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Abstract—The widespread usage of Internet of Things (IoT) 

devices opens up new opportunities for automated operations, 

monitoring, and communications across various industries. 

However, extending the lifespan of IoT networks remains crucial 

because IoT devices are energy-limited. This study investigates the 

convergence of Graph Neural Networks (GNNs) and dominant set 

algorithms to extend the longevity of IoT networks. GNNs are 

neural networks that capture complex relationships and node 

interactions based on graph-structured data. With these 

capabilities, GNNs are extremely effective at modeling IoT 

network dynamics, where devices are connected and whose 

interactions have a significant impact on performance. In contrast, 

dominant set algorithms are defined as an approach in which 

nodes of a network function as agents or leaders to perform 

resource-efficient and resource-distributed communication. A 

further detailed overview leverages existing techniques to describe 

GNNs' role in optimizing dominant set algorithms and discusses 

integrating these technologies into addressing energy efficiency 

challenges in IoT settings. 
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I. INTRODUCTION 

A. Context 

In the last few years, technology has profoundly reached all 

areas of society and has transformed them. As technology has 

progressed during the last couple of shows, it has dramatically 

shifted our way of life and how we communicate, work, and 

live. Ultimately, all these lead to our lives based on data-driven 

decisions and greater connectedness. The digital transformation 

also benefits from the presence of potentially billions 

of connected objects, which now can be transformed into 

intelligent and connected ones through the Internet of Things 

(IoT) [1]. IoT encompasses a vast range of physical devices, 

from everyday items like refrigerators and thermostats to 

complicated equipment for industrial use [2]. These devices 

feature software, sensors, and a variety of components 

specifically engineered to capture and transmit data through the 

Internet [3]. 

The advancement of connectivity enhances the 

functionality and convenience of technologies [4]. The rapid 

growth of the Internet of Things (IoT) is fueled by 

advancements and widespread online access [5]. At the core of 

IoT is computing, which seamlessly integrates computers into 

our routines without us even noticing it. IoT design enables it 

to work discreetly in the background. Offers users a multitude 

of benefits and options. In industries and sectors today, IoTs are 

widely applied to show their flexibility and versatility [6]. One 

of the most relatable instances is how IoT transforms household 

tasks within residences, with the help of home technologies, 

making our daily lives more efficient and convenient. 

B. Motivation 

Energy efficiency is a critical concern in designing and 

operating IoT networks, given that most IoT devices operate on 

limited energy sources such as batteries, which are often 

difficult or impractical to replace [7]. The continuous operation 

of these devices, responsible for tasks ranging from 

environmental monitoring to smart city infrastructure, requires 

minimizing energy consumption to extend the network's life 

and ensure uninterrupted operations [8]. 

Typical ways to boost energy efficiency, like other 

algorithms such as duty cycling, energy-aware routing, and 

clustering algorithms, are often difficult to scale or adjust to 

changing network conditions. With the growth of IoT networks, 

these problems have become more apparent, and there is a need 

for new intelligent solutions to solve them. Significant energy 

savings can be achieved by reducing the number of active nodes 

through techniques such as dominant set algorithms and 

optimizing network operations using Graph Neural Networks 

(GNNs). These new ideas allow for quick changes to the 

network as they happen, cutting down on energy use and 

making IoT systems work better and last longer overall. 

C. Contribution 

The present study contributes to IoT network optimization. 

First, a comprehensive overview of the combination of GNNs 

and dominant set algorithms is provided, highlighting the 

potential of these ideas to enhance the energy efficiency of IoT 

networks. Second, existing methods are systematically 

reviewed, and several insights are provided regarding how 

GNNs are employed to optimize dominant sets and minimize 

energy consumption dynamically. Third, current challenges 

and limitations of traditional approaches are identified, and the 

synergistic use of GNNs and dominant set algorithms as a novel 

solution to these problems is proposed. Finally, future research 

directions are outlined, and the importance of scalability, real-
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time adaptation, and security for developing more efficient and 

sustainable IoT networks is highlighted. 

II. BACKGROUND 

This section presents basic information on concepts and 

technologies that underpin the integration of GNNs and 

dominant set algorithms for energy efficiency in IoT networks. 

A. IoT 

The IoT, coined by Kevin Ashton in 1999, represents a 

global infrastructure in which physical and virtual entities are 

connected through advanced communications technologies. As 

defined by the International Telecommunication Union (ITU), 

IoT enables innovative services. As shown in Fig. 1, the IoT 

essentially represents a vast network of devices capable of 

collecting data, exchanging operational information, and 

performing autonomous tasks. Integrating sensors into various 

devices, from cell phones to home appliances, makes this 

functionality possible. 

 

Fig. 1. IoT-related sectors. 

An IoT ecosystem includes web-enabled devices with 

processors, sensors, and communications hardware to collect, 

transmit, and process data. Collected data is typically 

transferred to cloud platforms or processed locally before being 

shared with other connected devices to initiate actions [9]. 

While human interaction for configuration, guidance, or data 

access is still possible, IoT devices work independently of each 

other. IoT applications use specific connectivity, network, and 

communication protocols. In particular, IoT has the potential to 

leverage machine learning, a subset of artificial intelligence, to 

optimize data processing and improve system dynamics. IoT 

generates and analyzes enormous amounts of data in real-time, 

driving big data analytics. IoT enables companies to monitor 

employee performance across multiple locations and optimize 

operations. 

