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Abstract—Drivable area or free space detection is an essential 

part of the perception system of an autonomous vehicle. It helps 

intelligent vehicles understand road conditions and determine 

safe driving areas. Most of the driving area detection algorithms 

are based on semantic segmentation that classifies each pixel into 

its category, and recent advances in convolutional neural 

networks (CNNs) have significantly facilitated semantic 

segmentation in driving scenarios. Though promising results 

have been obtained, the existing CNN-based drivable area 

detection methods usually process one local neighborhood at a 

time. The locality of convolutional operation fails to capture 

long-range dependencies. To solve this problem, we propose an 

improved Swin Transformer based on shift window, named 

Multi-Swin. First, an improved patch merging strategy is 

proposed to enhance feature interactions between adjacent 

patches. Second, a decoder with upsampling layer is designed to 

restore the resolution of the feature map. Last, a multi-scale 

fusion module is utilized to improve the representation ability of 

global semantic and geometric information. Our method is 

evaluated and tested on the publicly available Cityscapes dataset. 

The experimental results show that our method achieves 91.92% 

IoU in road segmentation detection, surpassing state-of-the-art 

methods. 

Keywords—CNNS; driving area detection; multiscale fusion; 

semantic segmentation; Swin Transformer 

I. INTRODUCTION 

With the rapid development of computer technology, 
autonomous driving has entered into real life. Driving area 
detection aims to accurately determine the current accessible 
area of vehicles in complex road environments using relevant 
technologies, which is a critical research area within the field 
of autonomous driving. Given the crucial role of the drivable 
area detection algorithm in ensuring the safety and efficiency 
of vehicle driving on the road, there is an urgent need to 
improve the accuracy of road detection. 

The existing driving area detection methods can be divided 
into traditional methods and learning-based methods. 
Traditional methods use the pavement features of 2D images 
to segment roads. For example, Shi et al. [1] use the road color 
characteristics and vanishing points to detect the road 
boundary. Some researchers use edge detection operators to 
extract the edge boundary of the road and segment the road 
surface [2], [3]. Though traditional methods can detect driving 
areas in real time, they are not suitable for complex situations 
where the road surface features are not obvious. 

Learning-based methods typically rely on semantic 
segmentation to achieve their goals. Semantic segmentation is 
a pixel-level technology that acts on each pixel of an image to 
predict its category. This prediction preserves the edge and 
semantic information of the original image, which is 
beneficial for enabling autonomous vehicles to understand the 
scene. As an exemplary approach, ERFNet [4] has 
demonstrated remarkable performance in road segmentation 
by incorporating residual layers and decomposition 
convolutions. Additionally, SNE-RoadSeg [5], data fusion 
CNN architecture, leverages RGB images and inferred surface 
normal information to accurately detect driving areas. Despite 
the success of existing learning-based techniques, the 
convolutional feature extraction is often criticized for its 
inability to capture long-range dependencies, which can 
impede the semantic segmentation performance. 

Compared to convolution-based feature extraction 
methods, Transformer [6] can learn the relationship between 
global pixels, rather than just their local neighborhood. 
Additionally, the number of operations required to calculate 
the correlation between two positions is independent of the 
distance. For instance, the Swin Transformer [7] has achieved 
impressive results in image classification, object detection, 
and semantic segmentation thanks to its window attention and 
layered design. However, Transformer has not yet been 
applied to driving area detection. It should also be noted that 
the current fusion strategy reduces the information interaction 
between adjacent patches during the down sampling process. 

This paper aims to address the limitation of convolution in 
capturing long-range dependency information. To achieve 
this, a pure attention model is proposed to replace the 
convolution operation with a gradually decreasing spatial 
resolution. To be specific, the input image is first divided into 
patches of the same size and the corresponding position 
encoding for each pixel is generated using a linear embedding 
layer. An encoder composed entirely of Swin Transformer is 
used to process the patches and a new patch fusion strategy is 
proposed to improve the information interaction between 
adjacent patches in the same window. A multi-scale fusion 
module is then employed to enhance the expression ability of 
the global semantic and geometric information of the feature 
map obtained from the encoder. Finally, a decoder with an 
up-sampling operation is designed to restore the resolution of 
the feature map and complete pixel-level segmentation 
prediction. The road segmentation experiment is conducted on 
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publicly available Cityscape dataset [8], and the experimental 
results prove the effectiveness of the proposed method. 

