ability.
To further release their representation potential, we propose a
new knowledge distillation framework, IntPNKD (Normalized
Knowledge Distillation with Intermediate Layer Prediction
Alignment), to effectively improve the inference performance
without additional inference cost. In addition to the standard
knowledge distillation procedure of NKD (Normalized Knowl-
edge Distillation) [21], IntPNKD aligns the predictions made
respectively on intermediate feature maps of the teacher and
the student. In the meanwhile, an image mixing regularizer
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is introduced to further enhance the generalization ability of
the resultant model. The main contributions of this paper are
summarized as follows:

e  We propose a multi-path hybrid architecture to design
lightweight ViT model (MH-LViT), where a triple-
branch architecture (transformer, CNN, and residual)
is employed to extract efficiently local and global fea-
tures, and the features extracted by multiple branches
are further shuffled and re-assigned with a feature
fusion module.

e  We propose a new knowledge distillation framework
IntPNKD to improve the representation ability of
MH-LViT, which is further enhanced by introducing
an image mixing regularization term. The achieved
performance improvement costs nothing in inference.

e We develop a series MH-LViT models with various
sizes that are tested on multiple benchmark datasets.
The experimental results show that our models balance
well the efficiency and the accuracy.

II. RELATED WORK
A. Efficient Vision Transformers

In order to reduce the number of parameters and the
computational overhead, a series of works on efficient vision
transformers have been proposed, which cover a wide range
of interesting ideas such as lightweight module design, model
compression, token compression, hybrid model design, and so
on. Window-based Self-Attention ViT proposed in Swin [4]
reduces the computation cost of each transformer block by
dividing the feature map into windows and restricting the at-
tention operation within a local window. In this way, the length
of input sequence fed into Transformer is reduced, leading
to improved efficiency. Wang et al. [22] proposed a spatial-
reduction attention (SRA) to reduce the computation cost of
self-attention, by downsampling the spatial resolution dimen-
sions of the input Query and Key branches via a lightweight
depthwise convolution. Token merging [23] achieves parameter
compression by merging tokens with large semantic similarity.
CVT [24] and LeViT [17] insert some convolutional layers into
Transformer layers, to downsample feature maps and perform
local information fusion, where the Transformer layers are
used to capture the global information from deep features. Liu
et al. [25] proposed a cascade group attention module that uses
only three or four attention heads, to increase the diversity of
features while reducing computational redundancy in multi-
head attention.

B. Efficient Convolutional Neural Networks

Actually, before the arrival of ViT, models based on
Convolutional Neural Networks (CNNs) faced the same chal-
lenge to deploy them to devices with limited computational
resources. To fix this, a series of elegant work have been
proposed. MobileNets [26], [27] leverage depthwise separable
convolutions to reduce the computation complexity. ShuffleNet
[28] utilizes pointwise group convolution and performs channel
shuffle operations to reduce the computation cost. IDConv[20]
reduces the computation overhead by utilizing dynamic deep
convolutions and adaptive average pooling. Overall, efficient
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CNNs work well in a variety of scenarios which inspires us
to develop a novel model that combines efficient CNNs and
ViT in some way, to extract effectively both global and local
features.

C. Knowledge Distillation

Knowledge distillation (KD) has attracted wide attention
in the field of model compression, which typically transfers
knowledge from a teacher (model) to a student (model) to
improve the latter’s performance. This framework, originally
proposed by Hinton et al. [29], utilizes both the hard labels
of ground truth and the soft ones provided by the teacher to
guide the learning process of the student. Recently, there have
emerged studies [30], [21] focused on KD in ViT. For instance,
DeiT [30] introduces a novel distillation procedure which relies
on a distillation token ensuring that the student learns from
the teacher through attention, to achieve efficient transformers
with competitive top-1 accuracy on ImageNet. MixSKD [31]
is a self-knowledge distillation framework that enables the
network to learn cross-image knowledge by modeling super-
visory signals from mixup images. The most relevant work
on knowledge distillation to ours is NKD [21], which uses
cross-entropy to align respectively the probability distributions
of target class and non-target classes. We build our KD
framework on NKD and introduce Middle Feature Prediction
Alignment into it for better knowledge transfer.

