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Abstract—Skin cancer is one of the most prevalent types of
cancer worldwide, and its early detection is crucial for improving
patient outcomes. Artificial Intelligence (AI) has shown significant
promise in assisting dermatologists with accurate and efficient
diagnosis through automated skin disease classification. This
systematic review aims to provide a comprehensive overview of
the various Al techniques employed for skin disease classification,
focusing on their effectiveness across different datasets and
methodologies. A total of 220 articles were initially identified
from databases such as Scopus and IEEE Xplore. After removing
duplicates and conducting a title and abstract screening, 213
studies were assessed for eligibility based on predefined criteria
such as study relevance, clarity of results, and innovative Al
approaches. Following full-text review, 56 studies were included
in the final analysis. These studies were categorized based on the
Al techniques used, including Convolutional Neural Networks
(CNNs), Transformer-based models, hybrid models combining
CNNs with other techniques, Generative Adversarial Networks
(GANSs), and ensemble learning approaches. The review high-
lights that the ISIC dataset and its variations are the most
commonly used data sources, owing to their extensive and diverse
collection of dermoscopic images. The results indicate that CNN-
based models remain the most widely adopted and effective
approach for skin disease classification, with several hybrid and
Transformer-based models also demonstrating high accuracy and
specificity. Despite the advancements, challenges such as dataset
variability, the need for more diverse training data, and the lack
of interpretability in AI models persist. This review provides
insights into current trends and identifies future directions for
research, emphasizing the importance of integrating AI into
clinical practice for improved skin disease management.
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I. INTRODUCTION

Skin diseases encompass a broad spectrum of conditions
that affect the skin, which is the largest organ of the human
body. These conditions can vary greatly in severity and presen-
tation, ranging from benign issues like acne to life-threatening
diseases such as melanoma. Accurate diagnosis, classification,
and segmentation of skin diseases are critical as they directly
influence treatment plans, patient outcomes, and overall health-
care efficiency. Misdiagnosis or delayed diagnosis can lead to
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severe consequences, including unnecessary treatments or the
progression of the disease to more advanced stages [1], [2].

Common skin diseases that are frequently the focus of
classification and segmentation efforts in medical research
include melanoma, psoriasis, and eczema. Melanoma, in par-
ticular, is a malignant tumor of melanocytes and is one of the
most serious forms of skin cancer due to its high potential
for metastasis [3]. Psoriasis is a chronic inflammatory skin
condition characterized by the rapid growth of skin cells,
leading to thick, red, scaly patches [4]. Eczema, also known as
atopic dermatitis, is a chronic condition that causes inflamed,
itchy, cracked, and rough skin [5].

Traditionally, the diagnosis of skin diseases has relied
heavily on clinical examinations performed by dermatologists.
This process typically involves visual inspection, often aided
by tools like dermoscopy, which provides magnified images of
the skin, allowing for better visualization of structures beneath
the skin surface [6]. In cases where the visual inspection is
inconclusive, a biopsy may be performed, wherein a sample
of the skin is taken for histopathological examination under a
microscope [7].

While these traditional methods are well-established and
widely used, they are not without limitations. Human error is
a significant concern, as the accuracy of diagnosis can vary
depending on the dermatologist’s experience and expertise.
Studies have shown variability in diagnostic accuracy, even
among experienced dermatologists [8]. Additionally, the man-
ual segmentation of skin lesions, which is crucial for treatment
planning, is time-consuming and labor-intensive. This process
often involves delineating the borders of the lesion manually,
which is not only subjective but also prone to variability [9].

Given these challenges, there is a growing interest in the
application of artificial intelligence (Al) to improve the accu-
racy, efficiency, and consistency of skin disease diagnosis and
segmentation. A significant body of research has emerged that
integrates Al techniques into the detection and segmentation
of skin diseases, demonstrating promising results in enhanc-
ing diagnostic processes. This paper proposes a systematic
review focusing on the use of Al for the classification and
segmentation of skin diseases, aiming to consolidate current
findings, identify prevailing methodologies, and highlight ex-
isting knowledge gaps within this rapidly evolving field. By
systematically analyzing the literature, this review will provide
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valuable insights into the effectiveness of Al in dermatology,
outline the strengths and limitations of current approaches, and
suggest potential avenues for future research.

The remainder of this paper is organized as follows: The
Theoretical Background section provides a comprehensive
overview of the foundational concepts and existing literature
related to Al-driven skin disease classification. This is fol-
lowed by the Methodology section, where the criteria and
procedures used to select and analyze the studies are detailed.
The Results section presents the findings from the systematic
review, including bibliometric analyses and the evaluation of
methodologies. In the Discussion section, the implications of
the findings are explored, and the strengths and limitations of
current approaches are assessed. Finally, the paper concludes
with Final Considerations, summarizing the key takeaways
and suggesting directions for future research in this rapidly
evolving field.

II. THEORETICAL BACKGROUND
A. From Classic to Modern Dermatology

Dermatology has undergone a profound transformation
from its early days of visual inspection and basic histopatho-
logical analysis to the incorporation of advanced imaging
technologies and digital tools. Traditionally, dermatologists
relied heavily on their clinical expertise, using simple tools like
magnifying glasses to examine skin lesions, and performing
biopsies followed by histopathological analysis to diagnose
complex conditions. Histopathological images, derived from
these biopsies, provided detailed views of skin tissue at the
cellular level, becoming a cornerstone of accurate diagnosis,
particularly for skin cancers [10].

Over time, the limitations of these conventional methods,
including their invasiveness and the potential for diagnos-
tic variability, drove the development of more sophisticated
tools. The advent of dermoscopy revolutionized non-invasive
examination by enabling magnified visualization of subsur-
face skin structures, greatly enhancing the accuracy of initial
assessments [11]. This was followed by the introduction of
digital dermoscopy, confocal microscopy, optical coherence
tomography (OCT), and multispectral imaging, each offering
unique insights into different aspects of skin anatomy and
pathology [12], [13]. These technological advancements have
not only improved traditional diagnostic practices but have
also set the stage for the integration of artificial intelligence,
which leverages these diverse imaging modalities to further
revolutionize dermatological care.

These diverse imaging modalities—ranging from high-
resolution dermoscopic images to detailed histopathological
and confocal microscopy images—have provided a wealth
of data that is now being harnessed by artificial intelligence
(AI) to further advance the field. Al systems, trained on
these extensive image datasets, are capable of analyzing and
interpreting complex patterns within the skin, leading to more
precise and efficient diagnoses [14], [15]. This integration of
Al with a wide variety of imaging techniques is not only
enhancing diagnostic performance but also paving the way
for more personalized and effective treatment strategies in
dermatology.
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B. Artificial Intelligence and Skin Disease Classification

Building on the advancements in imaging technologies, the
integration of artificial intelligence into dermatology marks
a significant leap forward in skin disease classification. Al,
through machine learning and deep learning algorithms, lever-
ages the vast array of imaging data—from clinical and dermo-
scopic images to histopathological and confocal microscopy
images—to identify subtle patterns and features that might
escape human detection. This capability allows Al to offer
unprecedented accuracy and efficiency in the diagnosis and
classification of skin conditions, setting the stage for more
personalized and precise dermatological care [16].

Artificial Intelligence (AI) is a broad field that includes
machine learning (ML) and deep learning (DL), both of which
have become crucial in healthcare, particularly in dermatology.
ML involves algorithms that learn from data to make predic-
tions, while DL, a more advanced subset, uses multi-layered
neural networks to automatically extract features from complex
datasets. These Al techniques are particularly well-suited for
analyzing skin images, enabling more accurate and efficient
diagnosis of dermatological conditions by identifying patterns
that may be difficult for human clinicians to detect [17], [14],
[16].

Machine learning (ML) initially made significant strides
in dermatology by enabling the automated classification of
skin lesions based on manually extracted features. Techniques
such as support vector machines (SVMs), decision trees, and
random forests were effectively used to analyze images and
identify patterns that distinguish between benign and malignant
conditions [14]. One notable success was the use of SVMs in
melanoma detection, where these models achieved high accu-
racy by focusing on key features like color, texture, and shape
[16]. Despite these advancements, ML models often required
extensive feature engineering, relying on expert knowledge
to select the most relevant attributes. This limitation, com-
bined with the models’ relatively shallow architecture, made it
challenging to handle the complex and high-dimensional data
typical in dermatology, which paved the way for the adoption
of deep learning (DL).

Machine learning was the first wave of Al to make a
substantial impact in dermatology. By training algorithms on
datasets of labeled skin images, ML models have been able
to assist in diagnosing various skin conditions. For example,
support vector machines (SVMs), decision trees, and ensemble
methods like random forests have been utilized to classify skin
lesions based on features extracted manually or through basic
automated processes [14]. These models improved diagnostic
consistency and reduced human error, particularly in distin-
guishing between benign and malignant lesions. However, the
effectiveness of ML in dermatology was often limited by
the need for extensive feature engineering and the relatively
shallow nature of these models, which struggled to capture
the complexity of high-dimensional image data.