B. Graph Neural Networks 

GNNs represent a practical paradigm for processing graph-

structured data, demonstrating exceptional performance across 

diverse domains, including physical systems, protein structure 

analysis, and knowledge graph management [10, 11]. Graphs 

can be classified based on edge directionality (directed or 

undirected), node and edge homogeneity (homogeneous or 

heterogeneous), and structural complexity (graphs or 

hypergraphs). Directed graphs exhibit unidirectional edges, 

while undirected graphs imply bidirectional relationships 

between connected nodes. Homogeneous graphs contain a 

single node and edge type, whereas heterogeneous graphs 

accommodate multiple types. Hypergraphs extend the graph 

concept by allowing edges to connect arbitrary numbers of 

vertices. Fig. 2 shows examples for each graph type up to this 

point. 

A directed (simple) graph is formally defined as a tuple G 

= (V, E), where V is a set of nodes and E is a set of directed 

edges represented as tuples. A directed (generalized) 

hypergraph is a similar tuple with hyperedges and a numbering 

map fi for each edge to indicate node order. These graphs are 

considered elementary, as other graphs can be constructed from 

their composition. Directed graphs are undirected if (𝑢, 𝑣) ∈ ℇ. 

In this case, edges can be represented as sets rather than tuples. 

Directed hypergraphs are undirected if 𝑓𝑖: 𝑥 →
{0}𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥, 𝑓𝑖)𝑖 ∈  ℇ. 

A multigraph is a graph where edges or nodes can appear 

multiple times. A heterogeneous graph is one where nodes or 

edges have different types. These types can be formally 

appended to nodes and edges. An attributed graph is one where 

nodes or edges are associated with attributes, represented by 

node and edge attribute functions. If only nodes have attributes, 

it's called node-attributed, and if only edges have attributes, it's 

called edge-attributed. The graph is considered weighted if 

edge attributes are a subset of edge types. 

The core principle of GNNs is to iteratively aggregate 

information from neighboring nodes and integrate this 

aggregated data into the representation of the central node [12]. 

This process, known as spreading, repeats itself over several 

layers. Each layer includes aggregation and update operations 

formulated as follows. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛: 𝑛𝑣
(𝑙)

= 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟𝑙({ℎ𝑢
𝑙 , ∀𝑢 ∈ 𝑁𝑣}) 

𝑈𝑝𝑑𝑎𝑡𝑒: ℎ𝑣
(𝑙|+1)

= 𝑈𝑝𝑑𝑎𝑡𝑒𝑟𝑙(ℎ𝑢
𝑙 , 𝑛𝑣

(𝑙)
) 

(1) 

ℎ𝑢
𝑙  represents the node u's representation at layer l, while 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟𝑙  and 𝑈𝑝𝑑𝑎𝑡𝑒𝑟𝑙  denote the respective functions 

for aggregation and update at layer l. 
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(a) 

 

(b) 
 

(c) 

 

(d) 
 

(e) 

 

(f) 

Fig. 2. An overview of different graph types: directed (a), undirected (b), multigraph (c), heterogeneous (d), attributed (e), and directed hypergraph (f). 

TABLE I.  COMPARISON OF AGGREGATION AND UPDATE OPERATIONS ACROSS DIFFERENT GNN FRAMEWORKS 

Framework Aggregation operation Update operation 

HGNN 

Aggregates information using hyperedge convolution, where the node 

representations are transformed through a learnable matrix and normalized 

using degree matrices. 

Updates node representations with a non-linear activation 
function applied to the aggregated information. 

GGNN 
Aggregates information uniformly from neighboring nodes using mean 
pooling. 

Updates node representations using a gated recurrent unit, 
integrating the aggregated information iteratively. 

GAT 
Aggregates information from neighbors using an attention mechanism, 

where the contribution of each neighbor is weighted based on its relevance. 

Updates node representations by applying a non-linear activation 

function to the weighted aggregation of neighbors’ information. 

GraphSAGE 
Aggregates information from a sampled subset of neighbors using various 

pooling strategies (mean, sum, max). 

Updates node representations by concatenating aggregated 
neighbor information with the underlying node representation 

and applying a learnable transformation. 

GCN 
Aggregates information using a weighted sum of neighbor representations, 
where the weights are derived from a normalized adjacency matrix. 

Updates node representations by applying a non-linear activation 
function to the aggregated information. 

 

Aggregation strategies include uniform treatment of 

neighbors (mean pooling) and weighted contributions based on 

attention mechanisms. The update step integrates the 

neighborhood information with the central node representation 

to create a refined node representation. Various techniques have 

been proposed to effectively combine these components, 

including GRU mechanisms, concatenation with non-linear 

transformations, and summation. Generally, five prominent 

GNN frameworks are commonly employed in IoT networks, 

each with distinct aggregation and update mechanisms, as 

summarized in Table I. 

