
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

605 | P a g e  

www.ijacsa.thesai.org 

Evaluating the Effectiveness of the Binary PSO 

Method in Feature Selection to Improve the Detection 

of Android Botnets 

Peng WANG*, Zhijun WANG 

College of Mathematics and Computer Science, Chifeng College, Chifeng 024000, China 

 

 
Abstract—Android botnets endanger the security and privacy 

of mobile devices by doing harmful actions such as sending spam, 

taking data, and starting distributed denial-of-service (DDoS) 

attacks. Detecting Android botnets is a challenging task, as they 

often use sophisticated techniques to evade traditional detection 

methods. This paper uses the Binary PSO (BPSO) algorithm to 

select the important features of the Android botnet, and then 

adjusts the training and testing datasets accordingly, discarding 

the irrelevant features. Then, with the help of BPSO-SVM and 

BPSO-DT approaches, Android botnets are identified with high 

accuracy, and ten key features used to identify Android botnets 

are introduced. The results obtained from the approaches in 

question show an accuracy higher than 97% in identifying this 

type of malware. 
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I. INTRODUCTION 

The rapid development and widespread adoption of mobile 
devices, especially smartphones, have revolutionized the way 
people communicate, work, learn, and entertain. Statista 
reported that the global smartphone users were about 3.8 billion 
in 2021, and they predicted that this number would increase to 
4.3 billion by 2023 [1]. Among the various operating systems 
for smartphones, Android is the most dominant one, with a 
market share of 72.2% in 2020 [2]. Android is an open-source 
platform that allows developers to create various applications 
for different purposes and users to customize their devices 
according to their preferences. 

However, the popularity and openness of Android also make 
it a lucrative target for cybercriminals, who seek to exploit the 
vulnerabilities of the system and the applications to compromise 
the devices and perform malicious activities. One of the most 
severe and sophisticated threats facing Android users is the 
mobile botnet, which is a network of infected devices that can 
be remotely controlled by a botmaster to execute malicious 
commands. A mobile botnet can be used for various malicious 
purposes, such as stealing personal information, sending spam 
messages, launching distributed denial-of-service (DDoS) 
attacks, mining cryptocurrencies, and more. The impact of a 
mobile botnet can be devastating, not only for the individual 
users, but also for the network operators, service providers, and 
the society at large. For example, in 2016, the Mirai botnet 
infected over 600,000 IoT devices, including Android 
smartphones, and launched massive DDoS attacks against 

several websites, such as Twitter, Netflix, and Reddit, causing 
significant disruption and financial losses [3]. 

The main challenge in detecting and preventing mobile 
botnets is the diversity and complexity of the techniques used by 
the attackers [4]. Mobile botnets can employ various methods to 
infect devices, such as malicious applications, phishing links, 
drive-by downloads, and exploit kits. Moreover, mobile botnets 
can use different communication channels to receive commands 
and send data, such as SMS, HTTP, peer-to-peer (P2P), and 
social networks [5]. Furthermore, mobile botnets can adopt 
different topologies to organize the devices, such as centralized, 
decentralized, or hybrid. These factors make it difficult to 
identify and analyze the behavior and structure of mobile botnets 
and to design effective countermeasures against them. 

The paper is structured as follows. Section II gives some 
background knowledge on the mobile botnet, SVM, and DT 
concept. Section III shows the classification and analysis of the 
Android mobile botnet methods based on the BPSO-SVM and 
BPSO-DT. Section IV presents the simulation of the results. 
Section V ends the paper and highlights the main results. 

II. RELATED WORKS 

In this section, we review the existing literature on mobile 
botnets based on the Android operating system. We classify the 
literature according to three dimensions: infection, command 
and control (C&C), and topology. For each dimension, we 
discuss the main techniques, challenges, and limitations of 
current research. 

A. Infection 

The infection dimension refers to the methods used by the 
attackers to compromise the Android devices and install the 
botnet malware on them. The infection methods can be 
categorized into two types: active and passive [5]. 

Active infection methods require the user's interaction or 
consent to install the malware, such as downloading and running 
a malicious application, clicking on a phishing link, or granting 
excessive permissions to a seemingly benign application. 
Passive infection methods do not require the user's interaction or 
consent, such as exploiting a vulnerability in the system or an 
application or using a drive-by download technique. 

