
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Efficient Load-Balancing and Container Deployment
for Enhancing Latency in an Edge Computing-Based

IoT Network Using Kubernetes for Orchestration

Garrik Brel Jagho Mdemaya1, Milliam Maxime Zekeng Ndadji2,
Miguel Landry Foko Sindjoung3, Mthulisi Velempini4

Department of Computer Science, University of Limpopo, Mankweng, South Africa1,3,4

Department of Mathematics and Computer Science, University of Dschang, Dschang, Cameroon2

Abstract—Edge Computing (EC) provides computational and
storage resources close to data-generating devices, and reduces
end-to-end latency for communications between end-devices and
the remote servers. In smart cities (SC) for example, thousands of
applications are running on edge servers, and it becomes crucial
to manage resource allocation and load balancing to improve
data transmission throughput and reduce latency. Kubernetes
(k8s) is a widely used container orchestration platform that is
commonly employed for the efficient management of container-
ized applications in SC. However, it does not integrate well
with certain EC requirements such as network-related metrics
and the heterogeneity of EC clusters. Furthermore, requests
are equally distributed across all replicas of an application,
which may increase the time taken for processing, since in the
EC environment, nodes are geographically dispersed. Several
existing studies have investigated this problem, unfortunately,
the proposed solutions consume a lot of node’s resources in the
cluster. To the best of our knowledge, none of studies considered
the cluster heterogeneity when deploying applications that have
different resource requirements. To address this issue, this paper
proposes a new technique to deploy applications on edge servers
by extending Kubernetes scheduler, and an approach to manage
requests among the different nodes. The simulation results show
that our solution generates better results than some of the state-
of-the-art works in terms of latency.

Keywords—Latency; Kubernetes; edge computing; Internet of
Things; load-balancing

I. INTRODUCTION

The fusion of Internet of Things (IoT) and edge comput-
ing has revolutionized distributed computing, enabling real-
time data processing and analysis at the network edge in
metropolitan cities [1, 11]. Various technologies are enhancing
urban life. Numerous fundamental departments of cities such
as transportation, power plants, information systems, crime
detection traffic monitoring, etc. are equipped with sensors to
gather data on community services. The endeavour to construct
a smart city entails an increasing number of sensors and a
growing volume of traffic. This evolution also impacts appli-
cations operating within smart city-related frameworks. Thus,
thousands of applications are running in real-time on nodes
at the edge layer. So they need to be organised well and or-
chestrated to serve efficiently each activity sector. Kubernetes
(k8s), a leading container orchestration platform, has extended

This work is based on the research supported by the National Research
Foundation of South Africa (Grant Numbers: 141918)

its reach to the edge, offering sophisticated tools for managing
containerized applications in this decentralized environment
[15, 3]. However, orchestrating containers on heterogeneous
edge clusters poses significant challenges. Edge nodes come
in diverse forms, ranging from resource-constrained sensors to
powerful edge servers, each with distinct processing capabil-
ities and network connectivity. Also, the edge layer is made
up of several heterogeneous machines forming a cluster. Some
machines are much more powerful than others; consequently,
certain processes, such as artificial intelligence training, need
to be run on much more powerful machines, while certain
processes, such as saving and collecting multimedia data, can
be run on less powerful machines.

Despite heterogeneity, smart deployment of applications
and efficient utilization of computing resources require the
distribution of incoming requests across machines within the
cluster. These tasks fall under the kube-scheduler which is
the component in charge of application deployment on nodes
in a Kubernetes cluster, and under the ingress controller
and kube-proxy components, which play a significant role in
balancing the workload and optimizing performance across
heterogeneous edge nodes. Several existing works designed
to improve latency and throughput in edge computing-based
IoT networks using Kubernetes as a container orchestration
tool have been proposed in the literature. However, some of
the proposed techniques designed to extend the default kube-
scheduler consume a fair amount of energy due to the workload
on nodes [12, 9]. Others use custom orchestrators running
in containers in the same cluster [20, 7], which consumes
the hardware resources of machines whose main aim is to
respond as quickly as possible to end-user requests. Some
use strategies to distribute requests fairly among the nodes
in the cluster using the kube-proxy component. This does
not guarantee a significant reduction in latency given that
they do not consider some node hardware resources during
the load-balancing process [14]. In this paper, to address the
latency problem in an Edge computing-based IoT network
using Kubernetes for container orchestration, we first introduce
a solution to deploy applications on edge nodes depending on
the resources required by these applications to run smoothly
on the cluster nodes. Secondly, we propose an approach to
manage load-balancing and distribute the requests among the
nodes of the cluster while considering hardware resources
available on cluster nodes. Thus, the contribution of this paper
is summarized as follows

www.ijacsa.thesai.org 1202 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

• We show how the default kube-scheduler can be ex-
tended to evaluate and provide a score to applications
and deploy them on edge nodes in an efficient way
while considering the type of nodes and the available
resources.

