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Abstract—With the increasing demand for automation and 

intelligence in indoor landscape design, exploring efficient and 

precise control strategies has become particularly important. 

Robot-assisted technology and A* algorithm are utilized for 

indoor environment localization and mapping. Then, type-2 

fuzzy adaptive fuzzy control is applied for indoor landscape 

automatic design. An improved genetic algorithm is utilized for 

environmental analysis to enhance the adaptability of indoor 

landscape design to the environment. In the results, the robot 

adopting this algorithm was significantly better than ordinary 

robots in path planning optimization, with a fitting accuracy of 

over 95%. The type-2 fuzzy control model had a maximum speed 

of 0.75m/s and an overshoot of only 7.1% for balancing robots, 

resulting in a faster recovery speed and smaller overshoot. The 

proposed method performed the best in terms of functionality, 

aesthetics, technicality, accessibility, and user satisfaction for 

landscape design effectiveness and environmental adaptability. 

The research improves indoor landscape design’s automation. 

Meanwhile, the combination of fuzzy control and genetic 

algorithms enhances the design accuracy and environmental 

adaptability. This provides a new technological path for indoor 

landscape design. 
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environment; adaptability analysis; robot assisted 

I. INTRODUCTION 

Indoor Landscape Design (ILD), as an important 
component of the built environment, is crucial for improving 
spatial quality and meeting functional requirements. However, 
when faced with the growing demand for personalization and 
diversity, traditional ILD shows significant limitations in 
terms of efficiency, accuracy, and adaptability. How to achieve 
efficient, precise, and environmentally adaptable design has 
become an urgent problem to be solved, especially in complex 
and ever-changing indoor environments [1]. As technology 
advances, automation and intelligence become new trends in 
design. Intelligent design not only improves design efficiency 
but also provides more accurate and personalized design 
solutions through data analysis and simulation [2-3]. Fuzzy 
Control (FC), as a control strategy that can handle uncertainty 
and fuzzy information, has shown its unique advantages in 
multiple fields. FC can effectively process fuzzy, inaccurate, 
or incomplete information by simulating human 
decision-making processes, thereby achieving optimized 
control in complex systems. Therefore, how to combine FC 
with ILD to improve the automation level and environmental 

adaptability of design has become a topic worthy of research 
[4-5]. To address this issue, this study proposes an improved 
FC-based ILD and environmental adaptability analysis method. 
This method combines robotics technology, A* algorithm, 
Range Type-2 Fuzzy Logic Control Mechanism (RT2FLCM), 
and Improved Genetic Algorithm (IGA). It aims to achieve 
automation and precision of ILD while improving 
environmental adaptability. 

The innovation of the research lies in the application of 
fuzzy control theory to interior landscape design, and through 
the combination of robot-assisted technology and A* 
algorithm, the accurate location and mapping of indoor 
environment are realized. In addition, the study adopts type-2 
fuzzy adaptive fuzzy control for interior landscape automatic 
design. The application of this method makes the design 
process more accurate and personalized. The contribution of 
the research is reflected in environmental analysis through 
improved genetic algorithms, which are capable of simulating 
natural selection and genetic mechanisms for global search 
and optimization. The application of this algorithm improves 
the accuracy and environmental adaptability of the design. By 
combining advanced control theory, algorithm and robot 
technology, a new analysis method of interior landscape 
design and environmental adaptability is proposed in this 
study, which provides a new technical path for the field of 
interior landscape design and has important theoretical and 
practical significance. 

The article is divided into six sections. Section I is the 
introduction, through the background and research status of 
interior landscape design leads to the research theme. Section 
II is a literature review, which discusses and analyzes the 
research status of fuzzy control algorithm and interior 
landscape design at home and abroad. In Section III, robot 
assisted technology and A* algorithm are used for interior 
landscape positioning and environment mapping, and 
RT2FLCM is used for interior landscape automatic design. In 
Section IV, the effectiveness of the algorithm is verified by 
experiments. Section V is discussion, which discusses and 
analyzes the research results and compares them with other 
studies. Section VI summarizes the research results. 

