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Abstract—Accurately separating healthy tissue from 

tumorous regions is crucial for effective diagnosis and treatment 

planning based on magnetic resonance imaging (MRI) data. 

Current manual detection methods rely heavily on human 

expertise, so MRI-based segmentation is essential to improving 

diagnostic accuracy and treatment outcomes. The purpose of this 

paper is to compare the performance of detecting brain tumors 

from MRI images through segmentation using an unmodified 

and modified U-Net architecture from deep neural network 

(DNN) that has been modified by adding batch normalization 

and dropout on the encoder layer with and without the freeze 

layer. The study utilizes a public 2D brain tumor dataset 

containing 3064 T1-weighted contrast-enhanced images of 

meningioma, glioma, and pituitary tumors. Model performance 

was evaluated using intersection over union (IoU) and standard 

metrics such as precision, recall, f1-score, and accuracy across 

training, validation, and testing stages. Statistical analysis, 

including ANOVA and Duncan's multiple range test, was 

conducted to determine the significance of performance 

differences across the architectures. Results indicate that while 

the modified architectures show improved stability and 

convergence, the freeze layer model demonstrated superior IoU 

and efficiency, making it a promising approach for more 

accurate and efficient brain tumor segmentation. The 

comparison of the three methods revealed that the modified U-

Net architecture with a freeze layer significantly reduced training 

time by 81.72% compared to the unmodified U-Net while 

maintaining similar performance across validation and testing 

stages. All three methods showed comparable accuracy and 

consistency, with no significant differences in performance 

during validation and testing. 
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I. INTRODUCTION 

Brain tumors are among the most life-threatening 
conditions, with the potential to drastically affect the quality 
of life and survival of patients. Early and accurate diagnosis is 
paramount to developing effective treatment strategies, often 
involving surgery, radiotherapy, or chemotherapy. Magnetic 
resonance imaging (MRI) is widely recognized as one of the 
most accurate non-invasive imaging techniques for detecting 
brain abnormalities. It provides detailed views of brain 
structures and tissue compositions, allowing clinicians to 
assess tumor size, location, and growth patterns from research 
in quantitative MRI [1], research review [2], and discussion 

from Advancements in Neuroimaging to detect brain tumors 
[3]. However, interpreting these MRI images is complex and 
time-consuming, requiring a high level of expertise [4]. As a 
result, manual segmentation of brain tumors can be 
inconsistent, subjective, and prone to human error. Automated 
segmentation methods using advanced machine learning and 
deep learning techniques have been explored to address these 
challenges in recent years using image cardiac radiography 
[5], image Alzheimer’s disease in the human brain [6], and 
brain tumor detection using MRI [7]. 

Deep neural networks (DNNs), particularly convolutional 
neural networks (CNNs), have shown exceptional promise in 
image analysis tasks, including medical image segmentation. 
CNNs are highly effective at identifying patterns in image 
data by leveraging layers that automatically learn relevant 
features such as edges, textures, and complex structures. 
Among CNN-based methods, the U-Net architecture has 
become a leading tool for medical image segmentation due to 
its robust performance. Initially designed for biomedical 
image segmentation, U-Net uses an encoder-decoder structure, 
where the encoder extracts features from the input image, and 
the decoder uses those features to reconstruct segmented 
regions [8, 9]. U-Net's symmetrical architecture enables 
precise localization of structures, making it especially suitable 
for segmenting brain tumors. According to Yousef, et al. [10], 
despite its strengths, the standard U-Net architecture can be 
prone to overfitting, mainly when training on small datasets 
like MRI brain scans, leading to decreased generalization to 
unseen data. 

Several improvements have been proposed to address the 
limitations of the original U-Net architecture, focusing on 
enhancing the model's generalization and stability during 
training. Two commonly employed techniques, batch 
normalization and dropout, have been used to learn parameter 
effects for segmenting brain tumors [11], mandible bones [12], 
and brain tumors using U-Net [13]. Batch normalization is 
used to normalize the input to each layer during training, 
reducing internal covariate shifts and accelerating the learning 
process. By stabilizing the learning process, batch 
normalization helps improve the performance of deep neural 
networks, mainly when applied to complex datasets like MRI 
images. On the other hand, dropout is a regularization 
technique that randomly disables a fraction of neurons during 
training, forcing the network to learn more robust features. 
This helps to mitigate overfitting by preventing the model 
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from relying too heavily on specific neurons [14]. Batch 
normalization and dropout can significantly enhance the U-
Net architecture’s ability to generalize from training data to 
new, unseen cases. 