The introduction of deep learning marked a significant
leap forward for Al in dermatology. Deep learning, partic-
ularly through convolutional neural networks (CNNs), over-
came many of the limitations of traditional ML models by
automatically learning hierarchical features directly from raw
image data. CNNs, with their ability to process and analyze
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large amounts of image data, have been particularly effective in
dermatology, where they are used to classify skin diseases with
unprecedented accuracy [17]. These models have been trained
on vast datasets of clinical, dermoscopic, and histopatholog-
ical images, enabling them to recognize subtle patterns and
features that might be missed by human clinicians or simpler
algorithms.

As Al continues to evolve, its applications in dermatology
are expected to expand, addressing current challenges such
as model interpretability and data bias, while opening new
avenues for personalized and accessible skin care.

III. RELATED WORK

The application of machine learning (ML) and deep learn-
ing (DL) techniques in the classification of skin diseases
has garnered significant attention in recent years, leading
to the development of various models aimed at improving
diagnostic accuracy and efficiency. Traditional ML methods
such as Support Vector Machines (SVM), Random Forests
(RF), and k-Nearest Neighbors (k-NN) have been extensively
utilized for skin disease classification tasks. For instance,
[14] employed SVM in conjunction with handcrafted features
for melanoma detection, achieving competitive performance
against dermatologists. However, these approaches are often
limited by their dependence on feature engineering, which can
be both time-consuming and reliant on domain expertise.

With the advent of DL, particularly Convolutional Neural
Networks (CNNs), there has been a paradigm shift in the
approach to skin disease classification. CNNs have the inherent
ability to automatically learn hierarchical feature representa-
tions from raw image data, eliminating the need for manual
feature extraction.

Over the past decade, several systematic reviews have been
conducted to assess the efficacy of machine learning (ML)
and deep learning (DL) techniques in the classification of skin
diseases. These reviews have provided valuable insights into
the trends, challenges, and future directions in this rapidly
evolving field. The author in [18] conducted one of the
early comprehensive reviews, focusing on the application of
CNNs in dermatology. This review highlighted the increasing
adoption of deep learning models over traditional machine
learning approaches due to their superior accuracy and ability
to process raw image data without extensive preprocessing.

Further advancing the field, [19] provided a thorough
review of dermatological image analysis using both machine
learning and deep learning techniques. The review emphasized
the significant advancements in CNN architectures, such as
ResNet, AlexNet, VGG.., and their impact on improving diag-
nostic accuracy for various skin conditions, including common
cases and rare ones. However, the authors also noted the
limitations related to the interpretability of these models and
the challenges posed by imbalanced datasets.

[20] conducted a meta-analysis focused specifically on
the performance comparison between human dermatologists
and DL models. Their review concluded that DL models,
particularly those based on CNNSs, have reached a level of
performance comparable to that of expert dermatologists, es-
pecially in the detection of malignant melanoma. This finding

Vol. 15, No. 10, 2024

was corroborated by the review conducted by [21], which com-
pared multiple DL models and found that ensemble methods
often outperform individual models in terms of accuracy and
robustness.

A more recent review by [22] explored the integration of
advanced techniques such as transfer learning and generative
adversarial networks (GANs) into dermatological applications.
The authors highlighted that while these techniques offer
promising avenues to overcome the challenges of limited
labeled data and improve model generalizability, there is still
a need for more standardized evaluation protocols and larger,
more diverse datasets to fully realize their potential.

In addition to these, [23] reviewed the ethical and regu-
latory considerations associated with the deployment of ML
and DL models in clinical settings. Their work underscores
the importance of ensuring model transparency, patient data
privacy, and the need for rigorous clinical validation before
these models can be widely adopted in practice.

These reviews collectively illustrate the rapid advance-
ments and the ongoing challenges in applying ML and DL
techniques to skin disease classification. They provide a foun-
dation for future research, particularly in addressing issues
related to model interpretability, dataset bias, and the ethical
implications of Al in dermatology.

In contrast, this systematic review aims to fill a specific
gap in the literature by focusing on the progression from
traditional ML techniques to advanced DL models. Process
was to systematically search, extract, and analyze studies that
detail the exact methodologies and techniques used in both ML
and DL for skin disease classification. This approach allows
us to map the evolution of these techniques, highlighting how
deep learning, particularly CNNs, Transformers, and hybrid
models, has been increasingly adopted and refined over time.

A notable particularity of this review is the attention given
to hybrid models that combine both machine learning and deep
learning techniques. This focus is crucial, as hybrid models
represent a significant trend in the literature, often outper-
forming their pure ML or DL counterparts by leveraging the
strengths of both approaches. These models’ architectures and
performances were meticulously documented, thereby offering
insights into their potential for future research and clinical
applications, by tracing the trajectory from early adoption
phases to the more recent innovations, such as Vision Trans-
formers (ViTs) and Generative Adversarial Networks (GANSs),
providing a clear picture of the technological advancements
and their impact on classification performance.

This systematic review stands out in its detailed exploration
of the transition from ML to DL in skin disease classification.
It not only contributes to the existing body of knowledge but
also serves as a valuable resource for researchers aiming to
further advance the field.

1V. METHODOLOGY
A. Aim and Scope Definition

The primary objective of this study is to systematically
review and synthesize the existing literature on the application
of artificial intelligence (Al), including machine learning (ML)
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and deep learning (DL), in the classification of skin diseases.
The study aims to explore how these Al techniques have been
utilized in analyzing various types of dermatological images,
including clinical, dermoscopic, and histopathological images,
to enhance diagnostic accuracy and efficiency. The scope of the
review includes original research articles, and review papers
published in peer-reviewed journals. The study focuses on
skin diseases such as melanoma, psoriasis, and acne, with no
specific geographical or linguistic restrictions, although only
English-language publications are included.

B. Data Collection

1) Retrieval database: The literature for this systematic
review was retrieved from several databases known for their
comprehensive coverage of medical and technological re-
search. The primary databases used include IEEE Xplore and
Scopus. These databases were selected due to their relevance
to the fields of dermatology, artificial intelligence, and medical
imaging, ensuring that a broad range of studies could be
captured.

2) Keyword selection strategy: A strategic keyword se-
lection process was employed to identify relevant studies.
Keywords were chosen to reflect the core concepts of the
study: artificial intelligence, machine learning, deep learning,
and skin disease classification. Specific search terms included
combinations of the following: “Al in dermatology”, “deep
learning”, “machine learning”, “classification”. Boolean oper-
ators (AND, OR, NOT) were used to refine the search and
ensure comprehensive coverage of the literature.

Research query for scopus = (TITLE-ABS-KEY (“skin dis-
eases” OR “dermatological disorders” OR “skin conditions’)
AND (“machine learning” OR “deep learning”) AND (“clas-
sification”) AND TITLE-ABS-KEY (“segmentation”) AND
PUBYEAR ; 2020 AND PUBYEAR ; 2024 AND [ LIMIT-TO
(LANGUAGE, “English”)

Research query for IEEE Xplore = (“All Metadata”: “skin
diseases” OR “All Metadata”: “dermatological disorders” OR
“All Metadata™: “skin conditions” OR “All Metadata”: “skin
lesions”) AND (“All Metadata™: “machine learning” OR “All
Metadata”: “deep learning”) AND (“All Metadata”: “classifi-
cation”) NOT (“All Metadata”: “segmentation”)] (Table I).

C. Inclusion and Exclusion Criteria

1) Inclusion criteria: To ensure the relevance and quality
of the included studies, the following inclusion criteria were
applied:

e The study focuses on the application of Al (ML or
DL) in the classification of skin diseases.

e  The study is published in a peer-reviewed journal.

e  The study provides sufficient data for analysis, includ-
ing details of the AI methods used and the types of
images analyzed.

o  The study is written in English.
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TABLE I. RESEARCH QUESTIONS OF THE STUDY

No

Research Question (RQ)

RQI

What are the most commonly used artificial intelligence
models for the classification of skin diseases?

RQ2

How effective are these Al models in accurately classi-
fying various skin diseases?

RQ3

How do Al-based methods for skin disease classification
compare to traditional diagnostic methods ?

RQ4

What datasets are commonly used to train and validate
Al models for skin disease classification, and what are
their characteristics?

RQ5

What are the potential clinical implications of integrating
Al models into the diagnosis and treatment planning of
skin diseases?

RQ6

What are the main challenges and limitations associated
with the use of Al models in the classification of skin
diseases?

RQ7

What future research directions are needed to improve
the performance and clinical applicability of Al models

in skin disease classification?