II. RELATED WORKS 

A. Semantic Segmentation 

Convolution neural network (CNN) [9] is a kind of 
feedforward neural network with convolution computation and 
depth structure, which was originally designed for image 
classification tasks. In 2015, Long et al. [10] first applied 
convolution operations to semantic segmentation tasks in 
FCN. They use 1x1 convolution to replace the full connection 
layer in the convolutional network. And the feature map is 
upsampled to achieve end-to-end network segmentation. 
U-Net [11] adopts a fully symmetrical encoder-decoder 
structure on the basis of FCN, and deepens the decoder by 
stacking convolutional layers. It effectively improves the 
performance with only a small amount of training data. 
SegNet [12] transfers the maximum pooling index to the 
decoder, which improves the segmentation resolution and 
shows better performance than FCN. Furthermore, the 
emergence of the residual layer [13] can avoid the degradation 
of the deep network and achieve very high accuracy with 
network that stack a large number of layers [14]. DANet [15] 
uses the Xception network as the backbone, and adds a full 
connection module based on the attention mechanism at the 
end to retain the more receptive field. SENet [16] 
automatically obtains the importance of each channel by 
explicitly modeling the interdependence between feature 
channels and divides the attention mechanism into two very 
key operations, Squeeze and Excitation. While decreasing the 
number of parameters and computational requirements, the 
accuracy of the algorithm is improved. 

B. Multi-Scale Fusion 

Recently, several approaches have been presented to tackle 
the limited receptive field problem in FCNs and their 
variations. DeepLab [17] applies atrous spatial pyramid 
pooling (ASPP) in the spatial dimension and leverages 
conditional random fields (CRFs) to refine the output results. 
FPN [18] asserts that small targets require the use of 
larger-scale feature maps due to inadequate resolution 
information provided by smaller ones, but downsampling 
losses in deeper images lead to excessive information loss, 
potentially disregarding small target details. Zhao et al. [19] 
propose utilizing dilated convolutions to augment the ResNet 
architecture. Their PPM module facilitates multi-scale feature 
fusion by acquiring diverse background information across 
regions. DeepLabV3+ [20] builds on an enhanced Xception 
[21] backbone and incorporates the decoder module from 
DeepLabV3 [22], further integrating low-level and high-level 
features to improve segmentation boundary accuracy. Qin et 
al. [23] introduce an autofocus convolutional layer, an 
attentive variant of ASPP, to enhance multi-scale feature 
extraction capabilities. This layer dynamically learns the 
weights of different branches via an attention mechanism, 
adapting the receptive field size for effective multi-scale 
feature extraction. Gu et al. [24] utilize dual parallel encoders 
to extract information at varied scales, subsequently merging 
them using a decoder. With a UNet backbone, each encoder 

processes images of dissimilar resolutions to acquire feature 
maps at differing scales. 

C. Vision Transformer 

ViT [25] uses Transformer for vision tasks for the first 
time. The 2D image is divided into patches of the same size 
and expanded into 1D sequences by pixels. The position 
coding of each pixel is obtained through the linear embedding 
layer and then input into the encoder. It shows the great 
potential of Transformer in the field of vision. However, ViT 
must first be pretrained on a large-scale dataset. Different 
from ViT, DEiT [26] uses an appropriate training method and 
distillation technique to solve this problem. DEiT can learn 
inductive biases based on CNN thanks to the distillation 
principle, which enhances its capacity to interpret image-type 
data. SETR [27] achieves excellent semantic segmentation 
performance with three optional decoding algorithms and a 
Transformers-based encoder. 

The global attention used in Transformer requires a lot of 
computing resources. Swin Transformer adopts sliding 
window and layered architecture to solve this problem. The 
sliding window restricts the attention calculation to one 
window, introduces the locality of CNN convolution operation 
and reduces the amount of calculation. It achieves the 
impressive results on multiple tasks in the visual field. 
SegFormer [28] combines Transformer encoder and MLP 
decoder. The position encoding will result in performance 
degradation because the testing and training resolution are 
different. To address this issue, SegFormer utilizes a 3x3 
deepwise convolutional layer to transmit positional 
information. The proposed MLP decoder is utilized to 
combine local and global attention by aggregating the 
multi-scale features of the encoder output. 