• We explore the complexities of container orchestra-
tion at the edge using Kubernetes, emphasizing the
importance of accommodating cluster heterogeneity
and implementing request distribution mechanisms for
better load-balancing.

The remainder of this paper is organized as follows: Section
II reviews the related works. Section III presents our approach
to addressing the latency problem, while in Section IV we
present the simulation results and discuss the performance of
the proposed approach. Finally, Section V concludes the paper
and discusses the perspectives of our proposal.

II. LITERATURE REVIEW

This section aims to present the works that are related to
our study. We start by presenting kubernetes in Section II-A,
then, the state of the art on works that use Kubernetes as
orchestrators to reduce the latency in Section II-B.

A. What is on Kubernetes?

Kubernetes is a prominent open-source platform designed
to streamline the deployment, management, and scaling of
containerized applications. A Kubernetes cluster comprises of
master nodes (or control planes) and worker nodes. Applica-
tions are run in units called pods, that serve as Kubernetes, the
smallest execution units [16]. The control plane manages the
worker nodes and the pods within the cluster. In production
environments, the control plane operates across multiple com-
puters, and a cluster generally encompasses multiple nodes,
ensuring fault tolerance and high availability. Fig. 1 shows the
kubernetes cluster architecture.

The control plane components are responsible for making
overarching decisions regarding the cluster, such as scheduling,
identifying and reacting to cluster events, such as initiating a
new pod when necessary. These components have the flexi-
bility to operate on any machine within the cluster. However,
to streamline operations, setup scripts commonly initiate all
control plane components on a single machine, and also avoid
executing user containers on a machine. The control pane
has four main components: (1) kube-apiserver is a key
component also known as API server for the Kubernetes
control plane that serves as an interface for the Kubernetes API
and acts as its primary gateway. (2) etcd is a database within
which Kubernetes information like metadata, current state and
desired states are stored. (3) kube-scheduler is the control
plane component that monitors created pods without assigned
nodes and selects suitable nodes for their execution. Finally,
(4) kube-controller-manager is the control plane component
responsible for executing controller processes.

The worker nodes are responsible for the applications
(pods) that are running in the cluster. They mainly have three
components that run on every worker node, with the main role
of maintaining the running pods and providing the Kubernetes
runtime environment. (1) kubelet is a node-level agent that

helps to ensure the operational status of containers within pods.
(2) kube-proxy operates as a network proxy and serves as a
fundamental component of the Kubernetes service framework.
Finally, (3) Container runtime is an essential element that
enables Kubernetes to efficiently run containers.

In a Kubernetes cluster, relying on the IP address of an
application pod for access can be challenging due to the pod’s
IP changing upon restart. To ensure application reachability, a
layer of abstraction known as a service is employed to expose
groups of application pods to clients. Each service is assigned a
virtual IP address, called ClusterIP, which remains unchanged
unless recreated, thus guaranteeing application reachability
within the cluster. However, ClusterIP is only accessible within
the cluster. To enable access from outside the cluster, services
can be configured with NodePort or LoadBalancer. With
NodePort, a static port is opened on each node, allowing
access through nodeIP:port from inside or outside the cluster.
LoadBalancer leverages the cloud provider’s load-balancing
mechanisms to externally expose the service. Traffic accessing
an application is routed to its pods and monitored by the
service, with routing decisions based on kube-proxy modes
such as userspace, iptables, and IPVS.

By default, kube-proxy operates in userspace mode, uti-
lizing a round-robin algorithm for traffic distribution. Alterna-
tively, iptables mode randomly selects a pod for traffic han-
dling. For large-scale applications, IPVS offers more efficient
routing algorithms including round-robin, least connection,
destination hashing, source hashing, shortest expected delay,
and never enqueued. Another important component in Kuber-
netes is the horizontal pod autoscaler (HPA), which is in charge
of creating automatically new pods of an application if the
existing pods are overloaded, or deleting some of them if the
application is not being used.