II. RELATED WORK 

When exploring the potential application of fuzzy logic in 
ecosystem service assessment, Biber et al. developed a 
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biodiversity-based fuzzy logic evaluation system. This 
evaluation system was applied to three different forest 
management scenarios. A simulation study was conducted for 
up to 100 years. These results confirmed the effectiveness of 
fuzzy logic as an evaluation tool [6]. Colak et al. proposed an 
active power factor correction method based on FC theory to 
address the growing demand for reliable and efficient power 
systems. Fuzzy logic controllers provided a highly adaptable 
and flexible solution by addressing the inherent uncertainty in 
power systems. In comparison with traditional control 
methods, the FC-based method had significant advantages in 
accuracy, robustness, and response time [7]. Hussein et al. 
proposed a fuzzy logic-based model for evaluating the spatial 
spaciousness. The proposed fuzzy model could accurately 
reflect input variables’ influence on spatial spaciousness [8]. 
Khafajeh et al. started designing and developing an FC system 
for hydroponic greenhouses. Through optimization of the FC 
system, the average temperature during the day and night 
decreased from 34.25℃ and 23.22℃ to 31.17℃ and 21.96℃, 
respectively [9]. 

For intelligent drone control, Al Gizi A J H utilized a 
remote FC vehicle-mounted sonar tracking and detection 
device mounted to collect data for preventive maintenance of 
high-voltage power lines. Combining deep neural networks 
and FC achieved more efficient power line maintenance work 
[10]. Kasruddin et al. proposed a novel hybrid strategy 
combining spiral dynamic algorithm and other methods for 
flexible robotic arm systems’ wheel hub angle tracking. This 
strategy not only accelerated convergence speed but also 
improved the solution accuracy. The optimized controller 
accurately tracked the expected response [11]. Incekara 
developed a fuzzy logic-based design method for primary 
school ergonomics classroom furniture. These results 
confirmed this fuzzy mathematical model’s effectiveness [12]. 
Obinna proposed an intelligent spectrum allocation method to 
address the rapid increase in IoT devices and limited spectrum 
resources. This method utilized fuzzy logic to handle 
uncertainty and imprecise data. The method based on fuzzy 
logic effectively balanced channel availability and interference 
level, significantly improving service quality satisfaction [13]. 

To sum up, the application of fuzzy control is still in its 
infancy, especially in robot-assisted design and environmental 
adaptability analysis. A comprehensive method of interior 
landscape design and environment adaptability analysis is 
proposed by combining robot assistance technology, A* 
algorithm, type-2 fuzzy adaptive fuzzy control and improved 
genetic algorithm. This approach excelled in automation and 
precision, especially when dealing with uncertainty and 
complexity in the design process, showing superior 
performance over existing solutions. Compared with other 
studies, such as the fuzzy logic evaluation system based on 
biodiversity developed by Biber et al., the research method 
transforms the theory into practice through actual robot 
operation and automated design process, and improves the 
practical operability of the design. Compared with the active 
power factor correction method based on fuzzy control theory 
proposed by Colak et al., the application field of the research 
is more focused on interior landscape design, more targeted, 
and more in-depth in environmental adaptability analysis. 

III. METHODS AND MATERIALS 

Firstly, the study utilizes robot assisted technology and A* 
algorithm for indoor landscape localization and environmental 
mapping. This helps robots to accurately draw and measure in 
complex indoor spaces. Then, RT2FLCM is utilized for 
automatic indoor landscape design. Finally, IGA is utilized for 
indoor environment analysis. 

A. Robot Indoor Environment Mapping Based on A* 

Algorithm 

In the automatic ILD, robot technology is adopted to assist 
in indoor spaces’ construction and layout. The RB08 robot, as 
a compact and highly maneuverable multifunctional robot, is 
very suitable for complex operations in indoor environments. 
This robot has six degrees of freedom. Three degrees of 
freedom are specifically used for terminal positioning, while 
the rest are utilized to ensure precise positioning of the 
terminal [14-15]. SolidWorks software is utilized to construct 
robot’s various joints. These joints are then imported into 3D 
Max to achieve coordinate transformation and relationship 
establishment between joints. Through this method, passive 
control between each joint can be achieved. This can precisely 
control the robot's movements, ensuring the automation and 
precision of ILD. By combining robotics technology and 3D 
modeling tools, ILD can not only improve efficiency, but also 
achieve more complex and refined designs. Fig. 1 shows the 
robotic arm’s coordinate system in landscape design. 
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Fig. 1. Robot arm’s coordinate system. 