1) Hypergraph Neural Network (HGNN): This framework 

excels at capturing higher-order data correlations within 

hypergraph structures [13]. The hyperedge convolution layer 

defined by Eq. (2) uses a non-linear activation function, a 

learnable transformation matrix (W(l)), and degree matrices for 

edges (De) and vertices (Dv) to calculate node representations. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛: 𝑁(𝑙) = 𝐷𝑣

−
1
2𝐸𝑊0𝐷̃𝑒

−1𝐸𝑇𝐷𝑣

−
1
2𝐻(𝑙) 

𝑈𝑝𝑑𝑎𝑡𝑒: 𝐻(𝑙+1) = 𝛿(𝑊(𝑙)𝑁(𝑙)) 

(2) 

2) Gated Graph Neural Network (GGNN): GGNN 

incorporates a Gated Recurrent Unit (GRU) for the update step 

[14]. While effective, its iterative nature over all nodes can 

hinder scalability on large graphs. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛: 𝑛𝑣
(𝑙)

=
1

|𝑁𝑣|
∑ ℎ𝑗

(𝑙)

𝑗∈𝑁𝑣

 

𝑈𝑝𝑑𝑎𝑡𝑒: ℎ𝑣
(𝑙+1)

= 𝐺𝑅𝑈 (ℎ𝑣
(𝑙)

, 𝑛𝑣
(𝑙)

) 

(3) 

3) Graph Attention Network (GAT): Recognizing the 

varying influence of neighbors, GAT employs an attention 

mechanism to differentiate neighbor contributions [15]. The 

attention function, typically 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊(𝑙)ℎ𝑣
(𝑙)

⊕
𝑊(𝑙)ℎ𝑗

(𝑙)
]) , assigns weights to neighbors based on their 

relevance. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛: 𝑛𝑣
(𝑙)

= ∑ 𝑎𝑣𝑗ℎ𝑗
(𝑙)

, 𝑎𝑣𝑗

𝑗∈𝑁𝑣

=
𝑒𝑥𝑝 (𝐴𝑡𝑡 (ℎ𝑣

(𝑙)
, ℎ𝑗

(𝑙)
))

∑ 𝑒𝑥𝑝𝑘∈𝑁𝑣
(ℎ𝑣

(𝑙)
, ℎ𝑗

(𝑙)
)
 

𝑈𝑝𝑑𝑎𝑡𝑒: ℎ𝑣
(𝑙+1)

= 𝛿 (𝑊(𝑙)𝑛𝑣
(𝑙)

) 

(4) 

4) GraphSAGE: This framework introduces neighborhood 

sampling to manage computational efficiency, followed by 
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aggregation (mean, sum, or max pooling) and concatenation for 

the update step [16]. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛: 𝑛𝑣
(𝑙)

= 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟𝑙({ℎ𝑢
𝑙 , ∀𝑢 ∈ 𝑁𝑣}) 

𝑈𝑝𝑑𝑎𝑡𝑒: ℎ𝑣
(𝑙+1)

= 𝛿 (𝑊(𝑙). [ℎ𝑣
(𝑙)

⊕ 𝑛𝑣
(𝑙)

]) 
(5) 

5) Graph Convolutional Network (GCN): GCN simplifies 

the aggregation process by approximating the graph Laplacian's 

eigendecomposition [17]The node representation is updated 

iteratively based on Eq. (6), which involves a non-linear 

activation function, a learnable transformation matrix, and 

adjacency weights. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛: 𝑛𝑣
(𝑙)

= ∑ 𝑑𝑣𝑣

−
1
2

𝑗∈𝑁𝑣

𝑎̃𝑣𝑗𝑑𝑗𝑗

−
1
2ℎ𝑗

(𝑙)
 

𝑈𝑝𝑑𝑎𝑡𝑒: ℎ𝑣
(𝑙+1)

= 𝛿 (𝑊(𝑙)𝑛𝑣
(𝑙)

) 

(6) 

C. Dominant Set Algorithms 

Dominant set algorithms identify subsets of nodes within a 

network capable of representing or leading a group of nodes, 

optimizing communication and resource allocation [18]. In the 

context of IoT networks, where energy efficiency is paramount, 

dominant set algorithms are crucial in minimizing the number 

of active nodes required for effective network operation [19]. 

By designating certain nodes as "dominant," these algorithms 

reduce overall communication overhead, conserving energy. 

Let 𝐺 = (𝑉, 𝐸) be a graph representing the IoT network, 

where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is the set of IoT nodes, and E is the 

set of edges representing the communication links between 

these nodes. A dominant set 𝐷 ⊆ 𝑉 is a subset of nodes such 

that every node 𝑣 ∈ 𝑉 is either in D or adjacent to at least one 

node in D. The goal is to minimize the size of the dominant set 

D while ensuring network coverage. This can be 

mathematically expressed as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝐷|     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ∀𝑣 ∈ 𝑉, 𝑣 ∈ 𝐷 𝑜𝑟 ∃ 𝑢
∈ 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑢, 𝑣) ∈ 𝐸  

(7) 

In energy-constrained IoT networks, the energy 

consumption of a node vi is denoted by E(vi). The total energy 

consumption of the dominant set D can be expressed as: 

𝐸(𝐷) = ∑ 𝐸(𝑣𝑖)

𝑣𝑖

 (8) 

The objective is to minimize E(D) while maintaining a 

dominant set that covers the entire network, ensuring that: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸(𝐷)    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐷 𝑖𝑠 𝑎 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑒𝑡 𝑜𝑓 𝐺 (9) 

Traditional dominant set algorithms often rely on heuristic 

or optimization-based approaches to select the most suitable 

nodes. These algorithms typically consider node degree, 

connectivity, and proximity to other nodes. For instance, a 

common approach is to iteratively select the node with the 

highest degree (most connections) as part of the dominant set: 

𝑆𝑒𝑙𝑒𝑐𝑡 𝑣𝑖 ∈ 𝑉  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣𝑖) ≥ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑗)∀𝑣𝑗

∈ 𝑉 
(10) 

This process is repeated until all nodes are either in the 

dominant set or adjacent to a node in the dominant set. 