III. PRELIMINARIES
A. EfficientViT

Unlike the classic ViT [1], EfficientViT [25] adopts a sand-
wich layout and a cascade group attention. Specifically, the
cascade group self-attention layer <I>Z-A is sandwiched between
two FFN (Feed Forward Network) layers each of them is
denoted with ®". The operation of the i-th block can be
formulated as:

Xiy1 = 0F (3 (2F (X)), ey

where X is the input feature of the i-th block. In the the
cascade group self-attention layer ®:!, the input feature X;
is divided into J parts which are fed into J attention heads,
where the output of each head is added to the subsequent heads
to enrich the feature information. Formally, the operation of
the j-th attention head can be expressed as:

i {Attn<Xf ) ifi=0.

© ) Attn(X7 + Attn(X7TY), if > 1,

where, X f denotes the j-th split of input X; and X f is its
corresponding attention output. Then J attention outputs are
concatenated:

X, = oA

?

(X;i) = concat[{X7}/_,], 3)

where, X; is the output of the i-th cascade group attention
layer.
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Fig. 1. Architecture of MH-LVIT: (a) Overall architecture of MH-LViT; (b) Multi-Path branch block.

B. Normalized Knowledge Distillation

Normalized Knowledge Distillation (NKD) [21] is an im-
provement version of the decoupled knowledge distillation
(DKD) [32] that normalizes the non-target logits and utilizes
Cross-Entropy (CE) instead of Kullback-Leibler (KL) diver-
gence to align the target and non-target class distributions
respectively. In particular, the loss of NKD can be formulated
as follows:

Lynwxp = —Tilog(S;) —~ - A*- ZN(TIS\)ZOQ(N(SI?)% )
kAL

where, the index ¢ denotes the target class, T (Sy) denotes
the output probabilities of teacher (student) model correspond-
ing to the k-th class, A is the KD temperature [29], v is the
hyper-parameter to balance the two items in the loss, and A/ ()
denote the normalization operation.

C. Mixup

Mixup [33] generates a mixed image (Zqp, Yap) by linearly
combining a pair of original images {xq,va;Zp,ys} € D,
where D denote a data set, x, (xp) denotes the image a (b)
and y, (yp) is its corresponding label. The mixed image and
its corresponding label are formulated as follows:

ZTap = Axq + (1 — N)xp,

5
Yab = MJa + (1 = Ny, ©)

where, the combination is controlled by the mixing factor
A sampled from the beta distribution.

IV. METHODS
A. Overview

We propose a new multi-path hybrid architecture to design
lightweight ViT model MH-LViT. The overall architecture of
MH-VIiT is shown in Fig. 1(a). The model adopts a hierarchical
architecture, that effectively reduces the resolution of feature
maps during the forward propagation process, while gradually
increases the number of channels for feature map. Specifically,
MH-LVIT contains three stages, each of which consists of L
MH-LVIT blocks. In order to reduce the amount of parameters
and computation overhead, we divide the input features by
channels in the ratio of 3 : 2 : 1 via the feature scale balancing
strategy, and then learn images’ representation in parallel
through three paths, i.e. Transformer, CNN and Residual. By
introducing the multi-hybrid structure, the model can capture
global information and local details at the same time, to
understand well the images for latter computer vision (CV)
tasks. In addition, a new type of knowledge distillation and
a mixup regularization are exploited to further improve the
inference performance without any additional inference cost.

B. Lightweight Model Design

1) Multi-Path branch: As shown in Fig. 1(b), the MH-
LViT Block is mainly composed of a three-branch architecture
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and a feature fusion module. In particular, the three branches
includes an efficient Transformer (EfficientViT Block), a
lightweight CNN (IDConv) and a residual connection. For-
mally, the operations in MH-LViT Block can be written as
follows:

XEXE, XT =Split(X;), X! :X¢: X =3:2:1; (6)

X! = Efficient ViTBlock(X?); (7)
X¢ = IDConv(X?); 3

X,; = Concat(X!, X¢, X7); )]
Xip1 = FF(X;). (10)

Here, with a little notation abuse, X; denotes the input
feature of the i-th MH-LViT block and X ; the corresponding
output. Split(-) denotes the operation to divide the input
feature into three splits with the specified ratio and : denotes
the ratio of the number of channels.