In Fig. 1, the D-H matrix is utilized to import the D-H 
parameter information into the connecting rod transformation 
matrix. The transformation matrices of each connecting rod 
are obtained, represented by Eq. (1). 

1

1 1 1 1( , ) ( , ) ( , ) ( , )  

   i

i rot i i tran i i tran i i rot i iA A z A z d A x A x (1) 

In Eq. (1), 1i

iA  refers to each connecting rod’s 

transformation matrix. i
 refers to the joint rotation angle. 

id  refers to the joint displacement.  i
 refers to the 

connecting rod’s torsion angle. Based on two adjacent 
coordinate systems, using a homogeneous transformation 
matrix, the transformation matrix 0

mA  between the final 

attachment coordinate system and the base system of the 

m -freedom serial manipulator is obtained, represented by Eq. 
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(2). 

0 0 1 2 1

1 2 1

 

  m m

m m mA A A A A     (2) 

In Eq. (2), 0

mA  represents the base system’s 

transformation matrix. Any point’s posture on the robotic 
arm’s end connector can be described using the basic 
coordinate system, represented by Eq. (3). 

0 0 1 2 1

1 2 1

 

  m m m

m mp A A A A p     (3) 

In Eq. (3), p  represents any point’s posture on the 

robotic arm’s end connector. By multiplying the six joints’ 
connection transformation matrices order, the terminal 
transformation matrix 0

6A  corresponding to the base 

coordinate system can be obtained, represented by Eq. (4). 

0

6

0 0 0 1

 
 
 
 
 
 

x x x x

y y y y

z z z z

m o a p

m o a p
A

m o a p
     (4) 

On this basis, a reverse kinematics method is proposed and 
transformed into reverse kinematics to calculate the 
corresponding joint parameters. The reverse calculation of 
motion is represented by Eq. (5). 

0

1 2 1[ ... ] ( )     m m mIKP A     (5) 

In Eq. (5), IKP  represents reverse motion. The indoor 

drawing path optimization of robots utilizes the A* algorithm, 
which is a widely utilized search algorithm in path planning. 
The A* algorithm excels at finding the shortest path from the 
starting point to the endpoint in complex graphical structures. 
The A* algorithm’s core lies in its clever combination of 
heuristic functions and cost functions. Heuristic functions are 
utilized to predict the possible cost from the current node to 
the target node. The cost function evaluates the actual cost 
from the starting point to the current node [16-17]. Fig. 2 
shows the A* algorithm. 

In Fig. 2, the initial point is included in the OPEN list and 
the points in this table are checked. If the OPEN list is empty, 
the search is terminated and the path is reported as 
non-existent. If the OPEN list is not empty, the node n  with 

the lowest ( )F n  value is selected. Node n  is removed 

from the OPEN list and added to the Completed list. Applying 
this algorithm to ILD can assist robots in precise drawing and 

measurement in complex indoor spaces. Designers can obtain 
higher quality spatial data, providing a solid foundation for 
creative design. 

B. Indoor Landscape Design Based on Fuzzy Control 

A step-by-step design method is adopted for a balancing 
robot’s straight system. Firstly, a set of fuzzy logic adjusters is 
developed to address the characteristics and motion features of 
the balancing robot. Furthermore, by utilizing the membership 
functions of fuzzy sets, a preliminary architecture of an 
advanced fuzzy logic control system is constructed. Finally, 
detailed adjustments and optimizations are made to the overall 
equipment parameters to improve control effectiveness 
[18-19]. FC’s core process is fuzzification, which is achieved 
by defining fuzzy sets and their membership functions. Within 
the determined input range U , usually within the interval of 

[0, 1], the fuzzy generator utilizes a specific mapping function 
to convert the exact value into a fuzzy value, represented by 
Eq. (6). 

[0,1], ( )  AU u u     (6) 

In Eq. (6), A
 represents the uncertainty set A ’s 

membership function value. A fuzzer’s core function is to 
convert the precise input data captured by the control 
mechanism into a set of uncertainties. Meanwhile, the 
membership function values are utilized to measure each 
component’s membership strength. The strategy proposed by 
Zadeh for processing discrete information has been widely 
adopted. It expresses the fuzziness of input data through 
membership functions, enabling the control system to more 
effectively handle uncertainty and fuzziness, represented by 
Eq. (7). 