One of the main challenges of traditional dominant set 

algorithms is their static nature. They do not easily adapt to the 

dynamic conditions of IoT networks, such as fluctuating energy 

levels or changing network topologies. The computational 

complexity of finding the optimal dominant set can also be 

high, especially in large-scale IoT networks. 

These limitations have spurred research into more advanced 

methods, such as integrating dominant set algorithms with 

machine learning techniques like GNNs. By leveraging the 

learning capabilities of GNNs, it is possible to develop more 

sophisticated dominant set algorithms that can dynamically 

adjust to real-time network conditions, offering a more robust 

solution for energy-efficient IoT network management. For 

example, GNNs can predict each node's energy consumption 

and connectivity dynamics, leading to a more effective and 

adaptive selection of the dominant set. 

D. Energy Efficiency in IoT Networks 

Energy efficiency is a paramount concern in the design and 

operation of IoT networks due to the inherent constraints of IoT 

devices, which often rely on limited power sources such as 

batteries. The operational lifespan of these devices and, by 

extension, the network depends heavily on how efficiently 

energy is utilized. Given that IoT networks are typically 

deployed in large numbers and diverse environments, ranging 

from smart cities to remote agricultural fields, the challenge of 

maintaining energy efficiency while ensuring continuous, 

reliable operation is critical. As shown in Fig. 3, the energy 

consumption in IoT networks is influenced by several factors, 

including: 

1) Communication overhead: Data transmission and 

reception are among the most energy-intensive activities in IoT 

devices. The frequency of communication, the distance over 

which data must be transmitted, and the protocol used all 

significantly impact energy usage. 

2) Idle listening: Nodes in an IoT network often consume 

energy while listening for potential communication, even if no 

data is transmitted. This idle listening can account for a 

substantial portion of energy expenditure. 

3) Computation: Local processing tasks, such as data 

aggregation, encryption, or decision-making algorithms, 

consume energy. Although typically less than communication 

activities, computation energy must still be managed 

effectively, especially in devices with minimal processing 

power. 
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Fig. 3. Energy consumption in IoT networks. 

4) Network topology and density: The arrangement and 

density of nodes within the network affect the routing paths and 

the number of hops required for data transmission, influencing 

energy consumption. Dense networks might reduce 

transmission distances but increase interference and collisions, 

while sparse networks might require longer transmission 

distances. 

Various strategies have been developed to enhance energy 

efficiency in IoT networks, including: 

1) Duty cycling: This technique involves turning off a 

device's radio transceiver when it is not needed, thus reducing 

energy consumption during idle periods. However, the 

challenge lies in coordinating wake-up times among nodes to 

maintain network connectivity. 

2) Energy-aware routing: Routing protocols in IoT 

networks can be designed to consider the remaining energy of 

nodes when selecting routes, thus balancing energy 

consumption across the network and avoiding the depletion of 

individual nodes. 

3) Clustering and dominant set algorithms: Clustering 

techniques group nodes into clusters with a designated cluster 

head, reducing the number of nodes involved in long-distance 

communication. As discussed in the previous section, dominant 

set algorithms are a form of clustering that selects a subset of 

nodes to manage communications, reducing energy 

consumption. 

4) Data aggregation: Reducing the amount of data 

transmitted by aggregating or compressing data at intermediate 

nodes can significantly lower energy consumption. This 

strategy reduces the number of transmissions required and the 

volume of data sent [20]. 

Despite the effectiveness of these strategies, challenges 

remain, particularly in scaling these methods to large and 

heterogeneous networks, where nodes may have vastly 

different energy capacities, processing powers, and 

communication requirements. Furthermore, the dynamic nature 

of IoT networks, where nodes may move, join, or leave the 

network, complicates the implementation of static energy-

saving techniques. 

III. GNNS AND IOT NETWORKS 

A. GNNs for Node Representation and Feature Learning 

GNNs are effective tools for manipulating and examining 

graph-based data. This is especially useful for IoT networks, in 

which devices (nodes) and their connections (edges) naturally 

form graphs. One of the main advantages of GNNs is their 

capacity to acquire efficient node representations and extract 

significant characteristics from the graph. These features may 

be used for various downstream tasks like optimization, 

prediction, and classification. 

Within IoT systems, individual nodes symbolize devices 

with distinct features, like energy levels, communication range, 

computing power, and connectedness to other nodes. The 

connections between nodes, such as the ability to directly 

interact with one another, are represented as edges in the graph. 

Conventional approaches to representing nodes typically 

depend on predetermined characteristics or rules, which may 

not completely portray the many relationships and 

interdependencies in a changing network environment. 

GNNs address this constraint by acquiring node 

representations influenced by the overall network topology. 

This is accomplished by passing a message in which each node 

continuously changes its representation by gathering 

information from neighboring nodes. The whole procedure may 

be represented numerically in the following manner [21]. 

