
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

302 | P a g e  

www.ijacsa.thesai.org 

Computer Modeling of the Stress-Strain State of Two 

Kvershlags with a Double Periodic System of Slits 

Weighty Elastic Transtropic Massif 

Tursinbay Turymbetov1, Gulmira Tugelbaeva2, Baqlan Kojahmet3, 

Bekzat Kuatbekov4, Serzhan Maulenov5, Bakhytzhan Turymbetov6, Mukhamejan Abdibek7 

International University of Tourism and Hospitality, Turkistan, Kazakhstan1 

Military of the Ground Forces named after S. Nurmagambetov, Almaty, Kazakhstan2 

Institute of Mechanics and Engineering Science academician U. A. Dzholdasbekov, Almaty, Kazakhstan2 

Nazarbayev Intellectual Schools – Chemistry and biology in Turkistan, Turkistan, Kazakhstan2  

Nazarbayev University, Astana, Kazakhstan2 

Turkestan Higher Multidisciplinary Craft College, Turkistan, Kazakhstan3, 6 

School #26 named after Aiteke Bi, Turkistan, Kazakhstan4, 5, 7

 

 
Abstract—This paper presents computer modeling of the 

stress-strain state of two kvershlags with a double periodic system 

of slits weighty elastic transtropic massif. It introduced key 

concepts such as 'kvershlag', a term used to describe 

perpendicular cavities in a layered massif, and 'weighted elastic 

transtropic massif', which refers to a specialized geological 

structure considered in the study. These terms are critical for 

understanding the modeling approach. Due to the complexity of 

the analytical solution of this class of problems, a numerical 

method is used. Such a mixed problem is provided to obtain a 

solution by bringing it to an equivalent environment. To solve such 

a mixed problem, it is offered to get a solution by bringing it to an 

equivalent climate in terms of stiffness. The finite element method 

was used to solve the problem. A software package has been 

created to solve the stress-strain state of the two kvershlags. To 

ensure the correctness of the software complex, it was checked 

using test tasks. To study the stress-strain state of kvershlags in a 

weighted massif. The basic systems of equations are obtained. 

Algorithms are constructed and the program complex FEM_3D 

for solving finite element method problems is compiled. Mixed 

problems of the stress-strain state of cavities are solved 

approximately. The results of complex computer calculations are 

systematized, analyzed, specific conclusions are drawn and 

recommendations for their practical application are proposed. A 

computer simulated the stress-strain state of two kvershlags. The 

numerical solution to the given problem was obtained using the 

software. Results demonstrate that our numerical method 

approach results in 0.01%. 

Keywords—Transtropic; cavities; stress-strain state; 

deformation; finite element; slits 

I. INTRODUCTION 

The first results in determining the deformation modulus of 
rocks were obtained in laboratory conditions. Extensive 
research in this direction has been undertaken in engineering 
schools in Germany, Austria, and Switzerland. It is enough to 
say the works of M. Bauschinger [1], K. Bach [2], O. Graf [3], 
O. Müller [4], O. Fleischer [5], K. Stöcke [6], and others. 
Similar works have been carried out since the 1950s under the 

leadership of B.V. Zalesski [7], B.P. Belikov [8] at the Donetsk 
Polytechnic Institute, Research Institute of G.N. Kuznetsov’s 
[9] provided. The gap in previous research lies in the limited 
focus on the stress-strain behavior of kvershlags in complex 
geological formations. Our study addresses this by applying a 
numerical approach based on the finite element method to 
model the stress-strain state of kvershlags in a weighted 
transtropic massif, offering new insights into their deformation 
behavior. Kvershlag refers to cavities that are perpendicular to 
the layered massif. 

Difficulties in determining the deformation of rocks cannot 
be solved by selecting the number of limit cracks in a given 
homogeneous medium. This is a three-dimensional case. Due 
to the variety of natural conditions, it is impossible to create a 
general algorithm, even in an individual case. Therefore, a 
convenient situation is presented below to solve the problem. 
To investigate the stress-strain behavior of kvershlags, a 
mechanical-mathematical anisotropic model with reduced 
moduli dependent on the slit periods and physical properties of 
the massif is proposed. Elasticity is treated equivalently to 
displacements and deformation coefficients in stones. Its 
solution is sought through actual experiments or modeling. 