2) Exclusion criteria: Studies were excluded based on the
following criteria:

e The study does not focus on dermatology or Al
applications in skin disease classification.

e  The study is a conference abstract, editorial, letter, or
opinion piece with no original research data.

e  The study lacks methodological rigor, as determined
by the quality assessment process.

e The study does not utilize one of the following
datasets: “ISIC”, “HAM10000, “PH2”, “Dermnet” or
“Derm7pt”.

e  The study is about the segmentation of skin diseases.

e  The study is not available in English.

In this systematic review, a total of 220 articles were
initially identified through comprehensive database searches
in Scopus and IEEE Xplore. After the removal of 7 duplicate
articles, 213 unique records remained for screening.

The initial screening process led to no exclusions at this
stage. All 213 records were then assessed for eligibility. Sub-
sequently, 109 articles were excluded due to various reasons,
such as lack of clear results reporting (11 articles), non-novel
approaches (11 articles), irrelevant content (15 articles), or
falling out of the scope of the review (14 articles). This left
104 articles for further retrieval attempts, out of which 48 were
not retrieved. Ultimately, 56 articles were included in the final
review and deemed suitable for qualitative synthesis (Fig. 1).

3) Software tools: The data analysis was performed using
a combination of software tools, including Microsoft Excel
for data management and descriptive analysis, R for statisti-
cal analysis, and Bibliometrix with Biblioshiny package for
qualitative analysis. These tools were chosen based on their
functionality, ease of use, and ability to handle large datasets
effectively.
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Fig. 1. Prisma diagram.

V. RESULTS

Retained articles related to the classification of skin dis-
eases using machine learning and deep learning tools were
published across 31 different countries.

Fig. 2 illustrates the distribution of included works by
countries of publication. The countries representing the origin
of the greatest number of publications are China with 64
articles, followed by Pakistan with 35 articles, and Saudi
Arabia with 36 articles. Additionally, India and Indonesia
contributed significantly with 13 and 8 articles, respectively.
Together, China, Pakistan, Saudi Arabia, India, and Indonesia
account for over 80% of the papers included in this study, with
a total of 56 papers.

Considering publication dates of selected articles, a large
part of the retained documents was published during the period
2020 to 2023, with a total of 45 papers. Fig. 3 below represents
the curve of the publication’s evolution per years between 2021
and 2023.
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The bibliometric analysis also includes a thematic map in
Fig. 4, which offers a visual representation of the key research
themes within the field of Al-driven skin disease classification.
The map categorizes themes based on their relevance (cen-
trality) and development degree (density), providing a clear
overview of the research landscape. This analysis highlights
“deep learning” and “dermatology” as highly relevant but
still developing themes, suggesting ongoing growth in these
areas. Conversely, “human melanoma” appears as a well-
established motor theme, indicating its foundational role in
the field. Emerging or declining themes such as “optimization
algorithms” are also identified, pointing to areas where future
research may be necessary.

To further explore the thematic connections within the lit-
erature, Fig. 5 presents a co-occurrence network of keywords.
This visualization highlights the central themes in Al-driven
skin disease classification, with “deep learning” and “skin
cancer” emerging as the most connected and frequent terms.
The network also reveals the relationships between various
methodologies, such as “convolutional neural networks” and
“transfer learning”, underscoring their significance in this
research domain.
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Fig. 5. Co-occurrence network of keywords in Al-driven skin disease
classification literature. This network visualizes the relationships between
key terms, with larger nodes indicating more frequently occurring keywords.
The network highlights the centrality of terms like “deep learning” and “skin
cancer”, revealing their strong connections with related concepts such as
“image augmentation”, “transfer learning”, and “convolutional neural
networks”.

RQ1: What are the most commonly used artificial intelli-
gence models for the classification of skin diseases?

The qualitative analyse of the obtained results from the
researches papers provided, indicates that Convolutional Neu-
ral Networks (CNNs) are the most frequently employed AI
models for skin disease classification. CNNs appear in various
forms, including standalone models, hybrid approaches (e.g.
CNN combined with SVM, XGBoost, or Random Forest), and
enhanced architectures (e.g. Inception-V3, EfficientNets). Ad-
ditionally, Transformer-based models and Vision Transformers
(ViTs) are increasingly utilized, reflecting a shift towards more
complex, attention-based architectures. Hybrid models inte-
grating multiple techniques, such as CNNs with transformers
or Extreme Learning Machines (ELM), are also prevalent,
suggesting an ongoing effort to enhance model performance
through combining strengths of different methods.

RQ2: How effective are these Al models in accurately
classifying various skin diseases?

The reviewed studies report high accuracy rates across dif-
ferent AI models, with CNN-based approaches often achieving
accuracy levels above 90%. Specific examples include:

e A deep learning-based auto-encoder with an accuracy
of 98.7%.
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e A CNN combined with XGBoost and SVM showing
97.85% accuracy.

e Hybrid CNN-ELM models achieving up to 96.7%
accuracy.

Sensitivity and specificity metrics are also robust, fre-
quently exceeding 90%. For example, the sensitivity for CNN
models ranges from 88.3% to 98.46%, while specificity ranges
from 90% to 100%. These results indicate that AI models,
particularly CNNs and hybrid approaches, are effective in
accurately classifying skin diseases, often outperforming tra-
ditional diagnostic approaches.

RQ3: How do Al-based methods for skin disease classifi-
cation compare to traditional diagnostic methods?

The analyse of the provided researches reveals that deep
learning-based methods, particularly Convolutional Neural
Networks (CNNSs), consistently outperform traditional machine
learning techniques in skin disease classification across various
metrics. Deep learning models achieve higher accuracy, often
exceeding 94%, with some models reaching up to 96.83%
([24], [25]). In contrast, traditional machine learning meth-
ods, including Support Vector Machines (SVM) and Random
Forests, typically demonstrate accuracy within the 90% to 97%
range.

Sensitivity and specificity are also higher in deep learning
models. For instance, [26] reports a sensitivity of 98% and
specificity of 98.1% using a Lightweight CNN with dynamic-
sized kernels and ReLU/leaky ReLU activations, while ma-
chine learning approaches generally show slightly lower per-
formance in these metrics.

Moreover, deep learning models benefit from data augmen-
tation techniques, such as Generative Adversarial Networks
(GANSs), which enhance their generalization capabilities, espe-
cially in imbalanced datasets ([27]). Traditional machine learn-
ing methods, although effective, often require more extensive
feature engineering and do not leverage data augmentation as
effectively as deep learning approaches.

Hybrid models that combine deep learning with machine
learning methods, such as CNNs with SVM or Random-Forest
offer a balanced approach, leveraging the strengths of both
techniques ([28], [29]). However, these hybrids still typically
fall short of purely deep learning-based methods in terms of
overall performance.

In terms of model interpretability, traditional machine
learning models, particularly decision trees, provide more
straightforward explanations. However, the integration of Ex-
plainable AI (XAI) techniques with CNNs has begun to
address the “black box” nature of deep learning models,
enhancing their transparency ([30]).

While machine learning models still hold value in scenarios
requiring interpretability, deep learning approaches, particu-
larly when augmented with hybrid techniques, represent the
most effective tools for skin disease diagnostics.

RQ4: What datasets are commonly used to train and
validate Al models for skin disease classification, and what
are their characteristics?
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Several datasets emerge as commonly utilized benchmarks
for training and validation purposes for skin disease classi-
fication task. The following are the key datasets frequently
employed in these studies, along with their characteristics:

e ISIC (International Skin Imaging Collaboration): This
dataset is a comprehensive repository of dermoscopic
images that has been widely adopted due to its diver-
sity and scale [31]. The ISIC dataset includes several
variations, such as ISIC2018, ISIC2019, ISIC2020,
ISIC2017, and ISIC2008, each corresponding to dif-
ferent years of challenge submissions. These varia-
tions contain images that differ in terms of disease
types, resolutions, and annotations, providing a robust
foundation for model development (Fig. 6).

e HAMI10000: The HAM10000 dataset [32] contains a
large collection of dermatoscopic images with an em-
phasis on the most common pigmented skin lesions. It
is particularly valued for its balanced representation of
multiple classes of skin diseases, making it a reliable
resource for training classifiers that need to generalize
across various conditions.

e  PH2: Although smaller, the PH2 dataset is a key re-
source that provides high-quality dermoscopic images
specifically curated for the assessment of melanocytic
and non-melanocytic skin lesions [33]. Its limited class
diversity is counterbalanced by the precise annotations
and image quality, making it ideal for specialized
classification tasks.

e  Derm7pt: This dataset focuses on a seven-point check-
list system for melanoma detection, providing a struc-
tured approach to training models in clinical decision-
making scenarios [34].

e  PAD-UFES-20: This dataset includes images collected
from a specific demographic, aiding in the develop-
ment of models that are more inclusive and adaptable
to different population groups [35].

Fig. 7 summarizes the usage distribution of these datasets
across the reviewed studies, highlighting the dominance of the
ISIC and its variants, followed by the widespread adoption of
HAMI10000 and other datasets.