ℎ𝑣
(𝑘)

= 𝜎 (𝑊(𝑘). 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({ℎ𝑢
(𝑘−1)

: 𝑢 ∈ 𝑁(𝑣)})) (11) 

Where ℎ𝑣
(𝑘)

 is the representation of node v at the kth iteration, 

𝑁(𝑣) denotes the set of neighbors of node v, AGGREGATE is a 

function that combines the representations of neighboring 

nodes (e.g., sum, mean, max), 𝑊(𝑘) is a learnable weight matrix 

for the kth layer, and 𝜎 is a non-linear activation function (e.g., 

ReLU). 

During this repeated process, the encoding of each node 

ℎ𝑣
(𝑘)

 includes the node's characteristics, the characteristics of its 

neighboring nodes, and the wider network context. GNNs can 

acquire comprehensive and contextually aware representations 

of nodes, which are very useful for tasks like clustering, 

dominant set selection, and energy-efficient routing in IoT 
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networks. GNNs may capture many crucial components of the 

network via the learned features, including: 

1) Node centrality: This feature denotes the significance or 

impact of a node inside the network. 

2) Connectivity patterns: It comprehensively represents 

local and global network configuration, including identifying 

nodes that form clusters or key routes. 

3) Energy consumption patterns: It uses predictive analysis 

to identify nodes more likely to spend more energy depending 

on their position in the network. This allows for proactive load 

balancing. 

GNNs may enhance decision-making processes in IoT 

networks by using these acquired characteristics. In the 

dominant set method, nodes with high centrality and low energy 

consumption are prioritized as leaders. This optimization aims 

to improve network coverage and energy efficiency. Utilizing 

GNNs for node representation and feature learning in IoT 

networks offers the following benefits: 

1) Scalability: GNNs can effectively manage networks of 

significant size by gaining knowledge in a decentralized and 

concurrent fashion. 

2) Adaptability: The learned representations may be 

continuously modified as the network grows, enabling 

immediate adjustment to changes in network structure or node 

conditions. 

3) Generalization: GNNs can apply learned knowledge to 

diverse network setups, which allows them to remain strong and 

effective even when faced with varied situations and network 

architectures. 

B. GNNs for Clustering and Dominant Set Selection 

GNNs have shown substantial promise in improving IoT 

network clustering and dominant set selection procedures. 

Clustering represents categorizing nodes (IoT devices) into 

smaller groups, known as subsets or clusters. Each cluster is led 

by a cluster head, who handles communication and 

coordination inside the cluster. Dominant set selection is a 

notion that involves choosing a subset of nodes to serve as 

leaders or representatives responsible for controlling 

communication throughout the whole network. These processes 

are essential, enhancing energy efficiency, lowering 

communication overhead, and lengthening IoT networks' 

lifespan. 

Conventional clustering methods often depend on fixed 

rules or predetermined standards, which may not completely 

adjust to the dynamic nature of IoT environments. GNNs 

provide a more adaptable and data-oriented clustering method 

by using acquired representations of nodes that include both the 

local and global structure of the network. 

Within the realm of clustering, GNNs generate embeddings 

reflecting the similarity between nodes, taking into account 

their characteristics and connections. These embeddings may 

be used to create clusters more informedly. Nodes that possess 

comparable energy levels, communication patterns, or 

responsibilities within the network may be categorized 

together, establishing more efficient clusters. Mathematically, 

after learning node representations ℎ𝑣  through a GNN, 

clustering can be performed by applying a clustering algorithm, 

such as k-means, directly on these embeddings [21]. 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = 𝑘 − 𝑚𝑒𝑎𝑛𝑠({ℎ𝑣|𝑣 ∈ 𝑉}) (12) 

This methodology guarantees the formation of clusters 

based on acquired, multi-dimensional characteristics that 

include intricate interconnections and dependencies within the 

network instead of merely depending on unprocessed, pre-

established criteria. 

Dominant set selection entails identifying a subset of nodes 

that can efficiently handle communication and data aggregation 

for the whole network. Conventional approaches for choosing 

dominating sets often include picking nodes based on node 

degree, closeness, or energy levels. Nevertheless, these 

approaches may be constrained by their fixed characteristics 

and incapacity to adjust to evolving network circumstances. 

GNNs can be used to dynamically improve the selection of 

dominant sets by learning to predict the most suitable nodes as 

representatives. This prediction considers both the network's 

current state and likely future situations. The method can be 

defined as a node classification problem in which the GNN is 

trained to categorize nodes into dominant (leader) or non-

dominant (follower) groups based on their acquired 

embeddings [21]. 

𝑦𝑣 = 𝐺𝑁𝑁(𝐺, 𝑣) (13) 

where, 𝑦𝑣 is the predicted label for node v, indicating 

whether it should be included in the dominant set. The GNN 

model considers the entire graph G and the specific node v, 

using the message-passing framework to aggregate information 

from neighboring nodes and the broader network. The inclusion 

of a node in the dominant set may be determined by a range of 

acquired characteristics, including: 

1) Energy efficiency: Nodes with more remaining energy 

may be prioritized to prevent the depletion of crucial nodes. 

2) Network centrality: Nodes centrally positioned or with 

excellent connections are more suitable since they can 

effectively interact with other nodes. 

3) Load balancing: The GNN may spread the predominant 

function across numerous nodes to prevent certain nodes from 

becoming bottlenecks. 