In addition to these regularization techniques, another 
modification involves freezing specific layers of the U-Net 
architecture during training. The freeze layer method limits 
the number of trainable layers, essentially "freezing" network 
parts to prevent them from being updated during training. This 
can be particularly useful when fine-tuning a model on a 
smaller dataset or using transfer learning [15]. By restricting 
the training depth, the model is less likely to overfit the 
specific training data and can generalize better to new data. 
Furthermore, freezing layers can reduce the computational 
cost of training, as fewer parameters need to be updated [16]. 
This makes it an attractive option for optimizing the training 
process without sacrificing performance. The combination of 
batch normalization, dropout, and freeze layers has the 
potential to significantly improve the efficiency and accuracy 
of brain tumor segmentation using MRI images. 

The U-Net architecture, in original and with modifications 
in architecture, remains one of the most widely used models 
for medical image segmentation tasks. The original U-Net is 
effective but may struggle with specific challenges inherent to 
brain tumor segmentation, such as distinguishing between 
subtle boundaries of healthy and tumorous tissues [8]. 
Incorporating batch normalization and dropout into the 
encoder layers enhances the model's ability to avoid 
overfitting, allowing it to learn more generalized features. 
Furthermore, introducing a freeze layer can optimize 
computational efficiency, making the model more robust and 
faster to train. These architectural improvements hold great 
promise for improving the segmentation of brain tumors, 
ultimately contributing to better diagnostic accuracy and 
treatment planning. 

This paper compares the performance of brain tumor 
segmentation using unmodified and modified U-Net 
architectures driven by deep neural networks (DNN). 
Specifically, two modifications are examined: (1) batch 
normalization and dropout added to the encoder layer, and (2) 
a freeze layer introduced to limit the depth of the training 
process. We selected the modified U-Net architecture with 
batch normalization, dropout, and freeze layers due to its 
effectiveness in addressing specific challenges in brain tumor 
segmentation. U-Net, widely used in medical image 
segmentation, excels at delineating complex structures, but it 
can struggle with overfitting, particularly on small datasets 
like MRI. To mitigate this, batch normalization stabilizes 
training by normalizing layer inputs, while dropout prevents 
over-reliance on specific neurons, reducing overfitting. 
Additionally, freeze layers limit trainable parameters, 
improving generalization and reducing computational cost. 
Standard methods often fail to handle subtle tumor boundaries 
and are prone to overfitting with small datasets. Our 
modifications enhance the model's robustness, efficiency, and 
accuracy in segmenting brain tumors. These improvements 
address limitations in existing approaches, making our method 
more suitable for the complexities of brain tumor 

segmentation from MRI images, where precise and reliable 
detection is critical. 

The remainder of this paper is structured as follows: 
Section II overviews brain tumor segmentation using deep 
learning as a related work. Section III explains the dataset and 
methods in detail. In Section IV, we compare and analyze 
experiments and discussions from our studies. Finally, Section 
V concludes and describes future work. 

II. RELATED WORK 

Research on brain tumor segmentation using deep learning 
has gained substantial attention in recent years due to the 
increasing availability of medical imaging data and the 
advancements in computational methods. Early approaches to 
brain tumor segmentation relied heavily on traditional image 
processing techniques such as thresholding, region growing, 
and edge detection [17-19]. While these methods could detect 
certain features, they lacked the sophistication needed to 
capture brain tumors' complex and heterogeneous nature. As a 
result, their accuracy was often limited, especially when 
dealing with tumors with irregular shapes or indistinct 
boundaries. The development of machine learning models, 
particularly convolutional neural networks (CNNs), 
revolutionized this field by enabling more automated, 
accurate, and efficient segmentation techniques, especially in 
medical imaging applications such as brain tumor detection. 