RQS5: What are the potential clinical implications of inte-
grating Al models into the diagnosis and treatment planning
of skin diseases?

The high accuracy and specificity of Al models indicate
significant potential for their integration into clinical practice.
Al can assist dermatologists in diagnosing skin diseases more
quickly and accurately, reducing the time required for anal-
ysis and potentially improving patient outcomes. Moreover,
the precision of AI models could help in early detection
of malignant lesions, leading to more timely interventions.
However, the clinical integration of these models also requires
careful consideration of ethical implications, including patient
consent, data privacy, and the potential for algorithmic bias.
The integration of Al into treatment planning could also extend
to personalized medicine, where Al-driven insights help tailor
treatment strategies to individual patient profiles.
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Fig. 7. Percentage of Dataset Usage in the Selected Studies.

RQ6: What are the main challenges and limitations asso-
ciated with the use of AI models in the classification of skin
diseases?

Despite the promising results, several challenges and limi-
tations persist. One significant challenge is the generalizability
of Al models across different populations and clinical settings.
Most models are trained on specific datasets, which may not
fully represent the diversity of skin types and conditions found
in the broader population. Data quality and annotation is
another concern; the accuracy of Al models heavily depends
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on the quality of the input data, and misannotations or incon-
sistencies can lead to reduced model performance. Moreover,
computational complexity and the need for high-end hardware
for training and deploying complex models like transformers
could limit their accessibility in resource-constrained envi-
ronments. Additionally, there is a need for explainability in
Al models to ensure that clinicians can trust and understand
the decisions made by these systems. Finally, there is limited
research on how these models can be effectively integrated into
real-world clinical workflows. Understanding the challenges of
Al adoption in everyday clinical practice, including clinician
trust, usability, and workflow compatibility, is essential for the
successful implementation of Al in dermatology [36].

RQ7: What future research directions are needed to im-
prove the performance and clinical applicability of Al models
in skin disease classification?

Future research in Al for skin disease classification should
prioritize several key areas to enhance both performance and
clinical applicability. First, increasing dataset diversity and
size is critical for improving model generalization, particularly
for underrepresented skin conditions and demographic groups,
ensuring broader applicability across diverse populations. Sec-
ond, cross-validation in varied clinical settings is necessary
to assess the robustness and consistency of Al models, which
is essential for their practical integration into healthcare en-
vironments. Third, improving the explainability of Al models
is vital for building trust among healthcare providers, enabling
transparent and verifiable diagnoses that can encourage clinical
adoption.

Additionally, research should focus on reducing the compu-
tational complexity of Al models, making them more accessi-
ble and deployable, especially in resource-limited settings. The
development of multi-modal diagnostic systems that integrate
visual data with patient-specific information, such as demo-
graphics and medical history, is another crucial area. These
systems could enhance diagnostic accuracy and lead to more
personalized treatments.

Moreover, most current research focuses on static images
and one-time predictions. There is a gap in studies that inves-
tigate the application of Al in longitudinal analyses, where the
progression of skin diseases is tracked over time. Such studies
are crucial for developing Al tools that can not only diagnose
but also monitor disease progression and treatment response
[371, [38].

VI. DISCUSSION

The analysis of methodologies employed across the studies
included in this systematic review reveals distinct patterns
in the application of various Al techniques for skin disease
classification. To provide a more nuanced understanding of the
approaches utilized by different researchers, the studies have
been categorized based on the general technique employed,
including Machine Learning techniques (e.g. XGBoost, SVM),
Generative Adversarial Networks (GANs), Ensemble Learning
approaches, Multi-modal methods, Transformer-based models,
and Hybrid models combining Convolutional Neural Networks
(CNNs) with other techniques.

The following sections summarize the methodologies ap-
plied within each of these categories, highlighting the specific
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strategies used in feature extraction, model training, and valida-
tion. This organization elucidates the strengths and limitations
inherent to each approach, offering a clearer perspective on
the current state of Al-driven skin disease classification. By
structuring the analysis in this manner, a direct comparison
between different techniques is facilitated, providing insights
into potential future directions for research in this rapidly
evolving field.

A. Studies Using Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) have been ex-
plored for their ability to generate synthetic data and improve
classification tasks in skin disease detection.

Two notable studies have employed Generative Adversarial
Networks (GANs) to enhance skin lesion classification. Abdel-
halim et al. [39] combined GANs with Convolutional Neural
Networks (CNNs) in their study, utilizing the ISIC dataset.
In this approach, GANs were employed to generate synthetic
dermoscopic images, which were subsequently used to train
the CNN. This method effectively improved the model’s ro-
bustness by augmenting the training data.

Similarly, Su et al. [27] adopted a GAN-CNN hybrid model
for skin lesion classification. In their study, the GAN was used
to generate additional training samples, while the CNN han-
dled the classification task. This methodology was validated
using the HAM10000 dataset, and the results demonstrated
improved accuracy, attributed to the enriched dataset provided
by the GAN.

B. Studies Using Ensemble Learning Approaches

Ensemble learning approaches combine multiple models to
improve classification accuracy and robustness. The following
table provides an overview of studies that utilized ensemble
learning techniques in skin disease classification.

Several studies have utilized ensemble learning approaches
to enhance the classification of skin lesions. Popescu et al.
[40] proposed an ensemble learning methodology that involved
combining multiple models to classify skin lesions using the
ISIC dataset. In this approach, different base models were
trained separately, and their predictions were subsequently
combined through majority voting or weighted averaging,
leading to higher accuracy.

Similarly, Thurnhofer-Hemsi et al. [41] applied an en-
semble approach to improve the accuracy of skin lesion
classification on the HAM10000 dataset. This method focused
on reducing the variance and bias inherent in single models
by integrating the strengths of multiple classifiers, ultimately
enhancing the overall classification performance.

C. Studies Using Multi-modal Approaches

Multi-modal techniques have been explored in several
studies to enhance the accuracy of skin disease classification by
integrating various data sources. Fu et al. [42] utilized a graph
nodes-based approach that incorporated multi-modal data from
different sources, including the 7-point checklist, ISIC2017,
and ISIC2018 datasets. This methodology focused on combin-
ing different types of data to improve the classification of skin
lesions.
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Zhang et al. [43] introduced TFormer, a throughout fusion
transformer model for multi-modal skin disease classification.
The transformer model served as the feature extraction back-
bone, fusing both image and metadata, which significantly
enhanced the accuracy of classification.

Roge et al. [28] employed a deep ensemble learning
approach that integrated demographic information with im-
age data to improve classification performance. This study
combined the use of a demographic machine with standard
imaging techniques, leading to superior results in classification
accuracy.

Cai et al. [44] applied a multi-modal transformer model
that fused images and metadata, leveraging the strengths of
Vision Transformer (ViT) in handling multi-modal data. This
approach provided a notable boost in classification accuracy
by effectively combining different data sources.

Nguyen et al. [45] utilized a combination of deep learning
models (DenseNet) and traditional machine learning algo-
rithms (SVM) to classify skin lesions on imbalanced datasets.
By incorporating both image data and patient metadata, this
approach improved model robustness and accuracy.

Yin et al. [46] introduced the MetaNet module, which
employs multi-modal data from both images and metadata to
enhance skin tumor classification. The comprehensive analysis
enabled by this multi-modal approach resulted in improved
classification performance.

D. Studies Using Transformer-Based Models

Transformer-based models, originally developed for natural
language processing, have been adapted for image classifica-
tion tasks due to their ability to capture long-range dependen-
cies in data.

Several studies have explored the use of Transformer-
based models for skin lesion classification, showcasing the
versatility and effectiveness of this approach. Ding et al. [47]
employed a Vision Transformer (ViT) model on the ISIC2018,
ISIC2017, and PH2 datasets. The methodology capitalized
on the Transformer’s ability to process image patches, which
provided an effective solution for skin lesion classification.

Zhang et al. [43] proposed a Transformer-based model
tailored for the Derm7pt dataset. Their approach emphasized
the model’s capability to learn global contextual information,
which is crucial for accurately classifying skin lesions.

Abbas et al. [48] utilized a Transformer-based model to
classify dermoscopic images from the ISIC dataset. The study
highlighted the use of self-attention mechanisms inherent in
Transformers, which allowed the model to capture intricate
patterns in the images, thereby improving classification per-
formance.

Cai et al. [44] applied a Vision Transformer (ViT) to the
ISIC2018 dataset, focusing on the model’s ability to process
images in a patch-wise manner. Their study demonstrated the
effectiveness of the Transformer architecture in handling large-
scale image data, resulting in enhanced classification accuracy.

Yang et al. [49] also employed a Transformer-based model,
specifically for the HAM10000 dataset. This study leveraged
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the self-attention mechanism of the Transformer to capture the
intricate details of skin lesions, thereby improving classifica-
tion accuracy.