2) Transformer branch: 1t is particularly important to cap-
ture effective global information of images for CV tasks. To
this end, we introduce the cutting-edge EfficientViT [25] to
our model to extract global features. EfficientViT not only
inherits powerful capabilities of the vanilla ViT model, but
also significantly improves the computational efficiency via a
sandwich layout and a cascade group attention. In addition,
the depthwise convolution (DWConv) is used for information
fusion before the final FFN layer of the block. The part of input
features X,f is fed into the EfficientViT branch, to learn the
representations of images base on the global information. The
processing of X! in an EfficientViT Block can be expressed
as follows:

X{ = FFN(DW((®{(FFN(DW(X}))))))), (D)

where, DW (-) denotes the depthwise convolution and other
notations denote the same operation as indicated before.

3) CNN branch: In order to inject inductive bias for
local feature extraction, this paper introduces IDConv (Input-
dependent Depthwise Convolution) [20] to extract image local
information. IDConv can dynamically generate convolution
kernels, which enhances the adaptability and characterization
of CNN for different data features. Firstly, the spatial di-
mension of input features X¢ € C/3xHxW is compressed
to K2 by using adaptive pooling, to aggregate the spatial
context information. Subsequently, two consecutive 1x1 con-
volutional layers are utilized to generate the attention map
A" € (GxC/3)xK?, where G represents the number of
attention groups. Then, A’ is reshaped to GxC/3xK? ,
where a softmax operation is applied in the (-dimension to
generate the attention weights A € Gx(C/3x K?2. Finally, the
attention weight A is element-wise multiplied with a set of
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learnable parameters P € G'xC/3x K? and summed along the
G-dimension to obtain the input-dependent deep convolution
kernel W € C/3x K?2. This whole process can be expressed
as follows:

Al = Conv(Conv(AdaptivePool(XY))); (12)
A; = Softmax(Reshape(A})); (13)
G
Wi= ) (Pi)g(Ai)g; (14)
g=1
X =W;X¢. (15)

4) Residual branch: As we know, in CV models, the
information of original features may be weakened or lost when
a series of transformation operations have been performed on
them. To further enrich the feature representation and to ensure
that the model can make full use of the original information,
we preserve part of original features, i.e. X, and do not
perform any transforming or processing on these features. In
this way, we include both processed and unprocessed raw
features to enhance the learning ability of feature representa-
tion, without explicit increasing in parameters or computation
overhead.

5) Fusion module: For the features extracted through mul-
tiple paths, we introduce a feature fusion module to shuffle
them, to let features in each branch get the chance to be
fed into other branches. The feature fusion module mainly
implements channel shuffle, aiming to shuffle the limited in-
teraction between branches by shuffling features from different
branches. This mixes the features from different branches,
thereby achieving information fusion. Specifically, the global
features extracted through Transformer Branch, the local fea-
tures through CNN Branch, and the features for residual
connection are first concatenated and then input into the fusion
module, where a channel shuffle operation is utilized to shuffle
inputs. In particular, the input feature tensor X; is grouped into
a certain number of groups by the channel-dimension, and then
the channels within each group are rearranged to obtain the
shuffled tensor th“fﬂe. Finally, thuffle is restored to the
original shape to obtain the fused feature tensor X, ;. This
module effectively mixes the features extracted from different
branches, to avoid features in one branch are locked within this
branch. Formally, the operations in FF module can be written
as follows:

X97"P = Splitgroup(Xi); (16)
th“ffle = Shuﬂle(XfrouP); (17)
Xip1 = Reshape(f(fh"fﬂe). (18)

www.ijacsa.thesai.org

1055 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

Probabilities

Teacher model

Probabilities

| middle feature |—>| FC |—>

| middle feature |—>| FC |—>
1

S

Student model

St

O OTT1T] /
Tl TI t

Y/ 0ooo
oo Ve ;

Probabilities 5

)
O OTT1T1]

__________________________

[ target
[ non-target

Probabilities

Fig. 2. Illustration of IntPNKD (Normalized knowledge distillation with intermediate layer prediction alignment).