B. Overview of Works using Kubernetes as Orchestrator

Many recent studies have focused on the integration of Ku-
bernetes for load-balancing management in edge computing-
based IoT networks. Although Kubernetes has some limitations
in edge computing-based IoT networks, the works presented
in study [4, 19] show that it remains a promising candidate for
managing load balancing and improving latency and through-
put. Cilic et al. [5] found that Kubernetes and its distributions
hold promise in facilitating efficient scheduling across edge
network resources. Nevertheless, several challenges remain to
be addressed to optimize these tools for the dynamic and
distributed execution environment inherent in edge computing.
In research [10], Han et al. introduced Kais, a learning-
based scheduling framework for such edge-cloud systems to
improve the long-term throughput rate of request process-
ing. Unfortunately, in their work, some nodes have a high
workload, while others are under-utilised. Goethals et al. [8]
proposed FLEDGE, A container orchestrator compatible with
kubernetes, leveraging Virtual Kubelets, primarily targeting
container orchestration on resource-constrained edge devices.
They did not integrate the fact that edge nodes are most of
the time heterogeneous, and in their implementation, they also
did not consider the distribution of user requests among the
nodes, which does not allow them to achieve better results
in terms of latency and bandwidth. Phuc et al. [16] proposed
an extension of the default HPA whose role is to offer the

www.ijacsa.thesai.org 1203 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Fig. 1. Kubernetes cluster architecture [2].

resource autoscaling capability. However, the HPA allocates
pods to worker nodes without considering the resource de-
mand imbalances in edge computing environments. Authors in
[16] considered upscaling and downscaling actions based on
network traffic information from nodes to enhance the load-
balancing of IoT services in the edge computing infrastructure.
Their solution increased throughput and response time between
edge nodes, but it doesn’t guarantee that a pod that required
a lot of resources will be executed on a worker node having
the requirements to run that kind of application; therefore, if
a particular pod is running on the wrong node, it can increase
energy consumption and end-users requests can take too much
time to be executed, resulting in high latency. In study [13], the
authors studied KubeEdge, which is an open-source platform
based on Kubernetes, that aims to orchestrate containerized
IoT application services in IoT edge computing environments.
In study [6], authors proposed a multi-application hierarchical
autoscaling framework tailored for Kubernetes edge clusters.
A mechanism based on applications nominates optimal de-
ployment choices through workload prediction and various
criteria to ensure application performance while minimizing
infrastructure provider costs. This strategy achieves significant
improvement in the average allocated resources and energy
consumption but it doesn’t operate during the first deployment
of the application on the servers. Nguyen et al. in study [14],
proposed a scheme named Resource Adaptive Proxy (RAP)
that considers metrics like latency between worker nodes,
Central Processing Unit (CPU) and Random Access Memory
(RAM) on worker nodes in order to efficiently distribute the
end users requests among the worker nodes. Unfortunately,
RAP algorithm does not monitor other cluster resources such
as graphics processing units and storage. Rac et al. in STUDY
[18] introduce a methodology aimed at reducing the opera-
tional costs of applications across the edge-to-cloud computing
continuum. Authors in study [17] proposed EdgeOptimizer,

a solution that serves as an online testbed for verifying
kubernetes-based algorithms, offering detailed configuration
options to facilitate cluster management. Unfortunately, their
solution does not evaluate the hardware resources consumed
by the applications running on their most complex use cases in
order to efficiently schedule their deployments in Kubernetes
clusters in an edge computing environment.

So far, several works that aim to integrate Kubernetes
distributions for container orchestration in edge computing-
based IoT networks have been presented. The purpose of doing
that is to reduce the latency by managing the load-balancing
in edge computing-based IoT networks when considering all
the requirements of the edge computing environment. Un-
fortunately, despite the effectiveness of these solutions, there
are still some limitations that need to be addressed while
considering Kubernetes for container orchestration in edge
computing-based IoT networks.