Aladhadh et al. [50] used a Transformer-based model to
classify images from the HAM10000 dataset. Their focus
was on enhancing the model’s sensitivity and specificity by
taking advantage of the deep attention mechanisms inherent in
Transformer architectures.

E. Studies Using Hybrid Models (CNN with Other Techniques)

Hybrid models that combine CNNs with other techniques,
such as machine learning algorithms or other deep learning
methods, have shown potential in improving classification
accuracy.

Hybrid models that combine Convolutional Neural Net-
works (CNNs) with other techniques have been widely ex-
plored for improving the classification of skin lesions. Ma et
al. [24] proposed a hybrid approach that integrated CNN with
Random Forest for the classification of skin lesions using the
HAMI10000 dataset. In this study, the CNN was responsible
for deep feature extraction, which were then classified by the
Random Forest, combining the strengths of both methods.

Similarly, Roge et al. [28] developed a CNN-Random
Forest hybrid model for the ISIC dataset (HAM10000). Their
methodology also involved using CNN for initial feature
extraction, followed by Random Forest for final classification,
which enhanced both the accuracy and robustness of the model.

Nie et al. [51] explored a hybrid model that combined
CNN with Transformer architecture, specifically for skin lesion
classification using the ISIC2018 dataset. In this study, the
CNN component handled initial feature extraction, while the
Transformer captured global dependencies in the image data,
leading to improved classification performance.

Li et al. [52] also utilized a hybrid CNN-SVM approach
for the ISIC2019 dataset. In this study, the CNN was used for
initial feature extraction, with SVM refining the classification
process to enhance the accuracy of multi-class skin lesion
classification.

Tahir et al. [29] proposed a hybrid model that combined
CNN with XGBoost and Support Vector Machine (SVM) for
classifying skin lesions in the ISIC2017 dataset. The CNN was
utilized to extract relevant features, with XGBoost and SVM
models performing the classification, leveraging the strengths
of both deep learning and traditional machine learning tech-
niques.

Khan et al [53] proposes a fully automated system for
multiclass skin lesion localization and classification using
deep learning. To address class imbalance in the HAM10000,
ISBI2018, and ISBI2019 datasets, the approach fine-tunes
a pre-trained DarkNet19 model and fuses visualized images
using a High-Frequency approach with a Multilayered Feed-
Forward Neural Network (HFaFFNN). Two additional models,
DarkNet-53 and NasNet-Mobile, are trained using transfer
learning on localized lesion images. Features are fused using
the parallel max entropy correlation (PMEC) technique, and
the entropy-kurtosis controlled whale optimization (EKWO)
algorithm selects the most discriminant features. The model
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achieves accuracies of 95.8%, 97.1%, and 85.35% on the
HAM10000, ISBI2018, and ISBI2019 datasets, respectively.
Zhou et Arandian. [54] introduce a new computer-aided skin
cancer diagnosis method that combines deep learning with the
Wildebeest Herd Optimization (WHO) algorithm. Inception
CNN is used for feature extraction, followed by the WHO
algorithm for feature selection to reduce analysis complexity.
The method was tested on the ISIC-2008 dataset and compared
with three other algorithms, demonstrating superior results.

Annaby et al. [55] proposes a melanoma detection ap-
proach that combines graph-theoretic representations with con-
ventional image features to improve detection performance.
Superpixels from dermoscopic images are used as graph nodes,
and edges connect adjacent superpixels based on feature de-
scriptor distances. Features are extracted from both weighted
and unweighted graph models in the vertex and spectral
domains, as well as from color, geometry, and texture. Various
classifiers were trained on these feature combinations using
ISIC datasets. The proposed system demonstrated significant
improvements in accuracy, AUC, specificity, and sensitivity
in detecting melanoma. Saeed et al. [56] employed a hybrid
model that combined CNN with SVM for the classification of
skin lesions using the ISIC2019 and ISIC2020 datasets. In this
approach, the CNN handled feature extraction, while the SVM
classifier provided enhanced decision boundaries, leading to
improved model performance.

Afza et al. [57] introduced a hybrid CNN-Extreme Learn-
ing Machine (ELM) model for skin lesion classification using
the ISIC dataset (HAM10000 and ISIC2018). In this study,
CNN was used for feature extraction, while the ELM clas-
sifier processed these features, achieving high accuracy and
specificity.

Nivedha et al. [S8]focuses on melanoma detection using
a novel computer-aided method combining the African Go-
rilla Troops Optimizer (AGTO) algorithm and Faster Region
Convolutional Neural Networks (Faster R-CNN). The AGTO
algorithm selects the most valuable features, and Faster R-
CNN performs the classification. Applied to the ISIC-2020
skin cancer dataset, the proposed model achieves an accuracy
of 98.55%, outperforming four existing approaches.

Damarla et al. [59] proposes an automated skin cancer clas-
sification system using a Deep Convolutional Neural Network
(DCNN) for multiclass classification of dermoscopy images.
The system employs transfer learning for feature extraction,
followed by feature selection using metaheuristic algorithms
like Particle Swarm Optimization (PSO), Ant Colony Opti-
mization (ACO), and Gorilla Troop Optimization (GTO). A
two-level classification is then applied to optimize and reduce
features. Tested on the HAM 10000 dataset, the model achieved
93.58% accuracy, outperforming state-of-the-art techniques
and showing high scalability.

Finally, Attique Khan et al. [60] developed a two-stream
deep neural network framework for multiclass skin cancer
classification. The first stream uses a fusion-based contrast
enhancement technique and DenseNet201 to extract and opti-
mize features, while the second stream extracts features from a
fine-tuned MobileNetV2. The most discriminant features from
both streams are fused using a novel multimax correlation
method and classified with an extreme learning machine. The
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classification of skin lesions was done using a mixed datasets
(HAM10000, ISBI2018, ISIC2019).

F. Studies Using CNN-Based Models

Convolutional Neural Networks (CNNs) are a popular
choice for image classification tasks due to their ability to
automatically learn and extract features from images. The
following table summarizes studies that employed CNN-based
models for skin disease classification.

Numerous studies have explored the use of Convolutional
Neural Networks (CNNs) for the classification of skin lesions,
showcasing the versatility and effectiveness of these models.
Alassaf et al. [25] utilized a deep learning-based Auto-Encoder
model on the ISIC dataset, focusing on unsupervised feature
learning. The model was trained to classify skin lesions based
on these features, achieving high accuracy and specificity.

Abayomi et al. [61] proposes a novel data augmenta-
tion technique based on the covariant Synthetic Minority
Oversampling Technique (SMOTE) to address data scarcity
and class imbalance in melanoma detection. The augmented
images, generated from the PH? dataset, are used to train
the SqueezeNet deep learning model. In binary classification,
the model achieved 92.18% accuracy, 80.77% sensitivity, and
95.1% specificity. In multiclass classification, it improved
melanoma detection with 89.2% sensitivity and 96.2% speci-
ficity for atypical nevus detection, outperforming state-of-the-
art methods.

Akram et al. [62] employed a CNN to classify dermoscopic
images from the PH2, ISIC-MSK, and ISIC-UDA datasets.
Their methodology centered on using CNN architectures for
feature extraction and classification, resulting in high accuracy
and sensitivity.

Calderon et al. [63] presents a bilinear CNN approach
for classifying seven skin lesion types with high accuracy
and low computational cost. The framework includes data
augmentation to address class imbalance, transfer learning,
and fine-tuning using ResNet50 and VGGI16 architectures.
Tested on the HAM10000 dataset, the model achieved a 2.7%
improvement over the state-of-the-art.

Khan et al. [64] enhanced a deep learning architecture
with the Entropy-NDOEM algorithm for multiclass skin lesion
classification. The process used include contrast enhancement,
fine-tuning EfficientNetBO and DarkNet19, feature extraction
and selection using Entropy-NDOELM, feature fusion, and
classification using an extreme learning machine with di-
verse datasets such as HAM10000, ISIC2018, and ISIC2019
datasets. The overall methodology leads to an overall improve-
ment in model performance.

Rasel et al. [65] presents in their study, a deep learning-
based system using a Convolutional Neural Network (CNN)
for melanoma detection to improve early diagnosis. The re-
search focuses on how different nonlinear activation func-
tions affect CNN performance on limited dermoscopic image
datasets. The proposed model, using the parameterized Leaky
ReLU function, achieved 97.5% accuracy, 98% precision, and
98% sensitivity in classifying skin lesions into three classes.
Experiments were conducted on the PH2 and ISIC datasets,
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demonstrating that this approach outperforms other activation
functions for melanoma recognition.

Foahom et al. in their study [66] addresse the challenge
of class imbalance in skin lesion (SL) detection by proposing
an end-to-end decoupled training method for long-tailed skin
lesion classification. The approach utilizes a novel loss func-
tion (Lf) for initial training to improve feature representation
and a weighted variant of Lf to enhance robustness against
class imbalance. Tested on the ISIC 2018 dataset, the model
outperformed existing methods for SL detection by at least 2%,
demonstrating its effectiveness in handling class imbalance.