D. Driving Area Detection 

The existing driving area detection methods can be divided 
into traditional methods and deep learning-based methods. 
The information about the pavement features in the 2D image 
is extracted and segmented by the conventional driving area 
detection technique. For example, Shi et al. [1] identified road 
borders using vanishing points and road color attributes. Gao 
et al. [29] proposed a real-time vision technique based on the 
color cue training model of continuous frames to identify the 
driving area in the presence of shadows, lane markers, or 
unstable lighting. Yao et al. [30] identify drivable area with 
Support Vector Machine (SVM) and achieve 82.51% F1-score 
on KITTI dataset [31]. Deep learning driving area detection 
makes use of semantic segmentation as a key tool. A multitask 
CNN network was introduced by Pizzati et al. [32] to 
determine the available space in each lane. The network can 
operate in real-time thanks to ROS-based calculation. Qiao et 
al. [33] built the architecture using the characteristic pyramid 
network and the spatial pyramid pool module based on the 
ResNet network. It was able to achieve 84.58% IoU on the 
BDD100K datasets. Choi et al. [34] proposes a network using 
accumulated decoder features, called ADFNet, which operates 
using only decoder information, with no skip connections 
between encoder and decoder. Han et al. [35] proposed a new 
partitioned network, EdgeNet. It includes a class aware edge 
loss module and a channel attention mechanism. More than 
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70% of IoU was obtained on the Cityscapes dataset. In order 
to overcome the issues of limited anti-noise ability and 
inadequate segmentation of small-scale objects, Dong et al. 
[36] proposed an approach using a generative adversarial 
network (GAN [37]) in conjunction with an ERFNet model. 

While these approaches have yielded good experimental 
results in the drivable area detection domain, they do not 
address the problem of poor long-range information reliance 
due to convolutional kernel restrictions. 

III. METHOD 

A. Architecture Review 

The architecture of the driving area algorithm of the 
improved Swin Transformer proposed in this paper is shown 
in Fig. 1, which is composed of an encoder, a decoder, and a 
multi-scale fusion module. The network processing flow is as 

follows：First, the RGB input images are separated into 

identically sized, non-overlapping patches. Second, linear 
embedding layer generates patch embedding. Then, the 
encoder takes these embeddings as input to generate feature 
maps. Next, a multi-scale fusion module is introduced 
between the encoder and decoder to improve the 
representation ability of the feature map. After that, the 
decoder restores the original image resolution. Finally, 
pixel-level segmentation prediction is produced via a 1x1 
convolutional Layer. Below, we'll go into more depth about 
each module. 

 
Fig. 1. Network structure. 

B. Preprocessing 

The input of multi-head self-attention (MSA) is 1D 
sequence, but there is a mismatch between 2D image and 1D 
sequence. The input image needs to be sequentialzed. 
Expanding the image pixel values into a 1D sequence is a 
direct way. However, the computing complexity increase 
sharply if the input is a high-resolution image. To solve this 
problem, we divide the input images into size 4X4, 
non-overlapping patches, which is similar to prior works [7], 
[21]. By further mapping each vectorized patch into a C 
dimensional embedding space with a linear embedding layer, 
we obtain a 1D sequence of patch embeddings for an input 
image. 

C. Encoder 

As shown in Fig. 2, the encoder consists of Swin 
Transformer blocks and patch merging layers. The supplied 
image is split into 4X4 patches. The Swin Transformer blocks 
perform feature representation learning on the input images, 
and generate a feature map. The patch merging layers down 
sample the received feature map to expand the receptive field. 
The layer processing of our proposed encoder is shown in 
Table I. 

 
Fig. 2. Detailed display of encoder. 