Based on thorough research, it was taken the form of layers 
resulting from deformable slits as a function of the medium's 
parameters. These layers are dependent on the medium's 
parameters, which have been obtained analytically. It can be 
related to the "deformation of layered rocks" concept. 

The main concepts of the effect of slits in deformable 
layered rock are presented in [10-28]. Displacement vectors are 
considered in [29] from the perspective of the mechanics of a 
slit homogeneous medium. From a geological point of view, a 
slit can be deemed to be regarded as a space between the walls 
of folded rocks. 

A slit in a rock zone can be called a set of slits in layers. A 
length characterizes each slit. The slit can only be accurately 
measured, like longitude. The presence or absence of slit 
complements also distinguishes it. Accordingly, slits are 
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divided into open and filled. Slit fillers consist of sand, clay 
soils, or other components. 

These layers differ in their mineral content and physical 
properties. The second type of complement of slits is called a 
latitudinal slit, which is a supplemental slit of several 
millimeters along the latitude. 

These layers differ in their mineral content and physical 
properties. The second type of complement of slits is called a 
latitudinal slit, which is a supplemental slit of several 
millimeters along the latitude. 

In the case of weak connection of slits, the main conclusion 
about slits is drawn according to the law of asymmetric 
distribution of the connection along the length and width. 

The main contributions of this paper are as follows: 

 A computer-modeled transtropic massif with doubly-
periodic slit systems as a stiffness-equivalent 
homogeneous continuous transtropic body. 

 Elastic constants are given as functions of geometric and 
physical parameters of rocks and slits. 

 To investigate the elastic state of two kvershlags in a 
weighted transtropic massif, the representation of the 
primary systems of solving equations of the finite 
element method. 

 We obtained multivariate calculation results on the 
distribution patterns of initial stresses near two shallow 
kvershlags in a rock massif. These patterns depend on 
various factors, including the parameters of the slits and 
other initial data. 

The rest of this paper is organized as follows: 

Section II presents the state of the art in studying the stress-
strain state of shallow underground cavities in solid and slotted 
weakened massifs and discusses methods for analyzing the state 
of weighted rock strata with two treks—Problem Statements. 
Section III presents our proposed finite element approach using 
isoparametric computational elements. A transtropic massif 
with double periodic slit systems is replaced by a continuous 
transtropic body equivalent in stiffness to the primary medium 
by solving the reduction problem. In Section IV we determined 
the elastic constants of a transtropic body that is equivalent in 
stiffness to the main massif with slits. The elastic constants 
depend on the elastic properties of the main massif and the 
geometry of the slits. In the values of the initial elastic 
components of stresses and displacements in the transtropic 
massif around two kvershlags depending on the initial 
parameters by implementing the developed algorithms, 
computer program complexes, conducting multivariate 
calculations and analyzing the numerical results. Section V 
presents the experimental results, compares the performance of 
our proposed method with existing state-of-the-art techniques, 
and discusses the method with existing state-of-the-art 
techniques and the implications of our findings. Finally, Section 

VI summarizes the results and suggests directions for future 
research. 

II. RELATED WORKS 

In the last century, the works of foreign scientists mainly 
involved theoretical research on the stress-strain state of 
underground cavities in the isotropic massif. Using the 
symmetry of the biharmonic solutions and based on the unique 
properties of harmonic functions, O.Müller and K. Stocke 
reviewed the relevant class of problems. G.V. Kolosov, N.I. 
Muskhelishvili [30], in the solution of plane problems of the 
theory of elasticity of an isotropic body, has successfully used 
the method of the Complex Variable Theory. W. Wittke [31] 
extended the anisotropic jointed rock model (AJRM) and the 
corresponding analysis methods to a broader spectrum of rock 
types. His design approach has been applied to many tunneling, 
dam, and slope design projects. 