C. Lightweight Model Enhancements

1) IntPNKD: Limited to its lightweight, the developed tiny
model inevitably sacrifice its performance to some degree.
To this end, we further propose a new distillation framework
IntPNKD to improve its representation ability. Specifically,
as shown in Fig. 2, IntPNKD transfers knowledge from the
teacher (standard model) to the student (lightweight model),
by aligning not only the output logits of two models (as vanilla
NKD does) but also the predictions made on intermediate
layers’ feature maps. While the traditional knowledge distil-
lation (NKD) focuses on aligning the final output logits, it
may overlook important feature information encoded in the
intermediate layers, which plays a critical role in the overall
learning process. With the additional alignment, IntPNKD im-
proves the effectiveness of knowledge distillation from teacher
to student. Formally, let Xgid (Xriid) denote the features of
the intermediate layer of teacher (student) model, FC(-) denote
the fully connected layer and P(-) the softmax operation. Then
the total distillation loss of IntPNKD can be written as:

Lintpnip = Lngp + KL(P(FC(XZ ., 2

). P(FC(X0))).
(19)

2) Mixup regularization: Following the idea of image
mixing in MixSKD [31], we introduce a regularizer Lj;r to
our case (the tiny student model), to enhance the generalization
ability of the developed model. As shown in Fig. 3, we mix
randomly two original images, e.g. x, and x}, to obtain a
mixup one ., and expect that the probability distribution
output by the model on x,; and the one given by mixing the
logits of z, and x;, are not too far from each other. In particular,
the KL divergence is utilized to form the regularization term,
to guide the model make relatively stable predictions on
mixup image and original ones, leading to improved inference
performance. The regularization term can be formulated as:

Lyr = KL(P* (X4, X3), P*(Xap)), (20)

P5(X,, X3) = Softmax(AS(X,) 4+ (1 — N)S(X3)), (1)

P5(X,5) = Softmax(S(Xap)), (22)

where, P(-) denotes the softmax operation, S(-) the logit
(before softmax operation) output by the tiny student model,
and A is the mixing factor as in Eq. (5).

Combining everything together, the total loss function L
used to train the lightweight model can be written as:

L=Lcg+ Linpnkp + Lk, (23)

where, Lo is the cross-entropy loss guided by the ground
truth.

V. EXPERIMENTS

In this section, we perform experiments on several bench-
mark datasets, to validate the effectiveness of proposed meth-
ods. We first elaborate on the implementation details of the
experiments and then present the main experimental results of
the proposed models and the relevant baseline models, which
are discussed in depth. To further dissect the performance of
proposed model, we also conduct a series of ablation studies
to evaluate the practical effects of its key components.

A. Implementation Details

We conduct image classification experiments on three
benchmark datasets, i.e. CIFAR10 [34], CIFAR100 [34] and
minilmageNet [35]. In building the models, we used two tool
libraries, i.e. PyTorch 1.11.0 [36] and Timm 0.5.4 [37]. The
AdamW [38] optimizer and the cosine learning rate scheduler
are used to train related models, each of which is trained 300
epochs from scratch on an Nvidia A100 GPU. For the input
images, we resize and randomly crop them to 224 x 224 pixels.
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Fig. 3. Illustration of mixup regularization.

The batch size is fixed to 64, the initial learning rate is set to
1x10~2, and the weight decay is 0.01. In addition, we use the
same data augmentation strategies as in[30], including auto-
augmentation [39] and random erasing [40]. We evaluate the
model with the size, the top-1 accuracy, the throughput and
Flops to get a full picture of its performance. As for KD, we
utilize recently proposed CARTE-B [41] as the teacher model,
which performs well with a medium model size by pre-training
on ImageNet.