1 2

1 2

( )( ) ( )
    n

n

A uA u A u
A

u u u
    (7) 

In Eq. (7), 
nu  represents an element. ( )nA u  means 

membership degree. Type-2 fuzzy sets are extensions of 
Type-1 fuzzy sets that introduce additional dimensions to 
represent uncertainty. Assuming x  is an element defined on 

a certain domain, its membership degree in a type-1 fuzzy set 
is represented as u . Therefore, the type-2 fuzzy set further 

refines x ’s membership degree by introducing an additional 

membership function, represented by Eq. (8). 
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Fig. 2. Process of A* algorithm. 
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 (( , ), ( , ) | , [0,1]     xA
A x u u x u x X u J    (8) 

In Eq. (8), 
xJ  represents the primary membership degree 

of x . 
A

u  means the sub-membership degree. Type-2 fuzzy 

set is an extension of Type-1 fuzzy set, which represents the 
uncertainty of membership degree by adding a dimension. The 
membership degree range of each type-1 fuzzy set is also 
from 0 to 1. However, when they combine, they form a more 
complex structure. This structure can express higher levels of 
uncertainty, thus forming a type-2 fuzzy membership function. 
In the advanced fuzzy sets, the Uncertainty Scope (US) is 
utilized to represent the set of all principal membership 
functions within the domain [20]. US provides a method for 
quantifying and visualizing the uncertainty of fuzzy sets. US 
covers all possible membership values, allowing for more 
accurate description and analysis of the characteristics of 
fuzzy sets. US is represented by Eq. (9). 

( )


 x
x X

AOU JF      (9) 

In Eq. (9),  means the union of all principal 

membership functions. The uncertainty domain can also be 
represented in a coordinate system in Fig. 3. 
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Fig. 3. Type-2 fuzzy set uncertainty field. 

In Fig. 3, the boundary of the type-2 fuzzy set is 
determined by both the Upper Membership Function (UMF) 
and the Lower Membership Function (LMF). UMF reveals the 
highest possible membership degree that a set can achieve 
within the domain of discourse. LMF reveals the lowest 
membership degree. These two functions’ difference forms an 
interval. This interval’s shaded area represents the uncertainty 
domain, which refers to all possible membership degree of 
this set within these two boundaries. A system based on 
RT2FLCM is developed, which integrates the advantages of 
interval type-2 fuzzy sets to enhance adaptability and control 
effectiveness in uncertain and complex situations. Fig. 4 
shows the structure of RT2FLCM. 

In Fig. 4, RT2FLCM inherits the basic structure of type-1 
FC, including three main steps: fuzzification, inference, and 
defuzzification. However, RT2FLCM introduces an additional 
component, a type reducer, after processing the rule base, 
which is utilized to convert type-2 fuzzy sets into type-1 fuzzy 
sets or specific values for further processing. This step is 

crucial to ensure that the system can smoothly execute 
subsequent control tasks. Through this design, RT2FLCM can 
more effectively manage and reduce uncertainty, improving 
control systems’ performance and reliability. 

Fuzzy unit Inference engine Profile reducer

DefuzzerReasoning decisionRule base

Exact value input

Exact value output

 

Fig. 4. The structure of RT2FLCM. 

C. Indoor Environmental Analysis Based on Genetic 

Algorithm 

For ILD and environmental analysis, an optimization 
technique that simulates natural selection and genetic 
mechanisms, namely GA, is utilized for environmental 
analysis and optimization. This method has significant parallel 
processing capabilities and global search advantages, enabling 
effective exploration in the parameter space in a probabilistic 
manner. It can automatically identify and guide the search 
process and dynamically adjust search strategies to adapt to 
constantly changing design requirements. Fig. 5 shows the 
GA. 

 

Fig. 5. Genetic algorithm flow chart. 

In Fig. 5, the GA process includes encoding the initial 
population, using fitness values to measure the quality of 
chromosomes, and selecting individuals based on fitness 
values. Selection typically retains individuals with better 
fitness values. Crossover refers to gene exchange. Mutation 
refers to genetic modification. Adaptability is reflected in 
probability settings. When fitness begins to concentrate, the 
crossover and mutation probability increases to escape from 
local optima. When fitness is dispersed, reducing the 
crossover and mutation probability allows individuals to 
search for optimal solutions in their respective regions. The 
crossover probability is represented by Eq. (10). 
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K F F
F F

F FP

K F F

    (10) 

In Eq. (10), 
cP  is the crossover probability. F  is an 

individual’s fitness utilized to perform mutation operations. 