Edge nodes are heterogeneous and some of them can run
faster, some resource-constrained applications than others, and
it is therefore important to schedule application deployments
by considering the best nodes on which they will efficiently
run. Secondly, since Kubernetes and recent works do not
integrate network-related metrics and resources like Graphical
Processing Unit (GPU) and storage for load-balancing prop-
erly. It is important to enhance them and propose solutions to
achieve better latency and throughput. Finally, default Ingress-
Controller and Kube-proxy components distribute evenly end-
users requests among the pods without considering the avail-
able hardware resources on the worker nodes. In this work,
we address these issues and propose a solution that schedules
deployment of containerized applications on worker nodes ef-
ficiently, and secondly manages load-balancing by distributing
requests among the worker nodes while considering hardware
metrics and effective locations of the pods on the worker nodes.

www.ijacsa.thesai.org 1204 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

III. CONTRIBUTION

This section presents our contribution for enhancing latency
between end-users and edge layer in edge computing-based
IoT networks deployed in smart cities using Kubernetes for
container orchestration. The strategy we are proposing con-
sists, on the one hand, extension of the default kube-scheduler
installed on the master, to enable it to deploy pods while taking
into account the minimum hardware resources required to run
those pods and the types of machines in the cluster having
these hardware resources. On the other hand, enhancing the
default Kubernetes load-balancing algorithms and integrating
other metrics with CPU and RAM to manage the workload on
the edge layer nodes.

A. Assumptions and Notation

The following assumptions are done for this work:

• There are several edge nodes geographically dispersed
in a smart city, and thousands of applications are
running on them;

• All applications are containerised using docker, and
Kubernetes is used for container orchestration;

• The master node has powerful resources and can
launch virtual machines for a sandbox environment,
which is a dynamic area where developers can play
with codes without fear of disrupting the larger system
and where they can test their solutions;

• The worker nodes in the cluster are heterogeneous;

• It is possible to evaluate the hardware resources con-
sumed by a running container and assign a score to
that container depending on the resources it consumes;

• It is also possible to evaluate a machine and assign it
a score according to its resources;

In Table I, we have a list of notations that will be used to
describe our solution

B. Kube-scheduler Awareness

We propose an extension to the default kube-scheduler
installed on the master node. In Section II-A, we have de-
scribed the behaviour of the default kube-scheduler and at
the end of Section II, we highlighted some of the limitations
of this component. To address these limitations, we propose
the integration of a robot installed on the master node, that
can evaluate the hardware resources consumed by a running
container and decide on what kind of nodes it can be deployed.
So, to put our proposed solution into practice, developers will
have to expose test endpoints for the most resource-intensive
use cases in their applications before they are deployed on
the cluster. Thus, before the deployment of containers on the
cluster, the kube-scheduler performs the following operations:

• When the kube-scheduler receives a new container for
deployment purposes on the cluster, it first deploys it
in the sandbox environment (virtual machines running
on the master node);

• Once the said application is deployed in the sandbox
environment, the robot starts and simultaneously tests

all the endpoints exposed by the container. The idea is
to overload this application as much as possible and
monitor the resources it requires when it is running at
full speed;

• A score S is given to a container based on the
resources it needs when running at maximum speed :

◦ If S ≥ TappHGPU , then the kube-scheduler
will consider only nodes having high GPU and
high CPU capacity for the deployment of the
new container;

◦ If TappLGPU ≤ S ≤ TappHGPU , then the
kube-scheduler will only consider nodes hav-
ing low GPU and high CPU capacity for the
new container deployment;

◦ If TappHCPU ≤ S ≤ TappLGPU , then the
kube-scheduler will only consider nodes hav-
ing acceptable CPU and high GPU capacity for
the new container deployment;

◦ If TappLCPU ≤ S ≤ TappHCPU , then the
kube-scheduler will only consider nodes hav-
ing acceptable CPU and low GPU capacity for
the new container deployment;

• After the score S is assigned to an application, its
deployment is faster and easily done because only
some nodes will be considered depending on that
score;

• Otherwise, all the nodes likely to host a pod are
overloaded, the new pod will be deployed on the
worker in the higher level.