The majority of existing research on Android mobile botnet 
infection focuses on the active methods, especially the malicious 
applications. Several studies have proposed various techniques 
to detect and analyze malicious applications, such as static 
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analysis, dynamic analysis, hybrid analysis, machine learning, 
and deep learning [6]. However, these techniques face several 
challenges, such as code obfuscation, encryption, dynamic 
loading, evasion, and stealthiness that make the detection and 
analysis of malicious applications difficult and time-consuming. 

The passive infection methods are less studied in the 
literature, but they pose a serious threat to Android devices, as 
they can exploit the vulnerabilities that exist in the system or the 
applications, and install the malware without the user's 
knowledge or consent [4]. Some examples of the passive 
infection methods are the Stagefright exploit, which can execute 
an arbitrary code on the device by sending a specially crafted 
multimedia message, the Cloak and Dagger attack, which can 
perform malicious actions on the device by abusing the Android 
permissions system, and the Man-in-the-Disk attack, which can 
compromise the device by manipulating the external storage. 

B. Command and Control (C&C) 

The C&C dimension refers to the communication channels 
used by the botmaster to send commands to the bots and receive 
data from them. The C&C channels can be categorized into two 
types: centralized and decentralized [7, 8]. 

Centralized C&C channels rely on a single server or a group 
of servers to communicate with the bots. The botmaster can 
easily manage the bots and coordinate their activities through the 
centralized server. However, this also makes the botnet 
vulnerable to detection and disruption, as the server can be 
identified and blocked by the defenders. SMS, HTTP, and email 
are some of the centralized communication methods that the 
C&C server uses to control the bots [9]. 

Decentralized C&C channels do not rely on a single server, 
but use a distributed network of peers to communicate with the 
bots [9]. The botmaster can send commands to a subset of the 
bots, and the commands can propagate to the rest of the bots 
through the peer-to-peer network. This makes the botnet more 
resilient to detection and disruption, as there is no single point 
of failure. However, this also makes the botnet management and 
coordination more complex and challenging. Some examples of 
decentralized C&C channels are P2P, social networks, and 
blockchain. 

C. Topology 

The topology dimension refers to the structure and 
organization of the bots in the botnet. Topology can affect the 
performance, scalability, and robustness of the botnet. The 
topology can be categorized into three types: centralized, 
decentralized, and hybrid [10]. 

Centralized topology has a star-shaped structure, where the 
bots are directly connected to the central server [11]. The 
botmaster can manipulate the bots with ease through the server, 
which serves as the C&C channel. However, this topology has 
low scalability and robustness, as the server can be a bottleneck 
and a single point of failure. 

Decentralized topology has a mesh-shaped structure, where 
the bots are connected in a peer-to-peer network. The C&C 
channel is a peer-to-peer network, and the botmaster can 
communicate with the bots via any peer [12]. This topology has 

high scalability and robustness, as the botnet can grow and 
survive without relying on a central server. 

Hybrid topology has a combination of star-shaped and mesh-
shaped structures, where the bots are divided into clusters, and 
each cluster has a leader that is connected to the central server 
[11]. The server and the cluster leaders are the command and 
control channels, and the botmaster can talk to the bots using the 
server or the cluster leaders. This topology has moderate 
scalability and robustness, as it balances the advantages and 
disadvantages of the centralized and decentralized topologies. 

D. Support Vector Machine (SVM) 

SVM is a machine learning technique that can perform 
classification and regression by discovering the optimal 
hyperplane that separates the data into distinct classes or predicts 
output values. SVM has many benefits, such as high precision, 
resistance to noise and outliers, and sparseness of the solution. 
However, SVM also faces some challenges, such as choosing 
the appropriate kernel function, dealing with large-scale and 
imbalanced data, and incorporating prior knowledge and 
domain-specific constraints. Therefore, many researchers have 
proposed various extensions and improvements to the standard 
SVM formulation, such as kernel selection, ensemble methods, 
fuzzy SVM, semi-supervised SVM, and constrained SVM. 