The use of GNNs in clustering and dominate set selection 

has noteworthy ramifications for IoT networks, especially when 

conserving energy and ensuring network lifespan is of utmost 

importance. 

1) Smart cities: Within urban IoT networks, GNNs can 

enhance the arrangement of sensors and devices into clusters, 

decreasing energy use while ensuring a reliable connection and 

efficient data processing. 
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2) Industrial IoT: In industrial environments, GNNs may 

effectively oversee the management of crucial monitoring 

devices, reducing energy depletion in vital nodes. 

3) Environmental monitoring: For IoT networks deployed 

in remote or difficult-to-access areas, GNNs can help form 

optimal clusters and select dominant sets that minimize energy 

usage, extending the network's operational lifespan. 

IV. DOMINANT SET ALGORITHMS IN IOT NETWORKS 

A. Traditional Dominant Set Algorithms 

Traditional dominant set methods were previously 

employed in IoT networks to enhance network efficiency and 

minimize energy use by choosing a subset of nodes that 

efficiently handle communication and data aggregation duties. 

These algorithms identify a "dominant set" of nodes that may 

include the whole network, guaranteeing that every node is 

either a member of the dominant set or is directly linked to a 

node in the dominant set. This method effectively minimizes 

the required communication since it only involves a small 

number of critical nodes in transmitting messages and handling 

data. This saves energy across the network. 

The greedy algorithm is a frequently used method for 

identifying a dominant set. It operates by repeatedly selecting 

nodes with the greatest degree (i.e., the nodes with the most 

connections) to be included in the dominant set. The reasoning 

is that nodes with a high degree are more likely to include a 

significant percentage of the network, decreasing the number of 

nodes required in the dominating set. The fundamental 

procedures of a greedy dominating set algorithm may be 

summarized as follows: 

Start with an empty set D=∅. 

Select the node v with the maximum degree in the remaining 

graph and add it to D. 

Remove v and its neighbors from the graph. 

Repeat until all nodes are either in D or have a neighbor in 

D. 

Heuristic techniques are often used to enhance the 

efficiency of selecting dominating sets. These approaches may 

include other factors such as node energy levels, proximity to 

other nodes, or the general structure of the network. For 

instance, a heuristic may prioritize nodes with more energy to 

prevent the dominant set from rapidly exhausting its resources. 

Computing the precise minimal dominating set in large-

scale IoT networks may be computationally burdensome. 

Approximation algorithms provide a means to discover 

solutions close to optimum efficiently. These algorithms 

generally ensure that the size of the dominating set is within a 

certain ratio of the ideal size. An example of a well-recognized 

approximation technique is the 2-approximation algorithm. 

This approach ensures that the dominating set it discovers will 

be no more than twice the size of the best answer. 

B. Challenges in Existing Approaches 

Although conventional dominating set algorithms have 

played a crucial role in enhancing the energy efficiency of IoT 

networks, they still face some difficulties, as outlined in Table 

II. With IoT networks' growing complexity and dynamism, 

certain limitations in current techniques have been revealed. 

These problems highlight the need for more sophisticated 

approaches to effectively manage contemporary IoT systems' 

distinct requirements. 

A major obstacle classic dominating set algorithms face is 

their dependence on static network assumptions. These 

methods typically function using a static snapshot of the 

network, assuming that the network's architecture, node 

connection, and energy levels stay unchanged throughout the 

network's operation. Nevertheless, IoT networks include an 

intrinsic dynamism, where nodes can join or depart from the 

network, relocate to new positions, or encounter variations in 

energy levels. Using a static technique may lead to the 

formation of inefficient dominating sets that do not adjust to the 

changing circumstances of the network. This can result in 

inefficiencies in both energy usage and communication. 

TABLE II.  CHALLENGES OF CONVENTIONAL DOMINANT SET ALGORITHMS IN IOT NETWORKS 

Challenge Description Impact on IoT Networks 

Static network 

assumptions 

Dependence on a static snapshot of the network, assuming 

fixed architecture, node connections, and energy levels. 

Leads to inefficient dominating sets that do not adapt to dynamic network 

changes, resulting in energy inefficiencies and communication issues. 

Scalability issues 
Increasing computational complexity as the network size 
grows, making it difficult to find efficient dominating sets 

in large-scale networks. 

Limits the applicability of conventional methods in large-scale IoT networks, 

causing performance bottlenecks and reducing overall network efficiency. 

Energy 

unawareness 

Focus on network coverage and connectivity without 

considering the varying energy levels of individual nodes. 

Causes rapid depletion of selected nodes' energy, leading to uneven energy 

distribution and shortening the overall network lifespan. 

Lack of real-time 

adaptability 

Inability to adapt to real-time changes in the network, such 

as node mobility or environmental fluctuations. 

Results in the use of outdated configurations, leading to inefficiencies in 

energy use and increased energy consumption. 

Suboptimal node 

selection 

Reliance on simple heuristics like node degree or 

proximity, which may not consider the complex factors 
affecting network performance. 

May result in the selection of nodes that are not optimally suited to act as 

leaders, reducing the network's overall efficiency and effectiveness. 

Security 

vulnerabilities 

Algorithms not designed with security in mind, making 

them susceptible to attacks like node compromise or 
denial-of-service (DoS) attacks. 