B. Main Results

We compare the developed MH-LViT with popular efficient
models based on CNN or ViT and report the results. The results
show that MH-LViT models with different sizes achieve the
best accuracy and speed tradeoff across benchmark datasets in
most cases.

1) Results on minilmageNet: Table 1 summarizes the re-
sults on the dataset minilmageNet achieved by the proposed
lightweight models and multiple SOTA competitors. We first
compare MH-LViT with tiny models whose size are close to
it. As can be seen from the table, MH-LViT_MI outperforms
EfficientViT_M1 and EdgeViT-XXS by up to 5.57% and
6.07% respectively, with a comparable number of parameters.
Compared with ShuffleNetV2 2.0x, MH-LViT_M2 improves
the top-1 accuracy by 1.46% with fewer parameters and faster
inference speed. Compared with EdgeViT-S, MH-LViT_M3
improves the top-1 accuracy by 1.74% and runs 4x faster
on GPU. More interestingly, the enhanced version MH-LViT*
outperforms all competitors in terms of accuracy. We can ob-
serve from Table I that, MH-LViT_M3* achieves 81.50% top-
laccuracy on this dataset, which outperforms EdgeViT-S by up
to 7.41% with a comparable number of parameters. Compared
with EdgeViT-S, MH-LViT_M2* improves the top-1 accuracy
by 4.19% with lower parameters and Flops. MH-ViT with
various model sizes perform well on dataset minilmageNet
and the results show that the multiple-path design is effective
and model enhancement training strategy even goes an extra
mile.

2) Results on CIFARIO0: Table II shows in detail the
performance of proposed models and its competitors on dataset
CIFAR-100. For example, MH-LViT_MI improves the top-
1 accuracy by 2.93% compared to EfficientViT_M1. MH-
LViT_M2 improves the top-1 accuracy by 2.32% and runs
3x faster on the GPU, compared to EdgeViT-XS that has a
comparable number of parameters. Compared to ShuffleNetV?2
2.0x that achieves the best top-1 accuracy on this dataset, MH-
LViT_M2 provides a competitive top-1 accuracy but has a
1.8x throughput. MH-LVIiT_M2* even goes further and can
beat ShuffleNetV2 2.0x with 4.01% improvement in top-1
accuracy. Compared to models with higher throughput such as
EfficientViT_M3, MH-LViT_M2 improves its top-1 accuracy
by 3.32% while maintaining a similar throughput. When model
size goes large, MH-LViT_M3* outperforms EdgeViT-S in top-
1 accuracy by 5.54% and runs 4.5x faster than it on GPU.

3) Results on CIFARI0: Table III summarizes experimental
results of related models on dataset CIFA10. As what found in
Tables I and II, from Table III one can find similar performance
advantages of MH-LVIiT models over their competitors. For
example, MH-LViT_M1 runs 5.2x faster than EdgeViT-XXS
while improves the top-1 accuracy by 0.39%. The enhanced
version MH-LViT_M1* achieves up to 96.28% top-1 accuracy
on CIFA10 with 3.1M parameters. Compared with EdgeViT-
XS model, MH-LViT_M2%* runs 3.7x faster on the GPU with
a comparable number of parameters and top-1 accuracy. MH-
LViT_M3* achieves the highest top-1 accuracy of 96.75% with
12.5M parameters.

Overall, experimental results on bench mark datasets vali-
date that the developed lightweight models with multiple-path
design work well and can strike a good balance between the
efficiency and the accuracy. The proposed model enhancement
training strategy is effective and can provide further significant
accuracy improvement without any additional inference cost.