Some of the recent researches that discuss these extensions 
and improvements are: 

This research [13] reviews the existing methods for kernel 
selection in SVM, which can be divided into three categories: 
data-dependent, model-dependent, and hybrid. The study also 
proposes a new hybrid method that combines the advantages of 
data-dependent and model-dependent methods. The study 
assesses how well various kernel selection methods work on 
some benchmark datasets and demonstrates that the suggested 
method can attain higher accuracy and stability than the current 
methods. 

This research [14] addresses the problem of imbalanced data 
classification, where the number of instances in different classes 
is significantly different. The study proposes a novel ensemble 
method that combines SVM with random subspace and bagging 
techniques. The study shows that the proposed method can 
effectively handle imbalanced data by creating diverse and 
balanced base classifiers and combining them with a weighted 
voting scheme. The study compares the proposed method with 
other state-of-the-art methods on several imbalanced datasets 
and demonstrates its superiority in terms of accuracy and 
robustness. 

This research [15] deals with the problem of outliers, which 
are data points that deviate significantly from the normal 
distribution of the data. The study proposes a fuzzy SVM 
method that can handle outliers by introducing a fuzzy 
membership function that assigns different weights to different 
data points according to their degree of belonging to the classes. 
The study shows that the proposed method can improve the 
performance of SVM by reducing the influence of outliers and 
enhancing the generalization ability. The study tests the 
proposed method on several datasets with different levels of 
outliers and shows its effectiveness and efficiency. 
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E. Decision Tree (DT) 

Decision trees are graphical models that can perform 
classification and regression tasks by splitting the data into 
smaller subsets based on some criteria. Decision trees are easy 
to understand, interpret, and visualize, as they mimic the human 
decision-making process. However, decision trees also have 
some drawbacks, such as overfitting, instability, sensitivity to 
noise, and missing values. Therefore, many researchers have 
proposed various techniques to improve the quality and 
robustness of decision trees, such as pruning, ensemble methods, 
fuzzy logic, and evolutionary algorithms. 

Some of the recent researches that discuss these techniques 
are: 

This research [16] reviews the existing methods for decision 
tree pruning, which is a technique to reduce the size and 
complexity of decision trees by removing unnecessary or 
redundant nodes. The study categorizes the pruning methods 
into two types: pre-pruning and post-pruning. The study also 
compares the advantages and disadvantages of different pruning 
methods and provides some guidelines for choosing the best 
pruning method for a given problem. 

This research [17] describes the concept and applications of 
ensemble methods, which are techniques to combine multiple 
decision trees to improve the accuracy and diversity of 
predictions. The study covers topics such as bagging, boosting, 
random forests, and stacking. The study also discusses the 
challenges and future directions of ensemble methods for data 
mining. 

This research [18] presents a comprehensive review of fuzzy 
decision trees, which are extensions of decision trees that can 
handle uncertainty and vagueness in the data by using fuzzy sets 
and fuzzy logic. The study covers topics such as fuzzy entropy, 
fuzzy impurity, fuzzy information gain, fuzzy splitting criteria, 
and fuzzy pruning. The study also compares the performance of 
fuzzy decision trees with crisp decision trees and other fuzzy 
classifiers on several benchmark datasets. 

F. Post-Quantum Cryptography (PQC) 

In recent years, post-quantum cryptography (PQC) has 
attracted considerable interest due to the potential risks quantum 
computers pose to traditional cryptographic systems. Numerous 
studies have delved into various aspects of PQC, focusing on 
algorithm development, performance enhancement, and 
practical application. 

Liu et al. (2024) conducted an extensive survey on the 
performance and optimization of post-quantum cryptographic 
algorithms for the Internet of Things (IoT) [19]. Their research 
underscores the challenges and solutions in incorporating PQC 
into IoT devices, highlighting the necessity for lightweight and 
efficient algorithms to maintain security without sacrificing 
performance. 

Another notable contribution is the survey by Ramachandran 
et al. (2022), which offers a comprehensive overview of lattice-
based cryptographic algorithms [20]. This study examines the 
resilience of lattice-based methods against quantum attacks and 
their suitability for various cryptographic protocols. The authors 

also compare different lattice-based schemes, providing insights 
into their respective strengths and weaknesses. 

In a broader scope, Jurdak et al. (2023) reviewed the current 
state of PQC, including an in-depth analysis of the most 
prevalent methods such as lattice-based, code-based, and 
multivariate polynomial cryptography [21]. The paper also 
discusses the implementation status of these methods and future 
research directions. 