Leaves IoT networks vulnerable to security breaches, as crucial nodes in the 

dominating set may be targeted by adversaries, disrupting network 
operations. 
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As the size of IoT networks grows, the computational 

intricacy of conventional dominating set methods becomes a 

notable issue. Discovering the most efficient or nearly efficient 

dominating set in a vast network may be a demanding and time-

consuming computing task. The complexity of these algorithms 

increases exponentially as the number of nodes in the network 

rises, making it unfeasible to apply them to large-scale IoT 

networks without experiencing significant performance 

limitations. The limited scalability of conventional techniques 

hinders their usefulness in contexts with broad and constantly 

growing IoT networks. 

Traditional dominant set algorithms often focus on 

optimizing network coverage and connectivity without fully 

considering the varying energy levels of individual nodes. In 

many cases, these algorithms may select nodes with low 

remaining energy to be part of the dominant set, leading to rapid 

depletion of those nodes' power reserves. This "energy 

blindness" can result in uneven energy distribution across the 

network, with some nodes exhausting their energy supply 

quickly while others remain underutilized. Consequently, the 

overall network lifespan may be shortened as key nodes fail 

prematurely due to energy depletion. 

Another notable constraint is the lack of real-time 

adaptability of conventional dominant set methods to network 

changes. IoT networks often function in dynamic settings 

characterized by fast changes in circumstances, such as mobile 

IoT scenarios or networks installed in harsh and fluctuating 

environments. Conventional algorithms, usually created to 

calculate a dominating set by a single network examination, 

have difficulty keeping up with these modifications. 

Consequently, they could persist in using obsolete settings, 

resulting in inefficiencies and heightened energy use. 

Classic dominant set methods often rely on node degree, 

proximity, or simple heuristics to select a node. However, these 

criteria may not necessarily result in the most energy-efficient 

or effective dominant set. These criteria sometimes fail to 

include the intricate and multi-faceted elements that impact the 

functioning of an IoT network, such as the diverse 

responsibilities of nodes, environmental circumstances, or the 

unique communication patterns inside the network. This may 

lead to the selection of nodes not optimally suited to act as 

leaders, reducing the network's overall efficiency. 

Security is a crucial problem in several IoT applications. 

Conventional dominating set algorithms, on the other hand, are 

often not developed with security as a primary consideration. 

The algorithms' static and predictable nature renders them 

susceptible to assaults, such as node compromise or denial-of-

service (DoS) attacks. In these attacks, an adversary targets 

crucial nodes in the dominating set to disrupt the network. 

Conventional methods might leave IoT networks vulnerable to 

possible security breaches without inherent mechanisms to 

adjust to such threats. 

C. Enhancements through GNN Integration 

Incorporating GNNs with conventional dominant set 

techniques signifies notable progress in overcoming the 

constraints of current methodologies in IoT networks. As 

summarized in Table III, GNNs can effectively represent and 

analyze intricate data structures through graphs. This makes 

them a powerful tool for improving the process of selecting 

dominating sets and clustering in IoT settings. GNNs provide a 

flexible, scalable, and adaptable framework for this purpose. 

This part examines the integration of GNNs with dominant set 

algorithms to address the issues related to static assumptions, 

scalability, energy efficiency, and real-time adaptation. 

TABLE III.  ENHANCEMENTS PROVIDED BY GNN INTEGRATION WITH DOMINANT SET ALGORITHMS IN IOT NETWORKS 

Enhancement Description Impact on IoT Networks 

Dynamic 
network 

adaptation 

GNNs continuously update node representations in real-time as network 
conditions evolve, ensuring the dominant set adapts to current network 

states. 

Maintains optimal performance and energy efficiency by 
dynamically responding to node mobility, energy changes, and 

communication patterns. 

Scalability and 

efficiency 

GNNs handle large-scale IoT networks efficiently through parallel 

processing and distributed computing, minimizing global calculations. 

Enhances scalability of dominant set algorithms, making them 

suitable for large-scale deployments like smart cities and industrial 
IoT systems. 

Energy-aware 

node selection 

GNNs incorporate energy-awareness into node selection by analyzing 

current and historical energy data, prioritizing nodes with higher 
remaining energy. 

Extends network lifetime by preventing the premature depletion of 

key nodes and ensuring balanced energy consumption across the 
network. 

Improved 

node 

representation 

GNNs generate rich, context-aware representations of nodes that 

include their characteristics and network context, enabling more 

informed dominant set selection. 

Optimizes energy consumption and maintains network coverage by 

selecting strategically positioned, well-connected nodes for the 

dominant set. 

Real-time 

decision 

making 

GNNs support continuous updates and real-time decision-making in 

volatile network conditions, allowing for ongoing adjustments to the 

dominant set. 

Ensures the network remains efficient and resilient even in dynamic 

environments like mobile IoT networks or uncertain deployment 

areas. 

Security and 

robustness 

GNNs enhance network security by detecting and responding to 
abnormal patterns, such as compromised nodes, and adjusting the 

dominant set accordingly. 

Increases the resilience of IoT networks against security threats by 
proactively isolating or bypassing suspicious nodes, maintaining 

overall network integrity. 
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GNNs provide a significant improvement by being able to 

adjust to changing network circumstances in real-time. 

Contrary to conventional dominant set techniques that usually 

function with fixed network snapshots, GNNs continuously 

modify node representations as network circumstances evolve. 