Since thousands of applications are running at the same
time on edge nodes in a smart city, it is important not to
over-use or under-use the nodes by choosing which application
to run on what kind of node, so that this node will execute
user requests with the highest possible speed compared to the
other nodes on the network. The parameters that we used to
evaluate the score of an application are RAM, CPU, GPU,
network bandwidth between nodes’s components and storage
(HDD or SDD). Each parameter is assigned a weight W : then
the weight for the amount of RAM used by an application is
WRAM , for the amount of CPU used is WCPU , for storage
memory is WStor, for the GPU is WGPU and for bandwidth
is WBW . Also, we define Ni as the amount of hardware
resource i consumed by a running application: so, let NRAM

be the amount of RAM used by a running application, NCPU

the amount of CPU used by the same running application,
NStor the amount of data stored by that application during
its execution, NGPU the amount of GPU used and NBW be
the amount of bandwidth used by that application. Since the
measurement units of each parameter differ, their values have
to be normalized. Thus, the score S of a running application
is given by:

S =
WRAM ×NRAM

maxRAM
+

WCPU ×NCPU

maxCPU
+

WStor ×NStor

maxStor
+

WGPU ×NGPU

maxGPU
+

WBW ×NBW

maxBW

(1)

where maxRAM is the highest value of RAM memory among
all the nodes in the cluster, maxCPU is the highest value of
CPU among all the nodes in the cluster, maxStor is the highest

www.ijacsa.thesai.org 1205 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

TABLE I. NOTATIONS

Notation Explanation
CPU Central Processing Unit
GPU Graphical processing unit
RAM Random Access Memory
Ni Amount of hardware resource i consumed by a running application

TappHGPU Threshold value for an application to be launched on nodes having
high GPU capacities and high CPU capacities

TappLGPU Threshold value for an application to be launched on nodes having
low GPU capacities and high CPU capacities

TappLCPU Threshold value of an application to be launched on nodes having
acceptable CPU capacities and low GPU capacities

TappHCPU Threshold value of an application to be launched on nodes having
acceptable CPU capacities and high GPU capacities

value of storage memory among all the nodes in the cluster,
maxGPU is the highest value of GPU among all the nodes in
the cluster and maxBW is the highest value bandwidth among
all the nodes in the cluster.

Algorithm III.1 shows the different stages executed by the
Kube-Scheduler before new containers deployment on worker
nodes.

Algorithm III.1: Kube-scheduler awareness
Input: App: a containerized application to deploy on

the cluster
1 Begin
2 Reception of the container (App) to deploy on the

cluster ;
3 Deploy container App in the sandbox environment

on Master ;
4 Evaluate the score S of container App using

equation 1 ;
5 if S ≥ TappHGPU then
6 only consider nodes having high GPU and

high CPU capacity for the deployment of
App;

7 if TappLGPU ≤ S ≤ TappHGPU then
8 only consider nodes having low GPU and high

CPU capacity for the deployment of App ;
9 if TappHCPU ≤ S ≤ TappLGPU then

10 only consider nodes having acceptable CPU
and high GPU capacity for the deployment
of App ;

11 if TappLCPU ≤ S ≤ TappHCPU then
12 only consider nodes having acceptable CPU

and low GPU capacity for the deployment of
App ;

13 Deploy container App on the selected list of
nodes ;

C. Load-balancing Awareness

In smart cities, end users send thousands of requests to
the edge layer of an edge computing-based IoT network.
Default load-balancing algorithms implemented on kube-proxy
are userspace, iptable and ipvs, which are not suitable in the
edge computing environment. In this section, we propose to
use RAP protocol [14] where we integrate other metrics like

storage and GPU in the nodes evaluation process considering
that the number of nodes for the redirection of requests is
reduced since custom applications are running on custom
nodes. When a request arrives at a node, it performs the
following operations:

• If the current node is running the target pod and has
sufficient hardware resources, it executes locally the
request and sends the response to the user;

• Otherwise, if it is not running the target pod, it sends
the later to the node having the best score [14] and
that is running the target pod. The redirection is done
faster than in [14] because only a few nodes will be
considered for the redirection.

So in this approach, user requests are performed mainly
local on the node that receives the request, reducing the risk
of latency during request redirection. In addition, in the case of
redirection, the selection algorithm runs faster because the list
of nodes to be considered is reduced since only some nodes run
particular applications. In Fig. 2 the default kube-scheduler and
HPA deploy applications on worker nodes without considering
the minimum requirements of that application. For example,
the best nodes that can run App1 are worker 3 and worker 4
but since they are already running an instance of App1, the
next instance of App1 is deployed on worker 1 which will
not process requests faster on App1 because of its hardware
resources. Also, the default userspace algorithm implemented
on kube-proxy component for load-balancing distributes re-
quests evenly among the worker nodes. Thus, when worker 4
receives request number 6 to be executed by App1, it forwards
it to worker 1 since App1 on worker 1 is only performing
request number 3. So in addition to the delay between worker
nodes 1 and 4 (7ms), you need to add the time required by
worker 1 to perform requests on App1 which is not negligible.