Aldhyani et al. [26] proposes a lightweight deep learning
model using dynamic-sized kernels for the accurate classifi-
cation of skin lesions. The model incorporates both ReLU
and leaky ReLU activation functions to enhance performance
while maintaining a low number of trainable parameters.
Tested on the HAMI10000 dataset, the model achieved an
impressive accuracy of 97.85%, outperforming several state-of-
the-art models. The results demonstrate the model’s efficiency
in classifying various types of skin lesions.

Shen et al. [67] proposes a high-performance data augmen-
tation strategy designed to improve skin cancer classification
accuracy, particularly for use in low-resource settings. The
strategy, which can be combined with any model in a plug-and-
play mode, optimizes data augmentation with minimal com-
putational cost. Using EfficientNets as a baseline, the model
achieved strong performance on multiple datasets, including a
BACC of 0.853 on HAM10000 and an AUC of 0.909 on ISIC
2017.

Kaur et al. [68] proposes an automated melanoma classifier
using a deep convolutional neural network (DCNN) to classify
malignant and benign melanoma from dermoscopic images.
The DCNN is designed to efficiently extract features across
multiple layers, optimizing filter selection, network depth,
and hyperparameters to create a lightweight, less complex
model. Tested on the ISIC 2016, 2017, and 2020 datasets, the
model achieved accuracies of 81.41%, 88.23%, and 90.42%,
respectively, outperforming other state-of-the-art methods and
offering an efficient solution for melanoma diagnosis.

Dillshad et al. [69] focused on optimizing a CNN model for
the classification of skin lesions in the HAM 10000 dataset. The
methodology based on a variance-controlled Marine Predator
methodology optimizes feature selection and achieves high
sensitivity and specificity in detecting various types of skin
lesions.

Nugroho et al. [70] applied a CNN using the Inception-
V3 architecture to the ISIC2019 dataset. Their approach
emphasized feature extraction using the Inception-V3 model,
followed by classification, which led to high accuracy in skin
lesion detection. Mehmood et al. [71] proposed SBXception,
a modified deep learning model based on the Xception archi-
tecture, designed for efficient skin lesion classification using
the HAM10000 dataset. This methodology aim to enhance
the original Xception model by making it shallower (reducing
depth) and broader (increasing width), leading to fewer param-
eters and faster training times, achieving a high accuracy of
96.97% on the test set.

Mukadam et al. [72] used a CNN model to classify images
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from the HAM10000 dataset, with a focus on improving the
CNN architecture to enhance accuracy and specificity in skin
lesion classification.

Dahou et al. [73] proposes a robust skin cancer detec-
tion framework using a pre-trained MobileNetV3 architec-
ture for feature extraction. The extracted features are opti-
mized through a modified Hunger Games Search (HGS) algo-
rithm, combining Particle Swarm Optimization and Dynamic-
Opposite Learning (DOLHGS), to select the most relevant
features. The model was tested on the ISIC-2016 and PH2
datasets and has improved classification accuracy across these
datasets.

Finally, Supriyanto et al. [74] developed a CNN-based
model for the classification of skin lesions using the
HAM10000 dataset. The study focused on refining the CNN
architecture to improve the sensitivity and specificity of the
classification results.

G. Studies Using Machine Learning Techniques

Machine learning techniques such as XGBoost and SVM
have been widely used for skin disease classification due to
their robustness in handling complex datasets. The following
table summarizes studies that employed these techniques,
highlighting their methodologies.

Various studies have utilized machine learning techniques
to improve the classification of skin lesions, often integrating
multiple approaches to enhance performance. Khater et al.
[75] employed XGBoost on selected features derived from
dermoscopic images in the PH2 dataset. Their methodology
focused on enhancing feature extraction through preprocessing
and used explainable Al techniques, as SHAP to ensure the
interpretability of the results, leading to improved classification
accuracy.

Ahmed et al. [76] integrated Convolutional Neural Net-
works (CNNs) with Support Vector Machine (SVM) and Arti-
ficial Neural Network (ANN) models to analyze dermoscopic
images from the HAM 10000 and PH2 datasets. Their approach
utilized MobileNet and ResNetl01 architectures for feature
extraction, followed by classification with SVM and ANN,
achieving high accuracy across multiple metrics.

Ilkin et al. [77] proposed a combination of SVM with
feature extraction from mixed datasets, including PH2 and
ISIC. Their study focused on optimizing the feature set prior
to SVM classification, aiming to improve the model’s ability
to differentiate between various skin lesion classes.

Finally, Pitchiah et al. [78] introduced a hybrid model
combining K-Nearest Neighbors (KNN) with Random Forest
and SVM. This model was validated on the PH2 dataset and
aimed to balance sensitivity and precision by using ensemble
methods to enhance classification performance.

These methodologies explanations serve as a focal point for
the discussion. The detailed breakdown presented here assists
researchers and practitioners in the identification of prevailing
trends and gaps in the literature, and understanding which
methodologies are most promising for clinical application and
where further innovation may be required.
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TABLE II. SUMMARY OF TECHNIQUES AND PERFORMANCE IN SYSTEMATIC REVIEW STUDIES

Ref. | Year | Technique Data Type Classes Performance
Number
[25] | 2023 | Deep learning-based Auto- | Image dataset | 7 Accuracy: 96.83%, Sensitivity:
Encoder (ISIC) 96.57%, Specificity: 97.83%
[76] | 2023 | CNN combined with HAM10000 7 HAM10000: Accuracy:
SVM/ANN 98.4%, Sensitivity: 94.46%,
Specificity:  99.43%, AUC:
97.53%
PH2 3 PH2 : Accuracy: 100%, Sensi-
tivity: 100%, Specificity: 100%,
AUC: 100%
[24] | 2023 | CNN integrated with Random | HAM10000 7 Accuracy: 94.96%, Sensitivity:
Forest 93.74%, Specificity: 93.16%,
F1-score: 93.24%
[75] | 2023 | XGBoost applied to selected | PH2 3 Accuracy: 94%, AUC: 99.47%
features
[64] | 2023 | CNN enhanced HAM10000 7 Accuracy : 95.7%
with ELM (Extreme ISIC2018 7 Accuracy : 96.3%
Learning Machine) ISIC2019 8 Accuracy : 94.8%
[47] | 2023 | Vision Transformer ISIC2018 8 Accuracy: 93.2%, Specificity:
(ViT) model 92.2%, AUC: 97.7%
ISIC2017 2 Accuracy: 89.5%, Specificity:
94.7%, AUC: 96.2%
PH2 2 Accuracy: 91.4%, Specificity:
88.5%, AUC: 96.3
[62] | 2023 | Deep models with PH2 3 Accuracy: 98.89%, Specificity:
entropy-controlled 98.9%, Sensivity: 98%
optimization for ISIC-MSK Various Accuracy: 99.01%, Specificity:
feature selection 99.4%, Sensivity: 98.5%
ISIC-UDA 3 Accuracy: 99.09%, Specificity:
99.4%, Sensivity: 98.6%
[43] | 2023 | Transformer-based model Image dataset | 2 Accuracy: 80.03%
(Derm7pt)
[51] | 2023 | Hybrid CNN and Transformer | Image dataset | 7 F1 score: 87.37%, Sensitivity:
model (ISIC2018) 88.13%, Specificity: 88.29%
[29] | 2023 | DSCC_Net model with | ISIC2020, Various Accuracy: 94.17%, Sensitivity:
SMOTE Tomek Derm-IS, 94.28%, Specificity: 93.76%,
HAM10000 Fl-score: 93.93%
[58] | 2023 | Region-based CNN (RCNN) | Image dataset | 2 Accuracy: 98.55%, Sensitivity:
(IS1C2020) 96.92%, Specificity: 98.11%,
Precision: 98.34%
[48] | 2023 | Transformer-based model Image dataset | 9 Accuracy: 95.6%, Sensitivity:
(Personalized 96.7%, Specificity: 95%
ISIC)
[69] | 2023 | Optimization-aided deep | Image dataset | 7 Accuracy: 94.4%, Sensitivity:
learning with MobileNetV2, | (HAM10000) 94.4%, Specificity: 94.4%
NasNet, and Marine Predator
[70] | 2023 | Convolutional Neural | ISIC  dataset | 7 Accuracy: 96.4%, AUC: 0.98
Network (CNN) using | (ISIC2019)
Inception-V3
[28] | 2023 | Hybrid CNN with Random | HAM10000 7 AUC: 87.6%
Forest
[72] | 2023 | Custom CNN with ESRGAN | HAM10000 7 Accuracy: 98.9%
preprocessing
[73] | 2023 | CNN with Hunger PH2 3 Accuracy: 96.43%
Games Search ISIC2016 2 Accuracy: 88.19%
[44] | 2023 | Multi-modal Vision Trans- | ISIC  dataset | 7 Accuracy: 93.81%, Sensitivity:
former (ViT) model (ISIC2018) 90.14%, Specificity: 98.36%,