Furthermore, recent advancements in cryptographic 
accelerators for PQC have been documented by several 
researchers [19]. These studies focus on hardware 
implementations that can meet the computational demands of 
PQC algorithms, thereby enhancing their practicality for real-
world applications. 

Overall, the research on post-quantum cryptography is 
rapidly growing, with significant advancements being made in 
both theoretical and practical areas. Ongoing research is crucial 
to develop robust, efficient, and scalable cryptographic solutions 
capable of withstanding the emergence of quantum computing. 

III. PRESENTED APPROACH 

In this study, we identify Android botnets and the purpose of 
this study is to remove inefficient features from training and 
testing datasets of Android botnets. Android botnets can 
obfuscate and encrypt the traffic sent to the botmaster, and this 
causes the identification of Android botnets to be associated 
with many challenges. Considering this issue, it can be 
acknowledged that the features extracted from the traffic of 
botnets can have ambiguous and incorrect values, which causes 
the wrong training of the learning model. But among the 
extracted features, there are several features that only by using 
them in machine learning approaches, the trained model can 
identify Android botnets with high accuracy. Therefore, the 
question arises as to how to identify the mentioned features from 
the dataset obtained from Android botnets and exclude other 
inefficient features from the dataset so that they can be trained 
in the best conditions with the help of effective features of 
machine learning approaches. To answer the stated question, in 
the next section, the Binary Particle Swarm Optimization 
(BPSO) approach is introduced to select key features from the 
Android botnet dataset. 

A. Binary PSO 

PSO is a famous evolutionary computation method, which 
has been used to solve many optimization problems. PSO 
mimics the social behavior of bird flocking, where each member 
(particle) is a possible solution and moves in the search space 
based on its own and its neighbors' best positions [22]. PSO can 
be divided into two main types: continuous PSO (CPSO] and 
binary PSO (BPSO). CPSO is designed for continuous 
optimization problems, where the position and velocity of each 
particle are real-valued vectors. BPSO is a variant of PSO for 
binary optimization problems, where the position and velocity 
of each particle are binary vectors [23, 24]. 

Binary optimization problems are widely encountered in 
various fields, such as feature selection, knapsack, scheduling, 
cryptography, and network design [24, 25]. In these problems, 
the objective is to find the optimal combination of binary 
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variables that satisfies some constraints and maximizes or 
minimizes a given function. BPSO is a simple and effective 
method for solving binary optimization problems, as it can 
explore the search space efficiently and avoid being trapped in 
local optima [26]. 

The transfer function is a key component of BPSO, as it 
maps the continuous velocity to a binary position. The transfer 
function determines the probability of flipping each bit of the 
position vector, which affects the diversity and convergence of 
the swarm. Different transfer functions have different 
characteristics and suitability for different problems. Therefore, 
choosing an appropriate transfer function is crucial for the 
success of BPSO [27]. 

In general, BPSO and CPSO formulas are shown in Table I. 
The CPSO algorithm uses the first two formulas to change the 
speed and position of the particles. The BPSO algorithm 
changes the speed with Eq. (1) and the position of particles 
(binary) with Eq. (3) and (4). 

In Table I, 𝑥𝑖𝑑
𝑡  is the location of the i-th particle in the d-th 

dimension at the t-th iteration, and 𝜑1  and 𝜑2are two random 

numbers in a bounded domain with a uniform distribution. 𝑃𝑔𝑏
𝑡  

and  𝑃𝑖𝑑
𝑡  are the best positions discovered in the entire search 

space and the best position reached by the i-th particle at the t-
th iteration, respectively. 𝑐1  and 𝑐2 are acceleration constants 
and ω is the inertia weight that balances the global and local 

searches [28]. 𝑥𝑖𝑑
𝑡+1 is the location of the i-th particle in the d-th 

dimension at the (t + 1)-th iteration. 

The sigmoid function (S (.)) is a function of the particle's 
velocity in each dimension. It has a range of [0, 1]. Eq. (4) 
evaluates the output of this function against the outcome of Eq. 
(3) using a random function that produces a value in [0, 1]. 
Based on this comparison, Eq. (4) assigns either 1 (feature 
selected) or 0 (feature not selected) to each dimension of the 

particle (𝑥𝑖𝑑
𝑡+1(𝑡 + 1)). 