F  means the smaller individual’s fitness among two 

individuals that need to perform crossover operations. 
avgF  

means the parental chromosome’s mean fitness. 
minF  means 

the parent generation’s minimum fitness. K  is an adjustment 

parameter. The mutation probability is represented by Eq. 
(11). 

3 min

min

4

( )
,

,


  


 ＞

avg

avgm

avg

K F F
F F

F FP

K F F

    (11) 

In Eq. (11), 
mP  is the crossover probability. When 

conducting ILD and indoor environment analysis, using GA 
alone requires multiple CFD simulations, which results in 
high computational costs. Neural networks are utilized as an 
alternative to CFD to reduce this cost, which are combined 
with GA to reduce the necessary computational workload. Fig. 
6 shows the ILD process combining GA with neural networks 
and CFD. 

In Fig. 6, during the initial stage of ILD, a neural network 
is utilized to predict the new design scheme’s performance 
indicators. If these predicted results meet the expected design 
standards, CFD simulation is utilized to conduct the design 
scheme’s in-depth analysis to obtain accurate CFD 
performance data. By combining neural networks and CFD, 
ILD can be more efficient and accurate, while providing 
designers with a powerful tool to achieve innovative and 
high-quality design results. 

CrossInitial population Mutation

Does it meet the 

design requirements?

End
Y

N

Fitness

Fitness CFDSelect

Are convergence 

criteria met?
CFD

Neural network training 

and testing samples

N
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Fig. 6. Indoor landscape design process combining genetic algorithm with neural network and CFD. 

IV. RESULTS 

Firstly, the robots and algorithmic performance based on 
A*+IPID+IGA was evaluated. The mean square error, sum of 
squared errors, and fitness curve of A*+IPID+IGA were 
analyzed. Then, simulation analysis was conducted on the 
type-2 FC model. Finally, the landscape design effects and 
environmental adaptability of different methods were 
compared and analyzed. 

A. Performance Evaluation of Robots and Algorithms based 

on A*+IPID+IGA 

Simulation experiments were conducted on robots based 
on A*+IPID+IGA using Matlab2018b. Figure 7 shows the 
mean square error, Sum of Squared Error (SSE), average 
fitness, and optimal fitness curves of A*+IPID+IGA. 

In Fig. 7 (a), the average and minimum SSE of 
A*+IPID+IGA converged after only 6 iterations, and SSE 
remained stable at 0.19. In Fig. 7 (b), A*+IPID+IGA showed a 
faster iteration speed in the first 7 iterations. However, from 

the 8th to the 19th iteration, the iteration speed slowed down 
slightly. Finally, at the 20th iteration, the algorithm achieved 
convergence, indicating that the algorithm improved the 
convergence rate during the iteration. In Fig. 7(c), 
A*+IPID+IGA achieved convergence between average and 
optimal fitness in the first 20 iterations. This method showed a 
fast convergence rate at the beginning of the iteration and 
reached the convergence point at the 20th iteration, with the 
final convergence value stabilizing at 1.44. The path planning 
optimization accuracy for indoor landscape mapping and 
design of robots based on A*+IPID+IGA was analyzed. The 
study compared the real and planned trajectories of ordinary 
robots and robots based on A*+IPID+IGA in Fig. 8. 

In Fig. 8 (a), the fitting accuracy of the robot's real and 
planned trajectories based on A*+IPID+IGA reached over 
95%. In contrast, the fitting accuracy of ordinary robot path 
planning in Fig. 8 (b) was only about 67%. Therefore, robots 
based on A*+IPID+IGA had significant optimization 
improvements in path planning optimization compared to 
ordinary robots. 
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Fig. 7. Mean square error, SSE, and optimal fitness curve. 
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Fig. 8. Comparison of paths and trajectories of robots. 