In Fig. 3, pods are deployed on the best nodes that can
perform user requests faster. For example, App1 is deployed
on worker nodes 3 and 4. Also, user requests are executed
locally most of the time, and are only redirected if the pod
receiving the request is overloaded or if the node receiving
the request is not running the target pod; for example, request
number 4 on worker 4 to App2 (in orange) is redirected on
worker 1. Therefore, as shown in Fig. 3, the HPA can delete the
second instance of App2 on worker 1, and the two instances of
App3 on worker 2 since they are not used; this will contribute
to free resources on these nodes.

www.ijacsa.thesai.org 1206 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Fig. 2. Default kube-scheduler and userspace algorithm.

Fig. 3. Our extended kube-scheduler and load-balancing algorithm.

IV. SIMULATIONS AND RESULTS

In this section, we present the results of our simulations.We
installed microk8s V1.26 which is a lightweight distribution of
Kubernetes on a cluster with one master node and 6 worker
nodes. The characteristics of each node are given in Table II.
Also, requests to our Kubernetes cluster have been simulated
with the Apache HTTP Server Benchmarking (AB) tool, which
is a utility that tests the performance of a server. It has been
designed to give an idea of the level of performance of an
installation. In particular, it allows one to determine the number
of requests an installation can process per second.

A. Workload on Worker Nodes

Fig. 4 shows the evaluation of the workload on each worker
node when there are 100, 500 and 1000 requests per second
(req/s) arriving at the cluster with 20 pods. Fig. 4a shows the
results when nodes implement our load-balancing algorithm.
All the pods are distributed among the worker nodes while
considering their resources. The workload is well distributed
among the nodes and there are no cases where some nodes
are over-used while others are under-used. Fig 4a shows that
when 500 req/s are arriving on the cluster, worker 1 uses 10%
of its resources, worker 2 uses 9% of its resources, worker 3

www.ijacsa.thesai.org 1207 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

(a) Workload on worker nodes with our approach (b) Workload on worker nodes with userspace algorithm

Fig. 4. Evaluation of workload on worker nodes.

(a) Latency between worker nodes (b) End users requests latency

Fig. 5. Latency evaluation.

TABLE II. NODES CHARACTERISTICS

Node Hard drive type Number of CPU disc storage (GB) RAM (GB) CPU (Ghz) GPU
Master SSD 5 250 8 3.5 4

Worker 1 SSD 2 120 3 2.5 2
Worker 2 SSD 3 150 2 1.8 3
Worker 3 SSD 2 100 3 2.8 1
Worker 4 SSD 4 180 2 3.0 2
Worker 5 SSD 2 150 4 2.0 2
Worker 6 SSD 3 100 2 3.1 2

uses 9%, worker 4 uses 12%, worker 5 uses 13% and worker 6
uses 11% of its resources. However, Fig. 4b shows the results
when the default userspace algorithm is implemented. It shows
that, when 500 req/s are arriving on the cluster, worker 1 uses
10% of its resources, worker 2 uses 17% of its resources,
worker 3 uses 13%, worker 4 uses 8%, worker 5 uses 17%
and worker 6 uses 7%. Fig. 4b shows that, even if the requests
are evenly distributed among the worker nodes, some pods are
not deployed on the appropriate worker nodes; and therefore,

these nodes are overused. These evaluations have been made
while executing the most resource-intensive use cases of each
pod. That is, with the use of our proposed solution, pods are
deployed on the most suitable nodes in the cluster so that even
if they are in demand, they can perform operations and deliver
responses faster.