C. Ablation Study

In this section, we validate the effectiveness of main com-
ponents of MH-LViT/MH-LViT#*, such as Multi-Path Branch,
feature fusion module, IntPNKD, and mixup regularization, by
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TABLE I. MH-LVIT IMAGE CLASSIFICATION PERFORMANCE ON MINIIMAGENET WITH COMPARISONS TO STATE-OF-THE-ART EFFICIENT CNN AND VIT

Model Params(M)]. ACC_Topl (%)1 Throughput(images/s)1 Flops(M)|. Input Epoch
ShuffleNetV2 0.5x 1.3 61.58 34012 44 224 300
MobileViT-XXS 1.3 45.66 4456 273 224 300
ShuffleNetV2 1.0x 2.3 73.19 5454 152 224 300
MobileViT-XS 2.3 55.12 3344 744 224 300
MobileNetV3-Small 2.5 69.82 9031 65 224 300
EfficientViT_M1 3.0 69.96 20093 167 224 300
MH-LViT_M1 3.1 75.53 19126 130 224 300
MH-LViT_M1* 3.1 76.44 19126 130 224 300
EdgeViT-XXS 4.1 69.46 3638 546 224 300
MobileNetV3-Large 5.4 74.01 7920 271 224 300
MobileViT-S 5.6 73.59 1939 1464 224 300
EdgeViT-XS 6.7 73.20 3852 1123 224 300
MH-LViT_M2 6.7 76.76 14325 377 224 300
MH-LViT_M2* 6.7 78.28 14325 377 224 300
EfficientViT_M3 6.9 68.87 16644 263 224 300
ShuffleNetV2 2.0x 7.4 75.30 7540 596 224 300
LeViT-128 9.2 65.42 10905 371 224 300
LeViT-192 10.9 67.65 8837 605 224 300
EdgeViT-S 11.1 74.09 2274 1897 224 300
EfficientViT_M5 12.4 70.98 10621 522 224 300
MH-LViT_M3 12.5 78.52 10347 452 224 300
MH-LViT_M3* 12.5 81.50 10347 452 224 300
LeViT-256 18.9 68.88 6494 1059 224 300
LeViT-384 39.1 69.45 3883 2250 224 300

TABLE II. MH-LVIT IMAGE CLASSIFICATION PERFORMANCE ON CIFAR100 WITH COMPARISONS TO STATE-OF-THE-ART EFFICIENT CNN AND VIT

Model Params(M)J ACC_Topl (%)1 Throughput(images/s)T Flops(M)J Input Epoch
ShuffleNetV2 0.5x 1.3 72.16 34012 44 224 300
MobileViT-XXS 1.3 64.38 4456 273 224 300
ShuffleNetV2 1.0x 2.3 76.19 5454 152 224 300
MobileViT-XS 2.3 75.21 3344 744 224 300
MobileNetV3-Small 2.5 71.21 9031 65 224 300
EfficientViT_M1 3.0 73.46 20093 167 224 300
MH-LViT_M1 3.1 76.39 19126 130 224 300
MH-LVIiT_M1* 3.1 80.19 19126 130 224 300
EdgeViT-XXS 4.1 66.79 3638 546 224 300
MobileNetV3-Large 5.4 71.74 7920 271 224 300
MobileViT-S 5.6 75.92 1939 1464 224 300
EdgeViT-XS 6.7 75.45 3852 1123 224 300
MH-LViT_M2 6.7 77.80 14325 377 224 300
MH-LViT_M2* 6.7 81.78 14325 377 224 300
EfficientViT_M3 6.9 74.48 16644 263 224 300
ShuffleNetV2 2.0x 7.4 77.77 7540 596 224 300
LeViT-128 9.2 69.17 10905 371 224 300
LeViT-192 10.9 71.08 8837 605 224 300
EdgeViT-S 11.1 76.61 2274 1897 224 300
EfficientViT_M5 12.4 74.24 10621 522 224 300
MH-LViT_M3 12.5 78.35 10347 452 224 300
MH-LViT_M3* 12.5 82.15 10347 452 224 300
LeViT-256 18.9 71.14 6494 1059 224 300
LeViT-384 39.1 72.17 3883 2250 224 300

performing an ablation study on the dataset CIFAR100. The
experimental results are summarized in Tables IV to VI

1) Multi-Path branch: As shown in Table IV, we remove
respectively the CNN Branch, the Transformer Branch, and the
Residual Branch but keep the same model size as the complete
one, to verify their effectiveness. As can be seen from the
table, when the CNN Branch is removed, top-1 accuracy of
MH-LVIiT_MI decreases by 1.56%, which shows that CNNs
in MH-VIT is helpful to enhance the leaning representation
ability. When the Transformer Branch is removed, the top-

1 accuracy decreases by 4.43%, which validates well that
Transformer blocks are crucial for our model. Meanwhile, the
Residual Branch also plays an auxiliary role in improving the
proposed model, and when it is removed, the model accuracy
decreases by 0.55%.