B. Simulation Analysis of Robot Type-2 Fuzzy Control 

The research assumed that robot’s intrinsic parameters 
were not only accurate and error-free, but also remained 
constant during operation. External interference factors were 
excluded. The initial tilt angle was set to 0.3 radians, with the 
target velocity set to zero, to evaluate the robot's ability to 
restore balance to a specific tilt angle. The experiment utilized 
the Simulink module of MATLAB, set the target speed to zero, 
and set the initial state array. The study compared the classical 
Proportional-Integral-Derivative (PID) regulation technique 
with the fusion function integrated RT2FLCM. Fig. 9 shows 
the robot's tilt angle and velocity changes. 

In Fig. 9 (a) and Fig. 9(b), when initially tilted at 0.3 
radians, the robot increased to a speed of nearly 0.6m/s in a 
short period of approximately 0.2s. As the speed of the robot 
increased, the tilt rapidly decreased and exceeded the 

equilibrium point, entering a reverse tilt state, indicating that 
the robot was starting to tilt backwards. Subsequently, the 
robot began to slow down its speed and gradually returned to 
equilibrium after experiencing two oscillations. When using 
traditional PID control, the robot’s maximum tilt angle 
reached 0.16 radians. In contrast, when using the RT2FLCM 
strategy, although the tilt angle was slightly larger, RT2FLCM 
significantly improved the recovery speed. Specifically, the 
robot restored the tilt angle and velocity to zero in about 1.7s. 
This meant the robot reached a balanced and stationary state, 
while PID took about 2.5s. After evaluating the stability 
adjustment ability, further testing will be conducted on robot 
performance in rate adjustment. This robot was accelerated 
from a stationary state to a target speed of 0.7m/s while 
maintaining its initial state unchanged. Fig. 10 shows the 
changes in speed and tilt angle under two control modes. 
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Fig. 9. Tilt and velocity response curve. 
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Fig. 10. Velocity and tilt curves under two control modes. 

In Fig. 10(a), PID had a maximum negative tilt angle of 
0.08, while RT2FLCM had a maximum negative tilt angle of 
0.04. PID had a maximum positive tilt angle of 0.2, while 
RT2FLCM had a maximum positive tilt angle of 0.14. In Fig. 
10(b), PID’s maximum speed reached 0.9m/s, with an 
overshoot of 28.6%. In contrast, the maximum speed under 
RT2FLCM control was 0.75m/s, with an overshoot of only 
7.1%. Using PID caused two oscillations, while RT2FLCM 
only produced one oscillation. In terms of reaching the target 
speed, the type-2 FC was completed within 1.6s, while using a 
dual closed-loop PID required approximately 3s. During the 
overall speed adjustment process, RT2FLCM exhibited 
smoother and faster performance, with better control effects. 

C. Analysis of Landscape Design Effects and Environmental 

Adaptability 

A comparative analysis was conducted between the 
proposed ILD (Method 1), ILD based on GA (Method 2), ILD 
based on linear programming (Method 3), ILD based on deep 
learning (Method 4), and ILD based on building information 
model (Method 5). The comparative indicators were 
normalized. Table I shows the final ILD effect. 

TABLE I. COMPARISON OF INDOOR LANDSCAPE DESIGN EFFECTS 

Method index 
Method 

1 

Method 

2 

Method 

3 

Method 

4 

Method 

5 

Functionality 0.93 0.71 0.63 0.77 0.83 

Aesthetic 0.97 0.68 0.75 0.71 0.85 

Technicality 0.94 0.75 0.69 0.82 0.91 

Environmental 

quality 
0.89 0.73 0.81 0.79 0.88 

Aesthetic value 0.85 0.79 0.75 0.68 0.74 

Accessibility 0.92 0.82 0.84 0.65 0.82 

Social benefit 0.83 0.81 0.82 0.63 0.78 

Innovativeness 0.91 0.88 0.73 0.74 0.86 

User satisfaction 0.95 0.74 0.78 0.77 0.90 

In Table I, Method 1 performed the best in terms of 
functionality, aesthetic, technicality, accessibility, and user 
satisfaction, with scores of 0.93, 0.97, 0.94, 0.92, and 0.95, 
respectively. Method 5 also performed well on most indicators, 
especially in terms of functionality and user satisfaction, with 
scores of 0.83 and 0.90, respectively. In contrast, Methods 2, 3, 
and 4 scored lower on some indicators, indicating that their 
performance in these areas needed improvement. Overall, 
Method 1 became the most popular and effective design 
method due to its comprehensive advantages. Table II shows 
the environmental adaptability of five methods. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