Results shown in Fig. 4 are supported by those presented in
Table III, which shows the comparison between our protocol

www.ijacsa.thesai.org 1208 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

TABLE III. EVALUATION OF STANDARD DEVIATION

Protocol 100 req/s 500 req/s 1000 req/s
Our protocol 1.37 1.49 2.59

userspace algorithm 3.97 4 5.73

and the default userspace algorithm in terms of the standard
deviation of the workload on worker nodes. The standard
deviation with our protocol is 1.37 when there are 100 req/s,
while the one of the userspace algorithms is 3.97. When there
are 500 req/s, the standard deviation with our protocol is 1.49
while the one of userspace is 4; and when there are 1000 req/s,
the standard deviation with our protocol is 2.59 while the one
of userspace is 5.73. These results show that the workload on
worker nodes when using our protocol does not vary a lot
compared to the cases with userspace.

B. Evaluation of Delay Between Worker Nodes During Load-
balancing and Its Impact on Latency

Fig. 5a shows the evolution of the latency when the network
delay between two worker nodes increases. Since in edge
computing, worker nodes are geographically dispersed, the la-
tency between worker nodes plays a key role in load-balancing
management. Our protocol was compared to the RAP protocol
[14] and the default routing decisions implemented in kube-
proxy such as userspace, iptables and ipvs. Fig. 5a shows that
userspace is the worst because of its round-robin algorithm and
its performance varies from 25ms to 140ms; iptable which
varies from 8ms to 40ms is better than userspace because
while performing its random algorithm it often selects the
closest node to transfer requests; ipvs which is tailored for
large scale applications perform better than userspace and
iptable. RAP protocol [14] is better than all the default routing
decisions implemented in kube-proxy because it executes as
many as possible requests locally on the node that received
the request, and forwards them only if the local node has
no capacity; moreover, the forwarding of a request takes into
consideration the hardware resource on the other nodes and
the delay between them. Our protocol is the best because our
routing algorithm is not only based on the one proposed by
[14], but also takes less time because the workload is reduced,
thanks to the scheduler distributed pods while considering the
scores and the nodes on which they can be deployed. Thus
for load-balancing purposes, only a few worker nodes are
considered in the routing algorithm.

We also evaluated the average latency of our solution when
the cluster receives 100 to 1000 requests per second and
compared the obtained results with userspace, iptables, ipvs
and RAP [14] as presented in Fig. 5b. While latency with
userspace varies from 35ms to 203ms, it varies from 24ms
to 136ms in iptables, from 19ms to 100ms with ipvs, from
12ms to 71 ms in RAP, and finally from 9ms to 62ms in
our solution. Our solution is the best because of two main
reasons, the pods are distributed on suitable nodes which
perform user requests faster and secondly, it is based on RAP
protocol [14] for load-balancing algorithm. Fig. 4a shows that
the workload is well distributed among the nodes even when
several pods are running, and Fig. 5a shows that even if the
delay between worker nodes increases, the latency for load-
balancing management between those nodes is still weak. So,

the fusion of these results helps to show that the network
latency of our solution is the best.

V. CONCLUSION

This paper presents our approach to enhance latency in
an edge computing-based IoT network with Kubernetes as the
container orchestrator. This approach extends the default kube-
scheduler component deploys pods on the best nodes in the
cluster, and then distributes requests among the worker nodes
to manage load-balancing. The results show that this approach
is promising and better than other approaches in terms of
latency. In future work, we plan to examine throughput and a
politic for moving containers from one node to another when
necessary to increase latency. We also plan to reduce latency by
deploying pods according to the geographical regions in which
they are used effectively, using machine learning techniques.

REFERENCES

[1] Hemant Kumar Apat, Rashmiranjan Nayak, and Bibhu-
datta Sahoo. A comprehensive review on internet of
things application placement in fog computing environ-
ment. Internet of Things, 23:100866, 2023.

[2] The Kubernetes Authors. Kubernetes cluster archi-
tecture. https://kubernetes.io/docs/concepts/architecture/,
2024-04-22. 2023-10-23.

[3] Sebastian Böhm and Guido Wirtz. Profiling lightweight
container platforms: Microk8s and k3s in comparison to
kubernetes. In ZEUS, pages 65–73, 2021.

[4] Sebastian Böhm and Guido Wirtz. Cloud-edge orches-
tration for smart cities: A review of kubernetes-based
orchestration architectures. EAI Endorsed Transactions
on Smart Cities, 6(18), 2022.

[5] Ivan Cilic, Petar Krivic, Ivana Podnar Zarko, and Mario
Kusek. Performance evaluation of container orchestration
tools in edge computing environments. Sensors, 23(8),
2023.