The analytical function proposed by Appel considers the 
state of one and many related isotropic bodies with a circular 
hole. L.A. Filshtinsky considered orthotropic structures with a 
doubly periodic system of circular holes [32] and a body with 
elliptical holes A.S. Kosmodamiansky, M.M. Neskorodev [33]. 
A.S. Kosmodamiansky investigated the stress-strain state of an 
anisotropic elastic body with three and endless rows of holes, 
and based on these decisions, Zh.S. Erzhanov, K.K. Kaydarov, 
M.T. Tusupov [34] studied the effects of the slots on the static 
stress state of underground workings. Zh.S. Erzhanov, Sh.M. 
Aytaliev, and Zh.K. Massanov [35] proposed a computational 
mechanics and mathematical model of the anisotropic elastic 
deformation of the rock mass with doubly periodic systems 
slots. They solved the problem by bringing the elastic constants 
obtained from the transtropic body, the equivalent stiffness 
central massif with slots, depending on the elastic properties 
and the geometry of the slots. Based on this model, they studied 
static initial elastic states, mainly single underground cavities 
deep foundation of rigorous and approximate methods, and 
subsequent creeping cavities state-based ∋-Algebra Operators 
U.N. Rabotnov [36] and the Theory of Creep of Rocks Zh.S. 
Erzhanov [37]. 

Different types of immersed tunnels (IMT) as well as their 
construction methods are discussed by [38-45]. 

These scientists have made significant contributions to the 
theory of the Finite Element Method and its application to 
solving complex problems of statics and dynamics of solid 
mechanics: L. Segerlind [46], B.Z. Amusin, A.B. Fadeev [47], 
Zh.S. Erzhanov, T.D. Karimbaev [48], A.D. Omarov, Zh.K. 
Massanov, N.M.Mahmetova [49], L.B. Atymtayeva, B.E. 
Yagaliyeva [50] and others [51-53]. 

A. The Task 

Investigated the static stress and strain state of two 
kvershlags lying in a heavy transtropic massif, depending on 
the degree of discontinuity, conform to small sloping layers at 
an angle 𝜑. Let 𝐻  denote the depth of the distance between 
their centers two 2𝐿 (Fig. 1). 

https://www.scopus.com/authid/detail.uri?authorId=42061007500
https://www.scopus.com/authid/detail.uri?authorId=42062442900


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

304 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 1. Three-dimensional view. 

B. The Task Explained 

The plane of the cross-sectional areas with anisotropic in-
plane deformation slits; efforts are at infinity (Fig. 2). 
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Fig. 2. Surface with a periodic system of slits. 

Here 00 - main crack; 
nm - circuits and their length; mn, - 

indices, 
21,  i - periods of slits in the directions of the axes x 

and z; circuits are free of external loads. )2,1(,, 2 jGE jj  - elastic 

properties transtropic massif slots. By solving the problem of 
bringing to an anisotropic body with the boundary conditions 
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III. PROPOSED METHOD 

A. The Solving Problem 

Hooke's law of transtropic massif with cavities with 
generalized plane strain relative to the Cartesian coordinate 
system 𝑂𝑥𝑦𝑧 (see Fig. 1): 

     D ;   (4) 

where    , , , ,
T

x z yz xz xy      ,     )5,...,2,1,(,  jidD ij

; - deformation coefficients defined by the formulas [54]. 

Here )2,1(,, 2 kGE ee

k

e

k  - effective elastic constants 

transtropic massif equivalent stiffness transtropic massif with 
slits, which depends on the elastic constants of the last and the 
geometry of the slits  ia ,, . 

B. The Use of Numerical Methods 

The cross-section in plane ABCD kvershlag planes of 
deformation using units to isoparametric calculation elements 
(Fig. 3). 

 

Fig. 3. Two-dimensional view. 

Constitute the essential resolution of the system of algebraic 
equations finite element method’s three 3𝑛-order relative to the 
projections of moving points, and it can be solved with the 
following boundary conditions [55]: 

Base BD calculation area ABCD non-deformable – 

0 wvu ;   (5) 

Sides АВ and СD under the weight of rocks moved only in 
the vertical direction due to a lack of influence of cavities –  

)(,0 zwwvu 
.   (6) 
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The study estimated the area with cavities is automatically 
split into isoparametric elements using the object-oriented 
program FEM_3D (Fig. 4). 

 
Fig. 4. A layout of the estimated area for isoparametric elements. 

In solving the problem, we considered a generalized plane 
calculation algorithm for points isoparametric element (Fig. 5). 

 
а) Cartesian coordinate system xoz ; 

b) Local coordinate system o ; 

Fig. 5. Four points isoparametric elements. 