TABLE I.  CPSO AND BPSO FORMULAS 

Number Name Formula 

1 
Velocity 

Updating 

𝑣𝑖𝑑
𝑡+1 =  𝜔 ∗ 𝑣𝑖𝑑

𝑡 + 𝑐1 ∗ 𝜑1 ∗ (𝑃𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2

∗ 𝜑2 ∗ (𝑃𝑔𝑏
𝑡 − 𝑥𝑖𝑑

𝑡 ) 

2 
Position 

Updating 
𝑥𝑖𝑑

𝑡+1 = 𝑥𝑖𝑑
𝑡 + 𝑣𝑖𝑑

𝑡+1 

3 
Sigmoid 

Function 
𝑆(𝑣𝑖,𝑑) =

1

1 + 𝑒−𝑣𝑖,𝑑
 

4 
Binary 
Position 

Updating 
𝑥𝑖𝑑

𝑡+1 ← {
0, 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑆(𝑣𝑖,𝑑)

1,                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In Fig. 1, the BPSO algorithm performance is shown. In this 
approach, the mentioned technique based on Eq. (4) in Table I 
selects the desired features (features with a value of 1) and 

removes other features from the dataset (features with a value of 
0). 

B. BPSO-DT and BPSO-SVM 

In the literature review section, the limitations of SVM and 
DT approaches were mentioned. In the continuation of this 
study, by combining these approaches with the BPSO algorithm, 
an attempt has been made to overcome some of the limitations 
expressed in these techniques. 

Fig. 2 shows the flowchart of BPSO-SVM and BPSO-DT 
algorithms. In this form, the parameters of these methods are 
first initialized; then, the BPSO algorithm initializes the BPSO 
parameters for each particle in the search space. Next, the speed 
and position values of the particles are calculated. The BPSO 
method uses the binary position of particles to select the features 
of the training and testing datasets so that the optimal features 
can be obtained from the dataset. Then, the BPSO algorithm 
trains the SVM and DT methods with the Train dataset, which 
has the selected features. Finally, the model is applied to the test 
dataset (Fitness Function) and if the model accuracy is 100%, 
the model training is done. Otherwise, the BPSO method 
updates the Pbest and Gbest values based on each model's 
accuracy and computes the particles' speed to extract new 
features from the training and testing datasets. Finally, each new 
training dataset is given to the SVM and DT methods to train 
and get a new model. If any of the models can get 100% 
accuracy in the Fitness function, their training is done; 
Otherwise, the process is repeated until a certain number of 
iterations (for example, N times) and if it does not get 100% 
accuracy, it stops after the N-th iteration. 

C. Fitness Function 

The Fitness function is the accuracy function that evaluates 
the performance of the machine-learning methods. In Eq. (1), 
the TP and TN terms are the botnet and benign data that are 
classified correctly. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =  
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑎𝑡𝑎𝑙 𝑇𝑒𝑠𝑡 𝑆𝑎𝑚𝑝𝑙𝑒
      (1) 

IV. EVALUATION AND RESULTS 

At the beginning of this section, it should be mentioned that 
all approaches are implemented in Python software, and SVM 
and DT approaches are selected from the Scikit-Learn library 
available in Python. 

This paper uses two Android botnets, PJapps (in EXE and 
BACK mode) and Geinimi (in EXE and BACK mode), from the 
28-SABD databases [29], to compare the performance of the 
proposed methods. Also, the specifications of these datasets are 
mentioned in Table II. Four evaluation metrics, which are shown 
in Eq. (2)-(5), are used to measure the performance of each 
method. 
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Fig. 1. How the BPSO algorithm works. 

 

Fig. 2. BPSO-SVM & BPSO-DT. 
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TABLE II.  ANDROID BOTNET DATASETS [29] 

Dataset 
Number of 

Columns 
Number of Rows 

PJapps-Back 85 3702 

PJapps EXE 85 10628 

Geinimi-Back 85 4674 

Geinimi-EXE 85 13757 

In these equations, TP, TN, FP, and FN correspond to True 
Positive, True Negative, False Positive, and False Negative, 
respectively. Also, in Table II, the default parameters of the 
BPSO approach are shown. 