2) Feature fusion module: The ablation experimental result
of Feature Fusion Module is also reported in Table IV, where
we can observe a decrease of 0.9% in top-1 accuracy when FF
module is removed from MH-LViT_M1. This result reveals the
important auxiliary role of FF module in the developed model.

www.ijacsa.thesai.org

1058 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

TABLE III. MH-LVITIMAGE CLASSIFICATION PERFORMANCE ON CIFAR10 WITH COMPARISONS TO STATE-OF-THE-ART EFFICIENT CNN AND VIT

Model Params(M)J ACC_Topl (%)1 Throughput(images/s)T Flops(M)J]. Input Epoch
ShuffleNetV2 0.5x 1.3 91.84 34012 44 224 300
MobileViT-XXS 1.3 94.57 4456 273 224 300
ShuffleNetV2 1.0x 2.3 94.50 5454 152 224 300
MobileViT-XS 23 88.58 3344 744 224 300
MobileNetV3-Small 2.5 94.66 9031 65 224 300
EfficientViT_M1 3.0 94.0 20093 167 224 300
MH-LViT_M1 3.1 95.24 19126 130 224 300
MH-LViT_M1* 3.1 96.28 19126 130 224 300
EdgeViT-XXS 4.1 94.85 3638 546 224 300
MobileNetV3-Large 5.4 95.56 7920 271 224 300
MobileViT-S 5.6 95.11 1939 1464 224 300
EdgeViT-XS 6.7 95.52 3852 1123 224 300
MH-LViT_M2 6.7 95.57 14325 377 224 300
MH-LViT_M2* 6.7 96.67 14325 377 224 300
EfficientViT_M3 6.9 94.51 16644 263 224 300
ShuffleNetV2 2.0x 74 95.15 7540 596 224 300
LeViT-128 9.2 94.0 10905 371 224 300
LeViT-192 10.9 94.33 8837 605 224 300
EdgeViT-S 11.1 95.58 2274 1897 224 300
EfficientViT_M5 12.4 94.61 10621 522 224 300
MH-LViT_M3 12.5 95.78 10347 452 224 300
MH-LViT_M3* 12.5 96.75 10347 452 224 300
LeViT-256 18.9 94.36 6494 1059 224 300
LeViT-384 39.1 94.59 3883 2250 224 300

Feature fusion can effectively integrate the features extracted
from different branches to avoid features in one branch are
locked within this branch and get a chance to be processed
through other branches, enabling the model to understand input
images well which in turn improves the classification accuracy.
This indicates that feature fusion is an important factor in
improving the performance of MH-LViT.

3) Feature scale balancing strategy: In the proposed mod-
els we divide the input features by channels in a ratio of
3 : 2 : 1 via the feature scale balancing strategy, to learn
image representation in parallel through multiple paths. In
this section, we vary this ratio to investigate its effects on
model performance. As shown in Table V, we split the
features with several typical ratios, where the baseline model
EfficientViT_M1 and a double-paths scenario with the ratio of
1 : 1 are also included. From the table one can observe that,
compare to the baseline, the model utilizing double-paths with
ratio 1 : 1 improves the top-1 accuracy significantly, while the
model using the ratio of 1 : 1 : 1 is 0.4% higher than that
of 1 : 1, showing that multiple paths are helpful to increase
model accuracy. We can also find that 2 : 2 : 1 outperforms
1:1:1 and among all proposed ratios, 3 : 2 : 1 performs
best which is utilized to develop the tiny models. This study
suggests that a reasonable splitting ratio can facilitate feature
extraction to improve model performance.