Each point acts as the vertical force of the weight: 

)4,3,2,1(;
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To solve the fundamental system of equations with the 
Finite Element Method’s displacement components with the 
boundary conditions (5), (6) rigorous methods are complex; 
therefore, it can be solved in an iterative method of Gauss-
Seidel-relaxation factor with a given accuracy [56]: 

   UKF ][    (7) 
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][ – stiffness matrix of the system; 

   TRRR vvwwuuU ,...,,,...,,,..., 111 – displacement vector; 

   Tyyzzxx RRR
FFFFFFF ,...,,,...,,,...,

111
  – force vector. 

An attractive feature of this method is as follows: the 
stiffness matrix in this method is prepared only once and can be 
used for iterating both its own elements and the column 
elements of the matrix. During the first iteration, the value of 
the matrix is unknown, but in subsequent iterations, the value 
of the previous iteration is used. 

IV. EXPERIMENTAL RESULTS 

Thus, the searched ЭЭЭЭЭ GEE
21221

,,,,  parameters describe the 

anisotropic medium weakened by two periodic slits according 
to the formulas (2) and (3). Elastic and geometrical parameters 
of slits shape them. It has been shown above that the equivalent 
homogeneous folding condition for anisotropy is realized by 
introducing the measure of elastic parameters. Below (Table I) 
is the elasticity parameter of anisotropic rocks weakened by two 
periodic slits [48]. 

Table I gives elastic parameters and their anisotropy 
parameters for anisotropic siltstone [35], and several cases are 
given by entering different values of relations of geometrical 
parameters. 

TABLE I. VALUE OF EQUIVALENT ELASTIC PROPERTIES AND 

ANISOTROPY PARAMETERS 

 

a

  

Given elastic parameters Anisotropy 

parameters 
4

1 10 ЭE  

(MPa) 

4

2 10 ЭE

(MPa) 

4

2 10 ЭG  

(MPa) 

Э

1
 Э

2  Эk  Эn  Эl  

Anisotropic siltstone [48] 

  1,074 0,523 0,120 0,413 0,198 1,56 3,64 1,78 

6,0 1,074 0,426 0,097 0,413 0,198 1,73 4,02 1,98 

4,0 1,074 0,311 0,073 0,413 0,198 2,03 4,59 2,28 

3,0 1,074 0,214 0,056 0,413 0,198 2,45 5,22 2,60 

2,5 1,074 0,148 0,045 0,413 0,198 2,95 5,82 2,90 


a

  The given values correspond to the limit values of 

the layer. The first value represents the scenario with no slits, 
while the second value indicates that the connection between 
the layers is discontinuous. 

Table II presents the verification of the correct operation of 
the developed algorithms and software systems to solve the test 
problem of the elastic stress state circular cavity in an 
anisotropic massif with the horizontal plane of isotropy in the 
plane strain and hydrostatic stress distribution in a pristine 
environment. Because of the symmetry of the problem, a 
quarter of the area of the cavity is divided into 342 
isoparametric elements with the help of 380 points. The basic 
system of equations is solved in about 1140 with 1000 
iterations. Unlike values of displacements at characteristic 
points of contour obtained by iterative and strict known 
methods, it is no more than 1-2%. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

306 | P a g e  

www.ijacsa.thesai.org 

TABLE II. COMPARISON OF THE SHEAR IN THE CONTOUR POINTS 

OBTAINED BY ITERATION AND RIGOROUS METHODS 

 ,  

deg    
- Hcont  /  

- Hanal  /  

Precise 

method 

(test) 

- HFEM  /  

FEM 

HH FEManal   //   

anal

FEManal







   

0 3.079 3.040 0.039 0.01 

30 1.510 1.493 0.017 0.01 

60 1.706 1.694 0.012 0.007 

90 2.692 2.631 0.061 0.022 

A. Results 

In this section, we demonstrate the results that were 
obtained. Twelve points were obtained on the boundary of a 
double kvershlags in transtropic rocks weakened by weighted 
elastic two-period slits (Fig. 6). As a result of multivariate 
calculations, the change of tangential stress at the boundaries of 
the two kvershlags was studied. In this case, two kvershlags are 
located at depths of H=10M and distances between cavities of 
L=5M. Our findings align with recent studies (e.g., Turymbetov 
et al., 2020) on the stress distribution patterns in complex 
geological structures, but provide additional insights into the 
behavior of kvershlags when subjected to various stress 
conditions. A key difference is the extended analysis of the 
interaction between two closely positioned kvershlags, which 
has not been previously examined in detail. 