Fl1-score: 90.13 %
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Ref. | Year | Technique Data Type Classes Performance
Number
[49] | 2023 | Transformer-based model HAM10000 7 Accuracy: 94.1%
[56] | 2023 | Hybrid CNN with ISIC2019 8 Accuracy: 96%
SVM ISIC2020 2 Accuracy: 92%
[71] | 2023 | SbXception: an enhanced | HAM10000 7 Accuracy: 96.97%, Sensitivity:
Xception architecture 95.43%, Specificity: 85.34%
[74] | 2023 | Two-stage image augmenta- | HAM10000 7 Accuracy: 96.9%, Sensitivity:
tion with GAN and CNN 96.87%, Specificity: 97.07%,
models F1-score: 96.97%
[52] | 2022 | Hybrid CNN with SVM ISIC  dataset | 8 Accuracy: 98.76%, Sensitivity:
(ISIC2019) 98.4%, Specificity: 99.81%
[59] | 2022 | A deep learning system using | HAM10000 7 Accuracy: 93.58%
transfer learning and meta-
heuristic optimization
[67] | 2022 | Convolutional Neural | HAM10000 7 Accuracy: 95.8%, Sensitivity:
Network (CNN) using 85.3%, Specificity: 97.9%,
EfficientNets AUC: 0.975
[45] | 2022 | Convolutional Neural | HAM10000 7 Accuracy: 90%, Sensitivity:
Network with Soft-attention 81%, FA-score: 81%, AUC:
0.99
[63] | 2021 | Convolutional Neural | HAM10000 7 Accuracy: 93.21%, Sensitiv-
Network (CNN) using ity: 93%, Specificity: 92.92% ,
bilinear approach AUC: 0.98
[61] | 2021 | Convolutional Neural | Image dataset | 3 Accuracy: 92.18%, Sensitivity:
Network  using SMOTE | (PH2) 80.77%, Specificity: 95.1%, F1-
Oversampling Technique score: 80.84%
[55] | 2021 | Graph nodes in CNN architec- | ISIC datasets 7 Accuracy: 97.4%, Sensitivity:
ture 100%, Specificity: 95.16%,
AUC: 99.91%
[68] | 2022 | Deep Convolutional ISIC2016 2 Accuracy: 81.41%
Neural Network ISIC2017 2 Accuracy: 88.23%
(DCNN) IS1C2020 2 Accuracy: 90.42%
[65] | 2022 | Convolutional Neural | Mixed dataset | 2,7 Accuracy: 97.5%, Precision:
Network (CNN) Leaky | (PH2, ISIC) 98.0%, Sensitivity: 98.0%
ReLU function
[77] | 2021 | Support Vector Ma- PH2 3 Accuracy: 97.5%, Sensitivity:
chine (SVM) 93.75%, Specificity:  100%,
AUC: 97%
ISIC 3 Accuracy: 97.56%, Sensitivity:
97.94%, Specificity: 97.07%,
AUC: 98%
[57] | 2022 | Hybrid CNN-ELM (Extreme | HAM1000 7 Accuracy: 93.4%, Precision:
Learning Machine) 93.10%
ISIC2018 7 Accuracy: 94.36%, Precision:
94.08%
[46] | 2022 | Hybrid CNN with DenseNet- | Mixed dataset | 7 Accuracy: 81.4%
169 (PAD-UFES-
20, ISIC 2019)
[66] | 2022 | Convolutional Neural | ISIC  dataset | 7 B.Accuracy: 88%
Network (CNN) (ISIC2018)
[54] | 2021 | CNN combined with Meta- | ISIC  dataset | Not Accuracy: 96%, Sensitivity:
Heuristic methods (ISIC2008) defined 96%, Specificity: 95%
[26] | 2022 | Lightweight CNN  with | HAM10000 7 Accuracy: 97.8%, Sensitivity:
dynamic-sized kernels and 98%, Specificity: 98.1%, Fl1-
ReLU/leaky ReLU activations score: 98%
[39] | 2021 | GAN combined with CNN ISIC  dataset | 7 Accuracy: 70.1%
(ISIC2018)
[78] | 2022 | K-Nearest Neighbors (KNN) | Image dataset | 3 Accuracy: 94.81%

combined with Random For-
est (RF) and SVM

(PH2)
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Ref. | Year | Technique Data Type Classes Performance
Number

[53] | 2021 | CNN with PMEC HAM10000 7 Accuracy: 95.8%
feature fusion and ISIC2018 7 Accuracy: 97.1%

EKWO optimization ISBI2019 8 Accuracy: 85.35%

[79] | 2022 | Convolutional Neural | HAM10000 7 Accuracy:  91%, Fl-score:
Network (CNN) 88.1%, ROC-AUC: 95%

[50] | 2022 | Transformer-based model HAM10000 7 Accuracy: 96.14%, Sensitivity:
96.5%, Specificity: 96%, F1-
score:97%

[80] | 2021 | CNN combined with Machine | HAM10000 7 Accuracy: 91.7%

Learning (ML) techniques
[30] | 2022 | Explainable AI (XAI) ap- | ISIC  dataset | 8 Accuracy: 94.47%, Sensitivity:
proach using CNN (ISIC2019) 94.01%, Specificity: 93.57%,
Fl-score: 94.45%
[81] | 2021 | Neural Network (NN) ISIC  dataset | 2 Precision: 94%, Sensitivity:
(ISIC2017) 93%, Specificity: 91%

[82] | 2021 | Feedforward Neural ISIC2018 7 Accuracy: 90%, Sensitivity:
Network combined 89.37%, Specificity: 97.84%
with Artificial PH2 3 Accuracy: 95.8%, Sensitivity:
Neural Network 95.64%, Specificity: 98.21%

[83] | 2023 | CLCM-net model ISIC2018 7 Accuracy: 94.42%
with layer-wise ISIC2019 8 Accuracy: 95.8%
weight constraints Combined - Accuracy: 93%

dataset

[84] | 2022 | Capsule Network HAM10000 7 Accuracy: 96.49%

[85] | 2021 7-Point 2 Accuracy: 95.42%, Sensitivity:
g\%‘j{)al Network 98.01%, Specificity: 94.4%

Med-Node 2 Accuracy: 94.71%, Sensitivity:
96.42%, Specificity: 87.5%

PH2 3 Accuracy: 94.88%, Sensitivity:
100%, Specificity: 85.62%

[60] | 2022 | Two-stream neural HAM10000 7 Accuracy: 96.5%
network with feature ISBI2018 7 Accuracy: 98%
fusion and ELM ISIC2019 8 Accuracy: 89%

[40] | 2022 | Ensemble Learning approach | HAM10000 7 Validation Accuracy: 86.71%

[86] | 2022 | StochasticProgressive ISIC2017 2 Accuracy: 88%, AUC: 98.3
Instance Learning ISIC2018 7 Accuracy: 89.4%, AUC: 92.9

[42] | 2022 | Graph nodes-based approach | 7-point 2 AUC: 83.6%

[87] | 2021 | CNN combined with ANN ISIC dataset 5 Balanced Accuracy: 92.34%,
Sensitivity: 87.10%,
Specificity: 94.19% , AUC-
ROC: 97.10%

[41] | 2021 | Ensemble Learning approach | HAM10000 7 Accuracy: 83.5%, Sensitivity:
65.6%, Specificity: 95.4%

[27] | 2024 | Generative Adversarial Net- | HAM10000 7 Accuracy: 98.23%, Sensitivity:

work (GAN) with CNN

88.85%, Specificity: 98.34%,
F1-score:89.48
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The varying performance of AI models across different
datasets can be attributed to the unique characteristics of each
dataset, such as size, number of classes, image diversity, and
data quality. Larger datasets like ISIC2018 and ISIC2019,
which contain thousands of high-resolution dermoscopic im-
ages, generally allow AI models to perform well due to the
availability of diverse training data. However, the number of
classes also plays a crucial role. For example, studies using
ISIC2019, which contains 8 classes, reported lower accuracy
(e.g. [64] achieved 94.8% accuracy) compared to ISIC2018
(96.3% accuracy), which has fewer classes and is less complex.
The increased difficulty in distinguishing between more skin
disease types likely accounts for this discrepancy. Conversely,
smaller datasets like PH2, with only 200 images and 3 classes,
often result in higher accuracy within the dataset, as seen in
[62] with an accuracy of 98.89%. However, such models may
struggle with generalizability when applied to larger, more
complex datasets. Similarly, HAM10000 provides a diverse
dataset with 7 classes, leading to good overall performance
in most models (e.g., 95.7% accuracy in [64]), although class
imbalance in some categories can affect results. Models tested
on clinical image datasets like Derm7pt, which include more
background noise and variability in image conditions, often re-
port lower performance compared to dermoscopic datasets, as
these models must handle more variability in input data. This
analysis suggests that certain algorithms, particularly CNNs
and hybrid models, are better suited to high-quality, diverse
dermoscopic datasets, while challenges like class imbalance,
dataset size, and image quality play a significant role in the
comparative results across different datasets.