TABLE I.  LAYER DISPOSAL OF OUR PROPOSED ENCODER 

Layer Type Out-F Out-Res 

1 Patch Partition 48 
4

x
4

H W  

2 Linear Embedding C 
4

x
4

H W  

3-4 Swin Transformer Block C 
4

x
4

H W  

5 New Patch Merging 2C 
8

x
8

H W  

6-7 Swin Transformer Block 2C 
8

x
8

H W  

8 New Patch Merging 4C 
16

x
16

H W  

9-10 Swin Transformer Block 4C 
16

x
16

H W  

11 New Patch Merging 8C 
32

x
32

H W  

12 Swin Transformer Block 8C 
32

x
32

H W  

1) Swin Transformer block: Fig. 3 illustrates the structure 

of Swin Transformer block. It is consisted of LayerNorm layer 

(LN), multi-head self-attention (MSA), residual connection, 

and MLP layer with nonlinear GELU. As indicated in Fig. 3, 

Swin Transformer block is computed as follows: 


( 1) ( 1)ˆ ( ( ))l l ly W MSA LN y y     

 ˆ ˆ( ( ))l ly MLP LN y y     
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
( 1)ˆ ( ( ))l l ly SW MSA LN y y      


( 1) ( 1) ( 1)ˆ ˆ( ( ))l l ly MLP LN y y      

 
Fig. 3. Illustration of Swin Transformer block inside encoder and decoder. 

where, ŷ is the output after (S) W-MSA, and y is the 
output after MLP. Instead of global attention, the window 
attention mechanism is used to reduce computational 
complexity. Compared to the quadratic complexity of global 
attention, the computational complexity of the small window 
grows linearly. The window-based multi-head self-attention 
(W-MSA) and shift window-based (SW-MSA) are utilized to 
improve cross-window connection. Self-attention formula is 
as follows: 

( , , ) ( )
TQK

Attention Q K V SoftMax B V
d

    

where, Q, K, and V represent query, key, and value matrix, 
d represents dimension, and B represents offset. Attention is 
shown in Fig. 4. 

 
Fig. 4. (a) Self-Attention. (b) Multi-Head self-attention. 

2) New patch merging: The patch merging process is 

shown in Fig. 5. This module aims to down sample the feature 

map received from the Swin Transformer blocks. It reduces 

calculation, and realizes hierarchical design. After the merging 

layer, the resolution of feature map becomes half of the 

original. First, the pixel values are taken at intervals in the row 

and column directions of the feature map to form four new 

tensors. As indicated in Fig. 5, two adjacent pixels on the new 

feature map are not adjacent in the original feature map, which 

reduces information interaction during fusion. To improve the 

interaction between adjacent pixel points, we add a pooling 

layer in the fusion stage. A new tensor with a channel 

dimension of 5C is created by concatenating the output of the 

pooling layer and the feature maps generated from the down 

sampling. The resolution of the feature map is finally changed 

using the fully connected layer. The problem of lack of 

information interaction caused by capturing pixels at intervals 

is relieved since the feature map produced by the pooling layer 

has the global features of the input. 

 
Fig. 5. The process of patch merging. 

D. Multi-scale Fusion 

The objects in the image are range in size, and each object 
has a unique set of features. Shallow features can be used to 
differentiate simple objects, while deep features can be used to 
separate complex targets. Combining data from various levels 
is better suited for complicated tasks since the shallow 
network prioritizes details while the high-level network 
prioritizes semantic information. In order to improve the 
capacity to convey global semantic and geometric 
information, we design a multi-scale fusion module. It 
combines the output of each group of Swin Transformer 
Blocks between the encoder and decoder. The multi-scale 
fusion module is shown in Fig. 6. Given four feature maps 
produced by Swin Transformer blocks at different stages, the 
down sampling operation is first performed on the three 
feature maps with high-resolution. Secondly, 1x1 conv layer is 
used to map the feature maps of different dimensions to the 
same dimension. Finally, four groups of feature maps are 
concatenated to form a new feature map. The obtained feature 
map has stronger representation ability because it fuses feature 
information from different levels. 