 
Fig. 6. Given points on the boundary of the cavity. 

Tables III-V presents the variation of tangential stresses in 
the values w/a=∞, w/a=6, and w/a=4, the ratios of geometrical 
parameters. 

TABLE III. THE CHANGE OF TANGENTIAL  STRESS AT THE BOUNDARY OF 

TWO KVERSHLAGS IN THE GEOMETRIC PARAMETER OF SLITS IS W/A=∞ 

Left cavity 

 =0 =300 =450 =600 =900 

1 -0,2 -0,408 -0,141 -0,166 -0,37 

2 -0,6 -0,579 -0,785 -0,831 -0,79 

3 -1,585 -2,366 -2,495 -2,066 -1,876 

4 -2,405 -3,277 -3,396 -2,535 -2,093 

5 -2,218 -3,15 -3,121 -2,335 -1,89 

6 -3,33 -5,929 -4,687 -3,811 -3,514 

7 0,687 0,712 0,699 0,38 0,193 

8 -3,895 -5,382 -5,429 -4,668 -4,066 

9 -2,082 -2,53 -2,518 -2,093 -1,767 

10 -2,236 -2,83 -2,869 -2,361 -1,95 

11 -1,727 -2,997 -2,845 -2,142 -1,979 

12 -0,744 -2,18 -1,305 -0,712 -0,961 

Right cavity 

1 -0,216 -0,54 -0,644 -0,465 -0,372 

2 -0,595 -0,529 -1,301 -1,185 -0,78 

3 -1,583 -2,371 -2,469 -2,003 -1,875 

4 -2,376 -3,242 -3,056 -2,337 -2,085 

5 -2,268 -3,263 -2,734 -2,122 -1,955 

6 -3,925 -6,764 -6,717 -5,199 -4,111 

7 0,555 0,557 0,29 0,192 0,17 

8 -3,901 -5,291 -5,734 -4,929 -4,073 

9 -2,082 -2,486 -2,447 -2,069 -1,766 

10 -2,319 -2,899 -2,744 -2,157 -1,992 

11 -1,727 -2,993 -2,851 -2,144 -1,976 

12 -0,742 -2,18 -1,534 -0,914 -0,955 

TABLE IV. THE CHANGE OF TANGENTIAL  STRESS AT THE BOUNDARY OF 

TWO KVERSHLAGS IN THE GEOMETRIC PARAMETER OF SLITS IS W/A=6 

Left cavity 

 =0 =300 =450 =600 =900 

1 -0,197 -0,037 -0,163 -0,082 -0,359 

2 -0,605 -0,224 -0,828 -0,209 -0,783 

3 -1,574 -2,228 -1,654 -0,78 -1,874 

4 -2,414 -3,754 -2,329 -1,417 -2,095 

5 -2,235 -3,78 -2,243 -1,52 -1,892 

6 -3,343 -6,045 -3,198 -2,413 -3,505 

7 0,8 1,166 0,523 0,322 0,2 

8 -3,924 -5,472 -4,277 -2,603 -4,05 

9 -2,098 -2,808 -1,97 -1,243 -1,77 

10 -2,243 -3,206 -2,182 -1,459 -1,953 

11 -1,714 -3,241 -1,668 -1,329 -1,976 

12 -0,747 -2,018 -0,216 -0,311 -0,953 

Right cavity 

1 -0,215 -0,781 -0,57 -0,528 -0,362 

2 -0,601 -0,888 -1,332 -0,836 -0,773 

3 -1,573 -2,388 -1,647 -0,9 -1,873 

4 -2,383 -3,459 -2,126 -1,153 -2,087 

5 -2,282 -3,452 -2,006 -1,134 -1,958 

6 -3,954 -8,248 -4,497 -3,614 -4,101 

7 0,637 0,471 0,224 -0,066 0,177 

8 -3,929 -5,963 -4,653 -3,163 -4,057 

9 -2,098 -2,746 -1,962 -1,22 -1,769 

10 -2,328 -3,162 -1,992 -1,144 -1,994 

11 -1,713 -3,225 -1,652 -1,184 -1,973 

12 -0,746 -2,183 -0,388 -0,474 -0,946 
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TABLE V. THE CHANGE OF TANGENTIAL  STRESS AT THE BOUNDARY OF 