The systematic review of recent studies on Al models for
skin disease classification, as detailed in Table II and catego-
rized in the paragraphs above, reveals several critical trends,
patterns, and challenges that underscore the current state of
research in this domain. To provide a nuanced understanding
of these approaches, Fig. 8 presents the distribution of the Al
techniques utilized across the studies. This figure highlights the
prevalence of different methodologies, offering insights into
the current state of Al-driven skin disease classification.

Machine Learning Techniques ==

CNN-based Models

Hybrid Models

Transformer-based Models =

Multi-modal Approaches 6

Ensemble Learning

GANs

Number of Studies

Fig. 8. Trends in Al techniques for skin disease classification (2021-2023).

A significant trend observed across the reviewed literature
is the dominance of Convolutional Neural Networks (CNNs)
and their variations, including hybrid models combining CNNs
with other machine learning techniques such as Support Vector

Vol. 15, No. 10, 2024

Machines (SVMs), Extreme Learning Machines (ELMs), and
Random Forests. This reflects the strong performance of CNNs
in image recognition tasks, which are central to dermatological
diagnosis. To further analyze the methodologies within CNN-
based models and their variations, Fig. 9 presents the usage
frequency of various pre-trained CNN models across the
studies. This figure provides a clear overview of which pre-
trained models are most commonly employed in skin disease
classification.

15

Number of Studies
= - = - =
© S = o [ =
©

@

~

ResNet Inception DenseNet MobileNet EfficientNet

Pre-trained CNN Models

Fig. 9. Usage frequency of Pre-trained CNN models in skin disease
classification studies.

More recently, the emergence of Transformer-based models
and Vision Transformers (ViTs) suggests a growing interest in
leveraging these advanced architectures, which have demon-
strated exceptional performance in natural language processing
and are now being adapted for medical imaging.

The reviewed studies span from 2021 to 2023, indicating
a rapid evolution of techniques over a relatively short period.
Early studies primarily focused on straightforward CNN archi-
tectures, while later studies have increasingly explored more
complex hybrid models and the integration of transformers.
This evolution suggests a shift towards more sophisticated,
multi-faceted approaches aimed at improving model accuracy
and generalization across diverse datasets. Fig. 10 illustrates
the increasing trend in the use of Hybrid Models and Trans-
formers over time.
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Fig. 10. Trends in Al techniques for skin disease classification (2021-2023).
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Additionally, there is a noticeable increase in the appli-
cation of Auto-Encoders, Generative Adversarial Networks
(GANSs), and ensemble methods, reflecting the ongoing effort
to enhance model robustness and address challenges such
as data scarcity and imbalance. The development of GANs
combined with CNNs, as seen in recent studies, highlights a
trend towards generating synthetic data to improve training
outcomes, which is particularly valuable in medical fields
where annotated data can be limited.

The predominant use of datasets such as HAM 10000, ISIC
(International Skin Imaging Collaboration), and PH2 across the
studies indicates a reliance on these well-established, publicly
available image datasets. The consistent use of these datasets
underscores their role as benchmarks in the field. However,
it also highlights a potential limitation in terms of dataset
diversity, as most studies focus on the same data sources,
which may not fully represent the variety of skin conditions
encountered in clinical practice.

In terms of class distribution, most studies focus on
classifying a limited number of conditions, with a particular
emphasis on melanoma and non-melanoma skin cancers. This
trend reflects the clinical importance of accurately diagnosing
these conditions but also points to a gap in research focused
on rarer or less visually distinct skin diseases, which are
underrepresented in current models.

The reported performance metrics, including accuracy,
sensitivity, specificity, and precision, show high variability
across studies, with accuracy ranging from 88.19% to 98.7%.
This variability can be attributed to differences in model
complexity, data preprocessing methods, and the inherent
difficulty of the classification tasks. Notably, hybrid models
and those incorporating transformers generally report higher
performance, suggesting that these more complex models may
offer advantages in handling the nuances of skin disease
classification. Fig. 11 provides a comparative analysis of the
performance distribution across different model types.

100

% i

90

6)

Performance Metrics (%

85

80

CNN Hybrid Models Transformers

Model Type

Fig. 11. Performance distribution across different models.

However, it is important to note that high performance on
well-curated datasets does not necessarily translate to clini-
cal effectiveness. The consistent reporting of high specificity
across models is encouraging, as it suggests a strong ability to
correctly identify negative cases, which is critical in avoiding
unnecessary interventions. Nonetheless, the lower sensitivity

Vol. 15, No. 10, 2024

scores reported in some studies, particularly those involving
simpler CNN architectures, indicate a potential risk of missed
diagnoses, which could have serious clinical implications.

Despite the progress made, several challenges remain. The
reliance on a few datasets raises concerns about the gener-
alizability of these models to broader, more diverse patient
populations. Additionally, while the integration of multimodal
data (e.g., combining images with patient history) is increas-
ingly being recognized as essential for improving diagnostic
accuracy, few studies have fully implemented this approach.

Moreover, the computational complexity of advanced mod-
els such as transformers and GANs may limit their deploy-
ment in resource-constrained settings, highlighting the need
for research focused on optimizing these models for real-
world clinical environments. Fig. 12 compares the performance
metrics of hybrid models versus pure deep learning models,
emphasizing the potential advantages of hybrid approaches.

. Hybrid Models
Deep Learning Models

o
=)

Performance (%)

IS
S

Accuracy
ensitivity
Specificity

@
Metrics

Fig. 12. Performance comparison: Hybrid models vs pure deep learning.

The general metrics commonly used to evaluate the perfor-
mance of Al models in skin disease classification include Ac-
curacy, Sensitivity, Specificity, Precision, F1-Score, and Area
Under the Curve (AUC). These metrics are crucial in assessing
the effectiveness of the models in correctly identifying and
classifying skin conditions.

1. Accuracy: The proportion of correctly classified in-
stances (both true positives and true negatives) among the total
number of instances.

TP+ TN
TP+TN+FP+FN

Accuracy =

2. Sensitivity (Recall or True Positive Rate): The proportion
of actual positives that are correctly identified by the model.

o TP
Sensitivity = TPLFN

3. Specificity (True Negative Rate): The proportion of
actual negatives that are correctly identified by the model.

TN

SpeCIﬁCIty = m
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4. Precision (Positive Predictive Value): The proportion of
positive predictions that are actually correct.

TP

P .. _
recision 7TP T FP

5. F1-Score: The harmonic mean of Precision and Sensi-
tivity, providing a balance between the two.

Precision x Sensitivit
F1-Score = 2 x y

Precision + Sensitivity

6. Area Under the Curve (AUC): The area under the
Receiver Operating Characteristic (ROC) curve, representing
the model’s ability to discriminate between classes.

1
AUC = / TPR(FPR ! (z)) dx
0

VII. CONCLUSION

This systematic review provides a focused analysis of Al
methodologies in skin disease classification, highlighting the
growing adoption of advanced techniques like GANs, Trans-
former models, and multi-modal approaches. While CNNs
remain a dominant tool, their performance is often enhanced
by hybrid and ensemble learning methods, demonstrating a
trend towards more complex model architectures.

However, this review also identifies several key challenges
that need to be addressed. The lack of standardization across
studies and the limited application of multi-modal approaches
restrict the generalizability of current models. Additionally,
the datasets used in most studies lack diversity in terms
of patient demographics, including under-representation of
different skin tones and rare skin diseases, which limits the
models’ applicability across broader populations. Moreover,
the explainability of Al models remains a critical barrier to
their integration into clinical practice. Ensuring that Al-driven
diagnostic tools provide transparent and interpretable outputs
for clinicians is crucial for their adoption in real-world settings.

Future research should prioritize the development of stan-
dardized protocols and benchmarking methods to enable mean-
ingful comparisons between different AI models. The creation
of more diverse and representative datasets is essential to
improve the generalization of Al models and their applicability
in real-world clinical environments. Furthermore, addressing
the ethical implications of AI use in dermatology is vital,
particularly in relation to bias mitigation, ensuring that Al
technologies perform equitably across all patient groups. There
is also a growing need to investigate advanced techniques
such as federated learning, which could enhance collaboration
between institutions while preserving patient privacy, thereby
improving model generalizability without compromising data
security.

Finally, real-world validation through clinical trials and
large-scale implementation studies is necessary to evaluate
the practical utility and reliability of Al-driven skin disease
classification tools. Collaboration between Al researchers and
clinicians will be crucial in translating these models from
research into clinical practice.
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