One of the first major breakthroughs in deep learning-
based medical image segmentation came with the introduction 
of the U-Net architecture by Ronneberger, et al. [20]. Initially 
designed for biomedical image segmentation tasks, U-Net 
rapidly gained popularity due to its simplicity and 
effectiveness. The architecture’s encoder-decoder structure 
enables precise segmentation by combining high-resolution 
features from the encoder with upsampled features in the 
decoder. U-Net has been successfully applied to various 
medical imaging tasks, including brain tumor segmentation, 
and has become a standard baseline model in the field. 
However, despite its success, U-Net often struggles with 
overfitting and performance stability, mainly when dealing 
with minor or imbalanced datasets, which are common in 
medical imaging. 

Various enhancements to the U-Net architecture have been 
proposed to address these issues. Isensee, et al. [21] 
introduced modifications such as deep supervision and 
residual connections to improve the network’s ability to learn 
from complex medical imaging data. Other works have 
focused on regularization techniques like batch normalization 
and dropout to enhance model stability and generalization. 
Batch normalization, introduced by Ioffe [22], is commonly 
used to normalize the inputs to each layer, speeding up 
training and reducing internal covariate shifts. Dropout, 
proposed by Srivastava, et al. [23], helps prevent overfitting 
by randomly deactivating neurons during training, forcing the 
model to learn more generalized features. Various CNN 
architectures, including U-Net, have widely adopted these 
techniques to improve their performance on medical image 
segmentation tasks. 
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Additionally, several researchers have explored transfer 
learning and fine-tuning in medical image segmentation. 
Transfer learning allows a pre-trained model to be adapted to a 
new task by freezing specific layers during training and 
updating only a subset of parameters. In brain tumor 
segmentation, transfer learning can be particularly beneficial 
when working with small datasets, as it enables models to 
leverage knowledge from larger, more general datasets. 
Kamnitsas, et al. [24] demonstrated the effectiveness of 
transfer learning for brain lesion segmentation using a 3D 
CNN, achieving better performance than training from 
scratch. The use of freeze layers, which limit the depth of 
training, has also been explored to reduce overfitting and 
optimize computational efficiency, particularly in resource-
constrained environments. 

Moreover, ensemble learning methods have been explored 
to improve segmentation performance further. DeepMedic, 
introduced by Kamnitsas, et al. [25], combines multiple CNNs 
to form an ensemble model, resulting in more robust and 
accurate brain tumor segmentation. Other works have 
integrated different architectures, such as residual networks 
and attention mechanisms, to enhance segmentation models' 
feature extraction and localization capabilities. In summary, 
the field of brain tumor segmentation has seen significant 
advancements, with numerous modifications to the original U-
Net architecture and the incorporation of advanced techniques 
such as batch normalization, dropout, freeze layers, and 
ensemble learning approaches. These improvements enhance 
model stability, reduce overfitting, and increase segmentation 
accuracy. 

III. DATASET AND METHODS 

A. Data Sets 

The dataset used in this study is a public 2D brain tumor 
dataset authored by Cheng, et al. [26], Cheng, et al. [27]. The 
dataset contains 3064 T1-weighted contrast-enhanced images 
with three kinds of brain tumors (meningioma with 708 slices, 
glioma with 1426 slices, and pituitary tumor with 930 slices) 
from 233 patients that were scanned by magnetic resonance 
imaging (MRI), all with ground truth segmentations of the 
tumors. It was randomly split into a training set of 2451 
images, an internal validation set of 306 images, and a testing 
set of 307 images. 

B. The Proposed Method 

In this study, three architectures from deep neural network 
(DNN) were used, including (1) an unmodified U-Net 
architecture, (2) a modified U-Net architecture with batch 
normalization and dropout on the encoder layer without the 
freeze layer, and (3) a modified U-Net architecture with batch 
normalization and dropout on the encoder layer with a freeze 
layer. The U-Net architecture added with freeze layers aims to 
limit the training depth by skipping certain layers when 
training the model. 

C. Evaluation of the Models Performance 

During the calibration stages (training and internal 
validation) for the three architectures examined in this study, 
the performance of the model development is evaluated 
through training loss and validation loss. Moreover, as a 

widely-used evaluation metric in object detection and image 
segmentation tasks, the intersection over union (IoU) overlap 
between predicted bounding boxes and ground truth boxes is 
also evaluated with scores ranging from 0 to 1. After that, the 
model is tested using a dataset of 307 images. 