TWO KVERSHLAGS IN THE GEOMETRIC PARAMETER OF SLITS IS W/A=4 

Left cavity 

 =0 =300 =450 =600 =900 

1 -0,187 -0,011 -0,09 -0,282 -0,347 

2 -0,622 -0,67 -0,218 -0,474 -0,775 

3 -1,575 -2,24 -0,399 -0,403 -1,872 

4 -2,406 -3,588 -1,103 -0,7 -2,097 

5 -2,242 -3,42 -1,24 -0,688 -1,895 

6 -3,372 -4,439 -1,231 -0,429 -3,495 

7 1 1,151 0,473 0,233 0,208 

8 -3,975 -5,215 -1,893 -1,683 -4,031 

9 -2,105 -2,57 -0,956 -0,601 -1,773 

10 -2,235 -2,951 -1,093 -0,586 -1,956 

11 -1,705 -2,696 -0,772 -0,415 -1,973 

12 -0,762 -1,118 0,172 0,179 -0,942 

Right cavity 

1 -0,209 -0,763 -0,649 -0,599 -0,35 

2 -0,619 -1,291 -1,06 -1,102 -0,765 

3 -1,574 -2,169 -0,659 -0,691 -1,871 

4 -2,375 -3,196 -0,826 -0,521 -2,089 

5 -2,286 -3,017 -0,767 -0,267 -1,961 

6 -4,013 -6,67 -2,537 -1,61 -4,089 

7 0,782 0,53 -0,123 -0,116 0,185 

8 -3,98 -5,582 -2,675 -2,275 -4,038 

9 -2,105 -2,486 -0,954 -0,642 -1,772 

10 -2,317 -2,799 -0,896 -0,617 -1,997 

11 -1,705 -2,653 -0,646 -0,474 -1,971 

12 -0,76 -1,329 0,05 0,011 -0,936 

V. DISCUSSION 

Despite certain achievements in studying the state of 
individual deep cavities using isotropic and anisotropic elastic 
computational models of rock strata, there has been no 
systematic study of the stress-strain state of two drifts with 
arbitrary cross-sectional shapes and depths of location in a large 
inclined layered massif with a system of slits under conditions 
of elastic deformation of rocks. 

The study of the regularity of distribution of elastic stresses 
and displacements in the vicinity of cavities of arbitrary depth 
and cross-sectional shapes depending on the inhomogeneous 
fractured structure is not only of theoretical interest but also has 
direct practical significance. 

This study systematically investigates the distribution 
patterns of elastic stresses and displacements near two 
kvershlags of arbitrary profile shape and depth using the finite 

element method. The study is based on a homogeneous 
transtropic computer-modeled inclined-fine-layered massif 
with a double periodic system of slits, and is conducted under 
conditions of generalized plane deformation. 

VI. CONCLUSION 

Future research could focus on refining the numerical model 
by incorporating real-time field data, which could improve the 
accuracy of predictions regarding the stress-strain behavior of 
kvershlags in various geological settings. Additionally, the 
extension of this model to analyze other types of underground 
structures could further broaden its application. 

In this paper, we presented a finite-element computational 
model of anisotropic rocks with a double periodic system of 
slits and elastic properties in the form of a transtropic body with 
given moduli. To ensure the generalizability and adaptability of 
the model, we also performed multivariate calculations. 

Using an accepted model of deformation for the weighted 
massif, we formulated a boundary problem to determine the 
initial elastic stress-strain state of the kvershlag cavity. We 
obtained the basic equation system for solving this problem 
using the finite element method. 

A calculation algorithm and a program complex for 
studying the elastic state of double kvershlags of arbitrary depth 
have been developed. 

We conducted numerical calculations and analyzed the 
influence of geometric and physical parameters, as well as rock 
elasticity properties, on the components of stresses and 
displacements in the vicinity of cavities. Based on these 
analyses, we arrived at specific conclusions. 

Our analysis revealed that as the slits approach each other, 
the value of displacements increases, and the value of stresses 
changes. Additionally, we observed that the numerical value of 
stresses and displacements increases as the cavity location 
deepens and the distance between them decreases. 
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