 
Fig. 6. Details of multi-scale fusion. 
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E. Decoder 

Similar to the encoder, the decoder is composed of Swin 
Transformer blocks and patch extension layers. Fig. 7 depicts 
details of the decoder. Among them, the Swin Transformer 
block is consistent with the encoder, and the patch expansion 
layer upsamples the feature maps. It has been suggested by 
SETR that restoring the resolution to its original size in 
one-step might be interfered by noise. Instead of one-step 
upscaling, we consider a progressive upsampling technique. 
Each time a patch expansion layer is applied, the input feature 
map is increased to 4x resolution. Then feature map resolution 
is restore to its original size using a 2X upsampling layer at 
the end of the decoder. To output pixel-level segmentation 
prediction, a 1x1 convolutional layer is employed. Table II 
shows the layer processing of our proposed decoder. 

 

Fig. 7. Detailed display of decoder. 

TABLE II.  LAYER DISPOSAL OF OUR PROPOSED DECODER 

Layer Type Out-F Out-Res 

1-2 Swin Transformer Block 4C 
32

x
32

H W  

3 Patch Enlarge 4C 
8

x
8

H W  

4-5 Swin Transformer Block 2C 
8

x
8

H W  

6 Patch Enlarge 2C 
2

x
2

H W  

7-8 Swin Transformer Block C 
2

x
2

H W  

9 Up-sample C  x WH  

IV. EXPERIMENT 

A. Dataset and Experimental Setup 

The dataset chosen for this study is Cityscapes. The 
primary goal of Cityscapes dataset is to provide an image 
segmentation dataset in an unmanned driving environment, so 
that researchers can evaluate the performance of algorithms to 
understand the semantic information of the urban 
environment. Cityscapes provides 5000 fine annotation 
images and 20,000 rough annotation images, with a total of 33 
categories of annotation items, including 50 street scenes of 
different cities in various scenarios, backgrounds, and seasons. 
There are 19 commonly employed categories. Drivable area 
detection aims to identify the driving area on the road, so we 
only use the datasets that contain annotations about the road. 
As a result, there are only two categories in this experiment: 
drivable area and background. Fig. 8 displays cityscape 
datasets. There are fine-labeled and coarse-labeled images in 
the Cityscapes dataset. Although the segmentation accuracy of 
coarse labeled images is not as good as that of fine labeled 
images, they still contribute to model training. Therefore, we 
train the ADE20K pretrained model released by Swin 
Transformer on roughly labeled Cityscapes images. And use it 
as a pre-trained model to train fine-label dataset. 

Python 3.8 and Pytorch 1.12.1 are used to implement the 
model. The window size based on shift window attention is set 
to be 7, the patch size is set to 4, and the input image size is 
set to 512x512. We trained our model on a NVIDIA 
RTX2080Ti GPU. Our backpropagation model is optimized 
using the AdamW optimizer with a momentum of 0.9 during 
training. The batch size is 8 and the learning rate is 1e-4. 

 

Fig. 8. Cityscapes datasets. 

B. Evaluation Metrics 

The commonly used Intersection over Union (IoU) [38] 
index, pixel level accuracy, and precision are used to evaluate 
the experimental results. We use the pixel level for the three 
test indicators. IoU is the ratio of the intersection sum of the 
predicted result and the true value: 

 IoU
TP

TP FP FN


 

    

Pixel level accuracy is the ratio of correctly classified 
pixels to the total number of pixels in the image: 

 TP TN
Accuracy

TP FP TN FN




  
   

The precision rate is the probability that all predicted 
positives are actually positives: 

 Pr
TP

ecision
TP FP




    

where, TP, TN, FP and FN represent the pixel level true 
positive, true negative, false positive and false negative 
indicators,respectively. Positive refers to the labeled part 
(driving area), while negative refers to the part of the 
non-object label (which can be directly understood as the 
background). 