GNNs accomplish this dynamic adaptation by using the 

message-passing process, which involves iteratively updating 

the representation of each node depending on the information it 

receives from its neighboring nodes. GNNs can adapt the 

dominating set to match the current state of the network, which 

includes factors such as node mobility, changes in energy 

levels, and different communication patterns. This ensures that 

GNNs can maintain maximum performance and energy 

efficiency as the network develops. 

GNNs have an innate ability to scale, which makes them 

highly suitable for accommodating large-scale IoT networks. 

Conventional dominant set techniques sometimes encounter 

difficulties due to the high computing cost of finding the most 

effective nodes within extensive networks. GNNs, on the other 

hand, are capable of effectively managing enormous graphs via 

the use of parallel processing and distributed computing. By 

acquiring data from local neighborhoods in the network, GNNs 

minimize the need for global calculations, enabling scalable 

solutions as the network expands. The capacity to scale allows 

dominating set algorithms to be improved with GNN in large-

scale IoT deployments, such as smart cities or industrial IoT 

systems, where conventional methods may struggle. 

One significant benefit of combining GNNs with dominant 

set algorithms is the capacity to include energy-awareness in 

selecting nodes. GNNs can analyze node information, such as 

current energy levels, historical energy use, and connection, to 

learn and anticipate trends in energy consumption throughout 

the network. This data may be used to prioritize nodes with 

more remaining energy or to divide the communication 

workload equally across the network, thereby preventing the 

premature exhaustion of crucial nodes. Using GNNs for node 

selection, focusing on energy efficiency, extends the network's 

lifetime. This is achieved by preventing any one node from 

being excessively burdened, resulting in a more equitable 

distribution of energy consumption. 

GNNs are very efficient in acquiring comprehensive and 

contextually aware representations of individual nodes within a 

network. The acquired representations include not only the 

immediate characteristics of the nodes (such as energy levels 

and connections) and the wider structural environment in which 

these nodes function. The GNN's learned embeddings include 

several aspects of a node, such as its centrality, its position in 

the network, and its closeness to other important nodes. These 

improved representations enable a more advanced and 

knowledgeable selection of dominating sets, where the chosen 

nodes are well-connected and strategically positioned to 

optimize energy consumption and sustain network coverage. 

GNNs can efficiently handle and acquire knowledge from 

constantly changing data, making them especially powerful 

when network circumstances are volatile. In scenarios like 

mobile IoT networks or networks deployed in uncertain areas, 

GNNs can consistently update the dominating set as nodes 

relocate or as environmental conditions change. This real-time 

decision-making capability guarantees the network maintains 

its efficiency and resilience, even when faced with continuous 

changes. GNNs may be used with reinforcement learning 

methods to improve their capacity to adapt and optimize over 

time, leading to ongoing improvements in the performance of 

the dominant set algorithm. 

By incorporating GNNs into dominant set algorithms, the 

security and resilience of IoT networks are improved. GNNs 

may be taught to detect and react to abnormal patterns in a 

network that may suggest security risks, such as nodes that have 

been hacked or strange traffic patterns. GNNs may safeguard 

the network from assaults and preserve its general operation by 

adapting the dominating set to bypass or isolate suspect nodes. 

The proactive strategy towards security, together with the 

robust adaptability of GNNs in managing network dynamics, 

leads to a more resilient IoT network that can survive various 

problems. 

V. CONCLUSION 

The exponential expansion of the IoT has introduced fresh 

prospects for automation, surveillance, and communication in 

several fields. Nevertheless, the energy efficiency of these 

networks continues to be a significant obstacle because of the 

constrained power resources of IoT devices. This research has 

examined the combination of GNNs with dominant set 

algorithms as a new method to improve the energy efficiency 

and operational longevity of IoT networks. We have examined 

conventional dominating set algorithms, emphasizing their use 

in minimizing communication overhead and preserving energy 

in IoT networks. Nevertheless, these approaches encounter 

substantial obstacles, such as their fixed characteristics, 

problems with expanding to larger scales, insufficient capacity 

to adjust in real-time, and inadequate consideration of energy 

fluctuations among nodes. To overcome these restrictions, 

incorporating GNNs presents a favorable option, as it brings 

about dynamic adaptability, scalability, energy-conscious node 

selection, and enhanced node representation, all of which are 

crucial aspects of IoT network management. 

The GNN-based advances outlined in this research, 

including dynamic network adaptability, real-time decision-

making, and security upgrades, signify significant progress 

compared to conventional methods. These improvements 

enable IoT networks to be more robust, streamlined, and 

capable of managing the intricacies of contemporary IoT 

settings. Nevertheless, there are still obstacles to overcome, 

such as the need for GNN models that can be easily expanded 

and operate well, the implementation of strong security and 
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privacy measures, and the meticulous handling of trade-offs 

between energy efficiency and other factors. To fully harness 

the capabilities of GNN-based dominant set algorithms in IoT 

networks, it is essential to prioritize ongoing research and 

development in this field. To construct more intelligent and 

adaptable IoT networks that match the expectations of future 

applications, we may solve difficulties and explore new 

avenues, such as integrating GNNs with other optimization 

methods. The combination of GNNs and dominant set 

algorithms provides a robust foundation for developing IoT 

networks that are both sustainable and energy-efficient, 

enabling them to operate well in dynamic and resource-limited 

contexts. 
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