794 | P a g e  

www.ijacsa.thesai.org 

TABLE II. ENVIRONMENTAL ADAPTABILITY OF THE FIVE METHODS 

0 
Method 

1 

Method 

2 

Method 

3 

Method 

4 

Method 

5 

Functional 

adaptability 
0.95 0.77 0.67 0.67 0.83 

Human body 

engineering 
0.91 0.73 0.59 0.82 0.88 

Thermal comfort 0.86 0.82 0.68 0.73 0.91 

Acoustic 
adaptability 

0.88 0.79 0.81 0.76 0.83 

Light environment 0.94 0.61 0.73 0.68 0.85 

Air quality 0.92 0.64 0.75 0.85 0.88 

Materials and 

finishes 
0.91 0.81 0.80 0.65 0.79 

Spatial flexibility 0.86 0.69 0.69 0.74 0.73 

Psychological 
comfort level 

0.88 0.78 0.74 0.71 0.68 

In Table II, Method 1 performed outstandingly in terms of 
functional adaptability, human body engineering, thermal 
comfort, light environment, and air quality, with scores of 0.95, 
0.91, 0.86, 0.94, and 0.92, respectively. This demonstrated its 
outstanding performance in meeting human needs and 
environmental comfort. 

V. DISCUSSION 

Improved fuzzy control and genetic algorithm are applied 
in interior landscape design to improve the automation and 
accuracy of the design and enhance the environmental 
adaptability. In terms of functionality, the proposed method 
shows a high score of 0.93, which is in contrast to the results 
obtained by Moreno et al. [1] in applying fuzzy logic to the 
preventive protection and restoration monitoring of heritage 
buildings. While Moreno et al.'s study focused on evaluation 
and monitoring, this study applies fuzzy control to the design 
process itself, achieving a higher functional score. In terms of 
aesthetics, the score of the study is 0.97, which is compared 
with the study of Hussein et al. [8] using fuzzy logic to 
evaluate the spaciousness of architectural design studios, 
which mainly focuses on the physical properties of space, 
while this study comprehensively considers aesthetics and 
provides a more comprehensive design scheme. In terms of 
environmental adaptability, the interior landscape design 
method proposed in this study got a score of 0.86 in terms of 
thermal comfort, which was compared with the result of 
Khafajeh et al. [9] applying fuzzy logic in the hydroponic 
greenhouse control system, which mainly focused on the 
optimization of environmental control, while this study took 
environmental adaptability as a part of the design process. To 
achieve a more comfortable indoor environment. Through 
these comparisons, it can be seen that the proposed method 
has obvious advantages in automation design and 
environmental adaptability. The research not only improves 
the accuracy of the design, but also significantly improves the 
automation level and environmental adaptability of the design 
through the combination of fuzzy control and genetic 
algorithm. 

VI. CONCLUSION 

A method for analyzing ILD and environmental 

adaptability based on improved FC is proposed. Its 
effectiveness is verified through experiments. In the results, 
A*+IPID+IGA showed good convergence performance during 
the iteration. The mean square error and SSE converged 
rapidly after 6 iterations and reached a stable state within 20 
iterations. The average and optimal fitness also showed a rapid 
convergence trend. These results validated this algorithm’s 
effectiveness and reliability in solving optimization problems. 
For path planning optimization, robots based on 
A*+IPID+IGA showed higher fitting accuracy compared to 
ordinary robots, reaching over 95%. The ordinary robots’ 
fitting accuracy was only about 67%. These demonstrated the 
optimization capability of the improved algorithm in path 
planning. The ILD and environmental adaptability analysis 
method based on A*+IPID+IGA has demonstrated excellent 
performance in robot path planning, balance control, speed 
control, and landscape design effect evaluation. This method 
not only improves the automation and accuracy of design, but 
also significantly enhances environmental adaptability. 
However, there are still some shortcomings in the research. 
For example, it is assumed that robot’s internal parameters are 
constant without considering external interference factors. 
This may affect the control effect in practical applications. 
Future research can further explore the impact of parameter 
changes and external disturbances on system performance, as 
well as how to optimize algorithms to adapt to more complex 
real-world environments. 
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