To find out more details regarding the model performance 
of each stages (training, internal validation, testing), 10 
images were randomly taken from each stages to be compared 
to the ground truth segmentations of the tumors. Each image 
will be checked for the number of true positive, true negative, 
false negative, and false positive variables to calculate 
precision, recall, f1-score, and accuracy. After that, the 
average with the standard deviation for the three architectures 
was compared through the ANOVA statistical test to 
determine the model performance's significance (p<0.05). 
Duncan's multiple range test will be carried out if at least one 
difference exists between the three architectures. 

IV. RESULT AND DISCUSSIONS 

A. Unmodified U-Net Architecture 

Fig. 1(a) shows the training history for 35 epochs using 
unmodified U-Net architecture for the loss training 

(0.14531.21E-01) and internal validation (0.19315.10E-02) 
stages. There is a loss gap of around 32.94% between training 
and validation. The loss curve for validation shows that the 
best loss can be achieved at an epoch of 35. The time 
calculation for running training for this method is 

197.110.37s. The performance of the model by the 
intersection of union (IoU) on Fig. 1(b) for unmodified U-Net 

architecture is 0.73761.41E-01 in training and 

0.68612.92E-02 in validation. There is a difference in IoU of 
approximately 6.98% between the training and validation 
results. 

 

 
Fig. 1. Training and validation history of 35 epochs iteration from 

unmodified U-Net architecture model (a) accuracy and (b) IoU. 
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Fig. 2 presents the model's performance when sampling 10 
images for the confusion matrix. The model from unmodified 
U-Net is more accurate (Fig. 2(a)) than the validation and 
testing stages except in images number 4, 5, and 7 (see Fig. 3). 
The average accuracy at the training, validation, and testing 
steps were 0.9977+7.46E-04, 0.9979+7.27E-04, and 
0.9979+1.18E-03, respectively. The ANOVA test results for 
the accuracy parameters at the training, validation, and testing 
steps were not significantly different (p>0.05), indicating that 
the model is steady and there is no under/overfitting. 

 

 

 

 
Fig. 2. Performance of sampling image from unmodified U-Net in a 

confusion matrix (a) accuracy, (b) precision, (c) recall and (d) f1-score. 

Precision can be used as a parameter to measure how 
consistent the model is in predicting the quality of positive 
predictions. The average precision (see Fig. 2(b)) at the 
training, validation, and testing stages were 0.8670+4.12E-02, 
0.8593+6.04E-02, and 0.8685+4.27E-02, respectively. The 
statistical test results using ANOVA did not find any 
significant differences between the three stages (p>0.05). This 
indicates that the results obtained through precision did not 
find any false patterns from the tested dataset. 

Next, the recall parameter can show the total number of 
actual positive cases that are correctly predicted to show the 
sensitivity of the model. The average recall (Fig. 2(c)) at the 
training, validation, and testing stages are 0.9927+7.95E-03, 
0.9884+1.63E-02, and 0.9706+5.30E-02, respectively. The 
ANOVA statistical test results revealed no significant 
differences across the three stages (p>0.05), indicating that the 
recall results did not detect incorrect patterns in the tested 
dataset. 

 
Fig. 3. Details of sample images 4, 5, and 7 in training, validation, and 

testing by unmodified U-Net architecture model. 

B. Modified U-Net Architecture without Freeze Layer 

The training and validation history and IoU for 35 epochs 
using modified U-Net architecture without a freeze layer are 
depicted in Fig. 4. The training and internal validation loss are 

0.27785.70E-02 and 0.29275.01E-02, respectively. There is 
a loss gap of around 5.37% between training and validation. 
The loss curve for validation shows that the best accuracy can 
be achieved at an epoch of 35. The time required for running 

the training with this method is 55.660.48s. The model's 
performance, measured by the intersection over union (IoU), 
for the modified U-Net architecture without a frozen layer is 
0.5633±7.15E-02 during training and 0.5591±5.69E-02 during 
validation. The IoU difference between the training and 
validation results is approximately 0.74%. 