[6] Ioannis Dimolitsas, Dimitrios Spatharakis, Dimitrios De-
chouniotis, Anastasios Zafeiropoulos, and Symeon Pa-
pavassiliou. Multi-application hierarchical autoscaling for
kubernetes edge clusters. In 2023 IEEE International
Conference on Smart Computing (SMARTCOMP), pages
291–296, 2023.

[7] Raphael Eidenbenz, Yvonne-Anne Pignolet, and Alain
Ryser. Latency-aware industrial fog application orches-
tration with kubernetes. In 2020 Fifth International Con-
ference on Fog and Mobile Edge Computing (FMEC),
pages 164–171, 2020.

[8] Tom Goethals, Filip De Turck, and Bruno Volckaert.
Extending kubernetes clusters to low-resource edge de-
vices using virtual kubelets. IEEE Transactions on Cloud
Computing, 10(4):2623–2636, 2022.

[9] Tom Goethals, Bruno Volckaert, and Filip De Turck.
Adaptive fog service placement for real-time topology
changes in kubernetes clusters. In CLOSER, pages 161–
170, 2020.

[10] Yiwen Han, Shihao Shen, Xiaofei Wang, Shiqiang Wang,
and Victor C.M. Leung. Tailored learning-based schedul-
ing for kubernetes-oriented edge-cloud system. In IEEE
INFOCOM 2021 - IEEE Conference on Computer Com-
munications, pages 1–10, 2021.

www.ijacsa.thesai.org 1209 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

[11] Rathinaraja Jeyaraj, Anandkumar Balasubramaniam,
Ajay Kumara M.A., Nadra Guizani, and Anand Paul.
Resource management in cloud and cloud-influenced
technologies for internet of things applications. ACM
Comput. Surv., 55(12), mar 2023.

[12] Paridhika Kayal. Kubernetes in fog computing: Feasibil-
ity demonstration, limitations and improvement scope :
Invited paper. In 2020 IEEE 6th World Forum on Internet
of Things (WF-IoT), pages 1–6, 2020.

[13] Seong-Hyun Kim and Taehong Kim. Local scheduling in
kubeedge-based edge computing environment. Sensors,
23(3), 2023.

[14] Quang-Minh Nguyen, Linh-An Phan, and Taehong Kim.
Load-balancing of kubernetes-based edge computing in-
frastructure using resource adaptive proxy. Sensors,
22(8), 2022.

[15] Juan Marcelo Parra-Ullauri, Hari Madhukumar, Adrian-
Cristian Nicolaescu, Xunzheng Zhang, Anderson Braval-
heri, Rasheed Hussain, Xenofon Vasilakos, Reza Neja-
bati, and Dimitra Simeonidou. kubeflower: A privacy-
preserving framework for kubernetes-based federated
learning in cloud–edge environments. Future Generation
Computer Systems, 157:558–572, 2024.

[16] Le Hoang Phuc, Linh-An Phan, and Taehong Kim.
Traffic-aware horizontal pod autoscaler in kubernetes-
based edge computing infrastructure. IEEE Access,
10:18966–18977, 2022.

[17] Yufei Qiao, Shihao Shen, Cheng Zhang, Wenyu Wang,
Tie Qiu, and Xiaofei Wang. Edgeoptimizer: A pro-
grammable containerized scheduler of time-critical tasks
in kubernetes-based edge-cloud clusters. Future Genera-
tion Computer Systems, 156:221–230, 2024.

[18] Samuel Rac and Mats Brorsson. Cost-effective schedul-
ing for kubernetes in the edge-to-cloud continuum. In
2023 IEEE International Conference on Cloud Engineer-
ing (IC2E), pages 153–160, 2023.

[19] Rafael Vaño, Ignacio Lacalle, Piotr Sowiński, Raúl S-
Julián, and Carlos E. Palau. Cloud-native workload
orchestration at the edge: A deployment review and future
directions. Sensors, 23(4), 2023.

[20] Cecil Wöbker, Andreas Seitz, Harald Mueller, and Bernd
Bruegge. Fogernetes: Deployment and management of
fog computing applications. In NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Sym-
posium, pages 1–7, 2018.

www.ijacsa.thesai.org 1210 | P a g e