C. Performance Evaluation 

In this section, we qualitatively compare our proposed 
model with state-of-the-art semantic segmentation models. 
Each model was trained for about 200 epochs until 
convergence of the loss function. Evaluation was performed 
on the Cityscapes test set, consisting of 1525 images, at a 
resolution of 512x512. Experimental results for the Cityscapes 
dataset are shown in Table III. Our method demonstrates 
superior performance in category IoU when compared to 
HRNet [39] and U-Net, and excels in pixel-level accuracy and 
precision over other models. Specifically, it outperforms 
HRNet by 0.2%, 0.9%, and 0.63% in these metrics, and has a 
0.15%, 0.88%, and 0.44% advantage over U-Net. Despite 
having a minor disadvantage in the IoU metric against 
DeepLabV3+, our method ranks first in the other two metrics 
with respective leads of 0.26% and 0.16%. These results 
support our claim that our method improves classification 
accuracy. 
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The semantic segmentation outcomes on the Cityscapes 
dataset are depicted in Fig. 9, where (a) is Original driving 
scene images, (b) is Ground truth annotations, (c) is  Road 
segmentation results of our model. (d) Road segmentation 
results of DeepLabV3+, (e) is Road segmentation results of 
HRNet and (f) is Road segmentation results of UNet. The 
segmentation results reveal that our approach can accurately 
demarcate the road and surrounding objects within the driving 
region. In contrast to other techniques, our method provides 
better predictions for the edges of the drivable area and 
background. This superiority can be attributed to the fact that 
the attention mechanism captures long-range semantic 
information, achieving better performance than convolutional 
networks in edge detection. Hence, our method excels in 
learning edge pixels, resulting in higher pixel prediction 
accuracy and overall performance than other networks. 

 
Fig. 9. Examples of road segmentation results on cityscapes dataset. 

TABLE III.  EVALUATION RESULTS ON THE CITYSCAPES TEST SET FOR 

ROAD SEGMENTATION 

Models IoU (%) PA (%) Precision (%) 

Multi-Swin 91.92 96.79 96.19 

HRNet 91.72 95.89 95.56 

DeepLabV3+ 92.25 96.53 96.03 

U-Net 91.77 95.91 95.75 

D. Ablation Study 

In this section, we conduct ablation experiments on our 
proposed driving area detection algorithm to verify the 
effectiveness of different modules. From the perspective of 
patch fusion strategy, multi-scale fusion module and decoder, 
we conduct comparative experiments. 

1) New patch merging: To substantiate the efficacy of the 

suggested patch fusion strategy, we replaced the patch 

merging layers with those from the original Swin 

Transformer, leaving the remaining networkarchitecture 

unmodified. The experimental outcomes are outlined in Table 

IV. From the data presented in Table IV, one can observe that 

our method surpasses the original Swin Transformer patch 

merging technique in all three examined metrics, resulting in 

improvements of 0.31%, 0.12%, and0.27%, respectively. This 

modification mitigates the insufficiency of information 

interaction during the fusion procedure to some degree, 

ultimately improving road segmentation accuracy. 

TABLE IV.  EXPERIMENTAL RESULTS OF FUSION STRATEGY 

Models IoU (%) PA (%) Precision (%) 

Multi-Swin 91.92 96.79 96.19 

Swin 91.61 96.67 95.92 

2) Multi-scale fusion module: Our multi-scale fusion 

module's effectiveness is proven throughseveral experiments, 

including: a) substituting the proposed module with alternative 

multi-scale fusion techniques like ASPP and PPM, and b) 

removing the fusion module entirely. ASPP relies on multiple 

parallel dilated convolutional layers operating at varying 

dilation rates to extract features at different scales, which are 

then processed independently and merged into the final result. 

By constructing convolutional kernels with varying receptive 

fields through different dilation rates, ASPP captures object 

information across scales. On the other hand, PPM is designed 

to gather background information from multiple regions, 

addressing the lack of effective strategies to exploit global 

context in feature fusion. The experimental results are 

displayed in Table V. As illustrated in the table, our method 

yields the most favorable outcomes across all three metrics. 

Relative to ASPP, our fusion module shows significant 

improvement across all three metrics with gains of 0.51%, 

1.28%, and 0.86%, respectively. When comparing against 

PPM, our fusion module exhibits performance advantages of 

0.87%, 1.53%, and 1.21% for the same three metrics. 

Therefore, our proposed multi-scale fusion module aligns 

better with our network's design and enhances the accuracy of 

drive area detection. 