The confusion matrix in Fig. 5 shows the performance of 
the modified U-Net architecture without the frozen layer, 
based on sampling 10 images. As depicted in Fig. 5(a), the 
model maintains stability in all stages, except image sample 
number 3, where a deviation in accuracy is observed (Fig. 6). 
The average accuracy during the training, validation, and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

782 | P a g e  

www.ijacsa.thesai.org 

testing stages was 0.9951±2.92E-03, 0.9929±8.08E-03, and 
0.9865±2.96E-02, respectively. The ANOVA test results 
showed no significant differences (p>0.05) in accuracy across 
these stages, implying that the model is steady and does not 
exhibit underfitting or overfitting. 

 

 
Fig. 4. Training and validation history of 35 epochs iteration from modified 

U-Net architecture without freeze layer model (a) accuracy and (b) IoU. 

Precision as a key parameter for evaluating the model's 
consistency in predicting positive outcomes, yielded average 
scores of 0.7883±7.77E-02, 0.7511±2.04E-01, and 
0.7592±2.18E-01 during the training, validation, and testing 
stages, respectively (Fig. 5(b)). Similarly, recall that measures 
the model's sensitivity in correctly predicting actual positive 
cases showed average values of 0.9784±5.25E-02, 
0.8883±1.94E-01, and 0.8018±2.58E-01 across the same 
stages (Fig. 5(c)). Finally, the f1-Score, which balances 
precision and recall, averaged 0.8695±4.12E-02, 
0.8029±1.82E-01, and 0.7584±2.21E-01 (Fig. 5(d)). An 
ANOVA analysis of these metrics (Precision, recall, and f1-
Score) revealed no significant differences between the 
training, validation, and testing stages (p>0.05), indicating no 
false or incorrect patterns were identified in the dataset. 

 

 

 

 
Fig. 5. Performance of sampling image from modified U-Net architecture 

without freeze in a confusion matrix (a) accuracy, (b) precision, (c) recall and 
(d) f1-score. 
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Fig. 6. Details of sample images 3 in training, validation, and testing by 

modified U-Net architecture without freeze model. 

C. Modified U-Net Architecture with Freeze Layer 

Fig. 7(a) illustrates the training history over 35 epochs 
using the modified U-Net architecture with a frozen layer, 
showing a training loss of 0.1947±7.71E-02 and a validation 
loss of 0.2468±3.86E-02. The loss difference between training 
and validation is approximately 26.73%. The training runtime 
for this method is calculated at 36.03±0.17s. Fig. 7(b) presents 
the model's performance, with an intersection over union 
(IoU) of 0.6764±8.10E-02 for training and 0.5995±5.14E-02 
for validation, resulting in a 11.37% IoU difference between 
training and validation. 

 

 
Fig. 7. Training and validation history of 35 epochs iteration from modified 

U-Net architecture with freeze layer model (a) accuracy and (b) IoU. 

The confusion matrix in Fig. 8 illustrates the performance 

of the modified U-Net architecture with the frozen layer based 
on a sample of 10 images. As illustrated in Figure 8a, the 
model demonstrates stability across all stages, except image 
sample numbers 2 and 3, where a decline in validation 
accuracy is observed, and image sample number 5 shows a 
decrease in precision during the testing stage (Fig. 9). The 
average accuracy during the training, validation, and testing 
stages was 0.9973±1.35E-03, 0.9942±7.68E-03, and 
0.9949±4.50E-03, respectively. ANOVA test results indicated 
that the model is stable and does not exhibit indications of 
underfitting or overfitting, as there were no significant 
differences in accuracy between these stages (p>0.05). 

During the training, validation, and testing stages, the 
average precision scores for predicting favorable outcomes 
were 0.8742±5.43E-02, 0.8251±1.82E-01, and 0.6831±3.85E-
01, respectively (Fig. 8(b)). Conversely, the recall metric, 
which quantifies the model's ability to accurately anticipate 
real positive instances, had mean values of 0.9549±6.05E-02, 
0.8348±2.66E-01, and 0.8146±3.03E-01 over the same stages 
(Fig. 8(c)). In Fig. 8(d), the f1-Score, which measures the 
balance between accuracy and recall, had average values of 
0.9109±3.92E-02, 0.8120±2.10E-01, and 0.7022±3.83E-01. 
Statistical study of the metrics (precision, recall, and f1-Score) 
using ANOVA showed no statistically significant variations 
throughout the training, validation, and testing stages 
(p>0.05). This suggests no erroneous or inaccurate patterns 
were detected in the dataset. 
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Fig. 8. Performance of sampling image from modified U-Net architecture 

with freeze in a confusion matrix (a) accuracy, (b) precision, (c) recall and (d) 

f1-score. 