Accuracy(ACC) =  
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
   (2) 

Precision(Pre) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (3) 

Recall(Rec) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (4) 

𝐹 − 1 =  
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

     (5) 

Before the model is trained and tested in all methods, the 
four datasets used are shuffled first. The techniques were applied 
to four different datasets and the results are shown in Tables III 
to VI. Based on these tables, we can say that. 

TABLE III.  BPSO DEFAULT VALUES 

Parameter Default Value 

Number of Particles 10 

Number of Iterations 10 

𝜔 0.7 

𝐶1 1.49445 

𝐶2 1.49445 

The techniques were applied to four different datasets and 
the results are shown in Tables III to VI. Based on these tables, 
we can say that: 

1) The BPSO-SVM method performed better than the other 

methods on all four metrics on the PJappsExe dataset. 

2) The BPSO-DT approach is the only approach that has 

shown better performance than other approaches in all four 

evaluation criteria on the PJappsBack dataset. 

3) The two approaches BPSO-SVM and BPSO-DT have 

shown the best performance on the GeinimiExe dataset. In these 

approaches, all four evaluation criteria have achieved 100%.  

The main reason for this can be considered the selection of the 

best features from the aforementioned dataset. After selecting 

these features, the training model was trained in the best way 

and was able to provide the best results on the test dataset. 

4) Finally, in Table VI, the BPSO-SVM approach has 

shown the best performance in all four measurement criteria on 

the GeinimiBack dataset. 

As can be seen from the Tables III to VI; in all four datasets 
used, the BPSO-SVM approach has shown better performance 
than the SVM approach in all four measurement criteria. It 

should be noted that in some datasets, the results obtained in 
some measurement criteria show the performance of BPSO-
SVM and SVM approaches. For example, in the PJappsBack 
dataset, the performance of both approaches was similar to each 
other in all four measurement criteria. On the other hand, the 
topic stated for BPSO-SVM and SVM approaches can be 
extended to BPSO-DT and DT techniques as well. For example, 
in the GeinimiBack dataset, both BPSO-DT and DT approaches 
have shown similar performance in all four measurement 
criteria. 

TABLE IV.  COMPARING THE PERFORMANCE OF THE SUGGESTED 

METHODS AND THE OTHER TWO METHODS ON THE PJAPPSEXE DATASET 

Method 
Dataset 

Accuracy Precision Recall 
F-1 

BPSO-

SVM 
PJappsExe 0.9390 0.8878 0.8636 

0.8755 

BPSO-

DT 
PJappsExe 0.9051 0.9857 0.6272 

0.7666 

SVM PJappsExe 0.9255 0.8666 0.8272 
0.8465 

DT PJappsExe 0.6681 0.4170 0.8454 
0.5585 

TABLE V.  COMPARING THE PERFORMANCE OF THE SUGGESTED 

METHODS AND THE OTHER TWO METHODS ON THE PJAPPSBACK DATASET 

Method Dataset Accuracy Precision Recall F-1 

BPSO-

SVM 
PJappsBack 0.9663 0.5714 1.0 0.7272 

BPSO-
DT 

PJappsBack 0.9775 0.6666 1.0 0.8 

SVM PJappsBack 0.9663 0.5714 1.0 0.7272 

DT PJappsBack 0.9213 0.3636 1.0 0.5333 

TABLE VI.  COMPARING THE PERFORMANCE OF THE SUGGESTED 

METHODS AND THE OTHER TWO METHODS ON THE GEINIMIEXE DATASET 

Method Dataset Accuracy Precision Recall F-1 

BPSO-

SVM 
GeinimiExe 1.0 1.0 1.0 1.0 

BPSO-
DT 

GeinimiExe 1.0 1.0 1.0 1.0 

SVM GeinimiExe 0.9980 1.0 0.75 0.8571 

DT GeinimiExe 0.9980 1.0 0.75 0.8571 

TABLE VII.  COMPARING THE PERFORMANCE OF THE SUGGESTED 

METHODS AND THE OTHER TWO METHODS ON THE GEINIMIBACK DATASET 

Method Dataset Accuracy Precision Recall F-1 

BPSO-

SVM 
GeinimiBack 0.9854 1.0 0.4166 0.5882 

BPSO-
DT 

GeinimiBack 0.9771 1.0 0.0833 0.1538 

SVM GeinimiBack 0.9812 1.0 0.25 0.4 

DT GeinimiBack 0.9771 1.0 0.0833 0.1538 

To examine the average performance of the methods on all 
four datasets, we obtain Fig. 3 to 6. Based on these results, we 
can draw the following conclusions on the metrics used on the 
four Android botnet datasets: 
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a) The BPSO-SVM approach has shown the best 