4) IntPNKD: IntPNKD is proposed to train the developed
lightweight models to further improve their representation
ability. In order to investigate its effect we run MH-LViT_M1%*
without using the IntPNKD. As shown in Table VI, the top-
1 accuracy decreases by 2.58% when we give up IntPNKD,
which demonstrates well its effectiveness. We also test the
version with NKD by removing KD based on intermediate
features prediction and its top-1 accuracy is 79.17%, which
is 1.02% lower than the complete version, showing that the
proposed IntPNKD is significantly helpful. By leveraging

TABLE IV. ABLATION STUDY OF MH-LVIT_M1 MODEL DESIGN ON

CIFAR100
Model ACC_Topl(%)
MH-LVIiT_M1 76.39
MH-LViT_MI w/o convolution path 74.83 (11.56)
MH-LVIiT_M1 w/o self-attention path 71.96 (14.43)
MH-LVIiT_M1 w/o residual path 75.84 (10.55)
MH-LViT_M1 w/o Fusion Module 75.49 (40.9)

KD, the lightweight models can obtain an extra significant
improvement without any model modification.

5) Mixup regularization: As shown in Table VI, we can
observe a decrease of 1.14% in top-1 accuracy by removing
the mixup regularization term L, from MH-LVIT_M1*. This
validates well the effectiveness of introducing the regularizer
based on image mixing. As like IntPNKD, Mixup Regular-
ization can also be done without any model modification and
both of them are inference-cost free inference performance
improvers.

6) Visualization: To demonstrate more intuitively the ad-
vantages of proposed model, we use thermal maps to visualize
the attention maps sampled from dataset minilmageNet, as
shown in Fig. 4. From the figure, we can observe significant
gaps among different models. Compared with its competitors,
our model MH-LViT_M3 pay more attention to the key areas
that include discriminative features for image classification.

In summary, the ablation experimental results fully demon-
strate the effectiveness of model design elements and model
enhancement training strategies, namely, the multi-path design,
the feature scale balancing strategy, the feature fusion, the
IntPNKD and the mixup regularization. With these com-
ponents, the family models of MH-LViT achieve excellent
performance on benchmark datasets.
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Fig. 4. Visualizations of attention maps on minilmageNet provided by MH-LViT_M3 and EfficientViT_MS5.

TABLE V. ABLATION STUDY OF MH-LVIT_M1 FEATURE SCALE
BALANCING STRATEGY ON CIFAR100

Channel Split Ratio ACC_Top1(%)
1 (EfficientViT_M1) 73.46

1:1 75.23 (11.77)

1:1:1 75.63 (12.17)

2:2:1 75.97 (12.51)

3:2:1 76.39 (12.93)

TABLE VI. ABLATION STUDY OF MH-LVIT_M1 MODEL ENHANCEMENT
ON CIFAR100

Model ACC_Top1(%)
MH_LViT_MI1* 80.19
MH_LViT_M1* w/o IntPNKD 77.61 (12.58)
MH_LViT_M1* w/o IntPA 79.17 (1.02)
MH_LViT_M1* w/o Ly r 79.05 (11.14)

VI. CONCLUSION

In this paper, we propose a multi-path hybrid architecture
for lightweight CV model to facilitate feature representation
learning and develop a series of MH-LViT models. Within
the multiple paths, the global features extraction ability is
leveraged by ViT Branch and the local features extraction
ability is enhanced by CNN branch. A residual connection
branch is further introduce to complete the feature representa-
tion and a feature fusion module is utilized to shuffle extracted
features and balance their chances to be processed in different
branches. In order to exploit the representation potential of
developed tiny models, we propose a novel knowledge distilla-
tion framework IntPNKD that introduces an extra intermediate
layer prediction alignment in addition to the standard logit
alignment. Finally, an mixup regularization term is utilized to
further improve the generalization ability. Experimental results
on benchmark datasets show that MH-LViT models balances
well complexity and performance, providing an effective so-
Iution for visual tasks in resource-constrained applications. In
the multi-path branches, we only utilize existing CNNs and
ViTs and deliberately designed components will release fully
the potential of proposed architecture. It is also interesting to

evaluate MH-LViT models on more visual tasks.
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