TABLE V.  EXPERIMENTAL RESULTS OF MULTI-SCALE FUSION MODULE 

Models IoU (%) PA (%) Precision (%) 

Multi-Swin 91.92 96.79 96.19 

Detachment 90.85 94.89 94.63 

ASPP 91.41 95.51 95.33 

PPM 91.05 95.26 94.98 

3) Network structure: Swin Transformer Blocks serve as 

the primary components of both the encoder and decoder. To 

assess the effectiveness of our decoder, we substituted it with 

a Multi-Layer Perceptron (MLP), which includes an input 

layer, output layer, and several hidden layers. The MLP 

decoder utilizes GELU as a nonlinear activation function and 

restores the resolution of the input feature map to its initial 

dimensions. Results presented in Table VI reveal that our 

method outperforms MLP decoders across all three tested 

metrics, yielding boosts of 1.89%, 1.46%, and 2.05% for IoU, 

PA, and Precision, respectively. This validates the efficacy of 

our proposed decoder. 
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TABLE VII.  EXPERIMENTAL RESULTS OF DECODER STRUCTURE 

Models IoU (%) PA (%) Precision (%) 

Multi-Swin 91.92 96.79 96.19 

MLP 90.03 95.33 94.14 

E. Discussion 

This paper presents the outcomes of four distinct 
experiments: a comparison test using cutting-edge techniques, 
as well as three separate sets of experiments employing the 
suggested drivable region recognition algorithm for purposes 
of elimination. These experiments show that our proposed 
algorithm achieves exceptional results in the realm of 
detecting drivable areas, with measurements such as Precision 
and PA reaching high levels of 96.19% and 96.79%, 
respectively, placing them at the forefront of comparable 
efforts. Additionally, the value of IoU was determined to be 
91.92%. The experiments carried out for the purpose of 
eliminating variables confirmed the effectiveness of the 
various components put forth in this paper. Specifically, the 
novel patch fusion strategy served to enhance the interplay 
between neighboring points of interest, the multi-scale fusion 
module successfully combined more contextually relevant 
semantic information, thus increasing the expressiveness of 
feature maps, and lastly, the decoder employed in this work 
effectively restored the resolution of the feature map layer by 
layer, thereby mitigating any potential interference caused by 
noise and better suiting the overall architecture of the network 
described in this paper. Ultimately, these findings suggest that 
the methodology introduced in this study improves upon the 
accuracy of detecting drivable regions and could play a 
valuable role in furthering the application of deep learning 
within the domain of autonomous driving. 

V. CONCLUSION 

In this paper, an enhanced Swin Transformer based 
semantic segmentation algorithm is proposed. The proposed 
method is based on encoder-decoder framework. Different 
from other semantic segmentation networks, we use Swin 
Transformer as the main body of encoder and decoder. It is 
applied to the field of drivable area detection for the first time. 
Meanwhile, the patch merging strategy is improved to 
enhance the feature interaction between adjacent patches. We 
design a decoder with an upsampling layer to recover the 
resolution of the feature maps. Finally, a multi-scale fusion 
module between the encoder and decoder is used to optimize 
the expressiveness. We use the publicly accessible Cityscapes 
dataset for training and testing, and compare our algorithm 
with state-of-the-art semantic segmentation networks to 
demonstrate the feasibility and usability of the proposed 
method. Experimental results indicate that the enhanced Swin 
Transformer-based method outperforms other well-known 
algorithms in terms of IoU metrics, achieving higher levels of 
pixel level accuracy and precision. 

Even while the Multi-Swin method has produced 
ground-breaking results in terms of the accuracy of drivable 
area recognition, it still has several issues that need to be 
fixed. In particular, compared to conventional convolutional 
networks, the use of attention mechanisms places a greater 
demand on processing power when handling high-resolution 

pictures. Consequently, future research priorities will be on 
efficiently lowering the computational complexity and 
resource usage of the method without compromising or 
improving detection accuracy. Moreover, this paper's 
suggested modifications mostly focus on improving the 
accuracy of the model's predictions, leaving unexplored the 
possibility of improving the model's real-time responsiveness. 
The only static images in the training dataset at this time are 
two-dimensional ones, which is different from the dynamic 
visual information found in real-world application situations. 
Thus, future research must immediately focus on improving 
the algorithm's real-time performance optimization. 
Concurrently, in order to make sure that the model can better 
respond to the real-time decision-making requirements in 
real-world autonomous driving scenarios, video sequences or 
continuous dynamic picture data must be added for training. 
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