performance in the "Accuracy" criterion. And the BPSO-DT 

approach is placed next. The key point obtained from Fig. 3 is 

the significant improvement in the performance of BPSO-DT 

compared to the DT approach in the "Accuracy" criterion. 

b) The SVM approach shows the best value for the 

"Precision" criterion among other approaches. On the other 

hand, the BPSO-DT approach has been able to significantly 

improve the performance of the DT approach in this criterion. 

c) The BPSO-SVM approach shows the best performance 

among other approaches in the "Recall" measure. It should be 

noted, that the performance of the BPSO-DT approach in this 

criterion has been ranked second in comparison with other 

approaches. 

d) The BPSO-SVM and BPSO-DT approaches have 

shown the best performance among other approaches in the 

measurement criterion "F1", respectively, and have 

significantly improved the values of this criterion compared to 

the SVM and DT approaches. 

The feature selection is the most significant part of Fig. 2 
because the particles can get lost in the search space if they 
choose the wrong features. Therefore, the algorithm will not 
perform well if it is powerful, but the features are not relevant. 
Table VII shows the 10 top features of the Android botnet. These 
features are ranked by importance in Table VII. 

In Table VIII, “Percent” indicates the percentage of a feature 
appearing in four different datasets. The table indicates that the 
most significant feature is TotalLengthofBwdPacketsfwd, 
which was chosen in 87.5% of the datasets. For further details 
on the 85 features of CICFlowMeters, refer to references [30, 
31]. Android botnets communicate with the command and 
control server and other botnets very covertly, so applying many 
features does not enhance their identification but increases the 
FP and FN rates. Android botnet tries to avoid detection by 
hiding and encrypting the key features that most security 
researchers seek. 

TABLE VIII.  TEN OF THE MOST FREQUENTLY USED FEATURES AMONG THE 

FOUR ANDROID BOTNET DATASETS 

Number Features Name Percent (%) 

1 TotalLengthofBwdPackets 87.5 

2 ECEFlagCount 87.5 

3 IdleMean 87.5 

4 BwdPacketLengthMin 75 

5 FlowIATMax 75 

6 SubflowFwdPackets 75 

7 SubflowBwdPackets 75 

8 ActiveMax 75 

9 BwdIATMax 75 

10 FwdURGFlags 75 

 

Fig. 3. Comparison of the accuracy of the four approaches used in this 

paper. 

 

Fig. 4. Comparison of the precision of the four approaches used in this 

paper. 

 

Fig. 5. Comparison of the recall of the four approaches used in this paper. 

 

Fig. 6. Comparison of the F1 of the four approaches used in this paper. 
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V. CONCLUSION AND SUGGESTIONS 

Android botnets are malicious networks of compromised 
devices that can perform various harmful activities, such as 
spamming, stealing data, and launching DDoS attacks. 
Detecting Android botnets is a vital and difficult task, as they 
often use advanced techniques to evade traditional detection 
methods. In this study, the two machine learning approaches, 
SVM and DT, are used to identify Android botnets. As 
mentioned in this study, one of the problems of identifying 
Android botnets is the encryption of the traffic sent between the 
botmaster and botnets, which makes it impossible to identify 
botnets at a high rate. Some of the features from the dataset are 
obscure and encrypted, which hinders machine learning 
methods from being trained properly to detect Android botnets 
with high precision. This study employs the BPSO algorithm to 
help machine learning methods (SVM and DT) by selecting the 
relevant features of the dataset so that they can recognize 
Android botnets with high accuracy. The research results show 
that the best method (BPSO-SVM) has more than 97% accuracy 
in detecting Android botnets. Also, in this study, the top 10 most 
effective features that have been effective in identifying Android 
botnets have been mentioned. 

In future research, the issue of optimizing the parameters of 
machine learning approaches and the effect of these parameters 
on the performance of these techniques will be discussed. 
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