 
Fig. 9. Details of sample images 3 in training, validation, and testing by 

modified U-Net architecture with freeze model. 

D. Comparison Performance Between the Proposed Method 

The performance comparison of the three methods used in 
this study at each modeling stage is presented in Fig. 10. It can 
be seen that at the training stage for all parameters, there is a 
significant difference (p<0.05) between the three methods 
tested except for the recall parameter. However, no difference 

in performance was found between the three methods for the 
validation and testing stages (p>0.05). Finally, the method 
with modified U-net architecture with a freeze layer provides 
a significant difference in training time calculation. 
Meanwhile, the model performance is equally suitable for all 
three using unmodified U-Net architecture. Therefore, the 
method proposed through this study that combines modified 
U-net architecture with a freeze layer provides a more 
efficient calculation time efficiency of around 83% than 
unmodified U-net architecture. Compared with previous 
research, as reported by Cheng, et al. [26], this study's results 
have been better than those of prior research, as presented in 
Fig. 10(e). 

The practical motivation for applying the theoretical 
results obtained in this study lies in improving the accuracy 
and efficiency of brain tumor segmentation in clinical settings. 
Accurate segmentation is crucial for diagnosing, planning 
treatment, and monitoring tumor progression, yet manual 
segmentation is time-consuming and prone to variability. Our 
modified U-Net architecture, enhanced with batch 
normalization, dropout, and freeze layers, offers a robust and 
scalable solution that addresses common issues such as 
overfitting and computational inefficiency, mainly when 
working with small MRI datasets. These theoretical 
improvements translate into more reliable, faster, and precise 
automated segmentation, ultimately aiding clinicians in 
making more informed decisions. The ability to generalize 
across different cases ensures that the model can be applied in 
real-world medical environments, improving diagnostic 
workflows and potentially leading to better patient outcomes 
through more personalized and accurate treatment strategies. 
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Fig. 10. Comparison performance between the proposed method on (a) 

training, (b) validation, (c) testing, (d) times and (e) comparison with a result 

from [26]. 

V. CONCLUSIONS AND FUTURE WORK 

In this study, we compared the performance of unmodified 
and modified U-Net architectures for brain tumor 
segmentation from MRI images, focusing on enhancements 
through batch normalization, dropout, and freeze layers. While 
the unmodified U-Net provided reliable performance, it 
exhibited a slight loss gap between training and validation, 
hinting at potential overfitting and resulting in lower 
intersection over union (IoU) scores. On the other hand, the 
modified U-Net without a freeze layer demonstrated improved 
convergence and reduced loss, with higher IoU scores 
indicating better segmentation capabilities. However, some 
inconsistencies were observed in precision and recall during 
the testing stage, showing that further optimization was 
necessary while the modifications improved performance. The 
most promising results came from the modified U-Net with a 
freeze layer, which achieved the highest IoU scores and 

maintained stability across all performance metrics, including 
accuracy, precision, recall, and f1-score. This model 
effectively mitigated overfitting by limiting the training depth 
while reducing the computational time required, making it 
highly efficient for practical use. The freeze layer 
modification proved particularly beneficial, allowing for a 
balance between model complexity and computational 
efficiency. 

The modified U-Net architecture with a freeze layer 
significantly reduced training time by 81.72% compared to the 
unmodified U-Net while maintaining similar performance 
across validation and testing stages. Despite the differences 
observed in training, all three methods performed equally well 
regarding segmentation accuracy and consistency. While the 
unmodified U-Net is a solid baseline for segmentation tasks, 
the modified U-Net, especially with the freeze layer, shows 
superior performance, making it more suitable for real-world 
applications where accuracy and efficiency are paramount. 
Future studies could investigate further improvements to these 
architectures by incorporating advanced optimization methods 
and expanding the dataset to include more diverse tumor types 
and imaging conditions, thereby enhancing the model's 
generalizability. 
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