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Abstract—In light of the explosive growth of drones, it is more 

critical than ever to strengthen and secure aerial security and 

privacy. Drones are used maliciously by exploiting some gaps in 

artificial intelligence and cybersecurity. Airborne target 

detection and tracking tasks have gained paramount importance 

in various domains, encompassing surveillance, security, and 

traffic management. As airspace security systems aiming to 

regulate drone activities, anti-drones leverage mostly artificial 

intelligence and computer vision advances in the used detection 

and tracking models to perform effectively and accurately 

airborne target detection, identification, and tracking. The 

reliability of the anti-drone systems relies mostly on the ability of 

the incorporated models to satisfy an optimal compromise 

between speed and performance in terms of inference speed and 

used detection evaluation metrics since the system should 

recognize the targets effectively and rapidly to take appropriate 

actions regarding the target. This research article explores the 

efficacy of DeepSort algorithm coupled with YOLOv7 model in 

detecting and tracking five distinct airborne targets namely, 

drones, birds, airplanes, daytime frames, and buildings across 

diverse contexts. The used DeepSort and Yolov7 models aim to 

be used in anti-drone systems to detect and track the most 

encountered airborne targets to reinforce airspace safety and 

security. The study conducts a comparative analysis of tracking 

performance under different scenarios to evaluate the 

algorithm's versatility, robustness, and accuracy. The 

experimental results show the effectiveness of the proposed 

approach. 

Keywords—Real-time detection; target tracking; anti-drone; 

Artificial Intelligence; Computer Vision 

I. INTRODUCTION 

The importance of addressing aerial privacy and security 
issues associated with drones is growing steadily, emphasizing 
the critical importance and need for reliable target detection 
and tracking models for effective airspace security systems, 
such as anti-drone systems. 

The deployment of an anti-drone system, which is known 
also as a counter-drone system depends mostly on the 
performance of the detection and tracking modules to detect 
and identify the most encountered airborne targets to avoid 
triggering false alarms [1], [2]. It is important to note that the 
detection and identification tasks are very crucial for the 
success of the anti-drone process and mainly to avoid 
neutralizing friendly airborne targets such as birds. Thus, the 
anti-drone system should recognize the target properly without 

confusion that could cause weighty damage during the 
interception phase [3]. Airborne target detection and tracking is 
crucial in numerous applications, including defense, civilian 
security, and urban planning. An anti-drone system's 
effectiveness depends significantly on the detection of the 
encountered airborne targets [3], [4], [5].  It is important that an 
anti-drone recognizes and distinguishes between the main types 
of airborne targets. They share the same airspace and altitudes; 
mostly the low altitude airspace up to 32 000ft as an upper 
limit. Due to their similarity, recognizing flying targets at this 
altitude becomes a real challenge, which increases the 
probability of false detection. To reinforce and improve the 
anti-drone process, there is a need to develop suitable detection 
and tracking models able to meet the requirements and the 
existing needs.  There are several challenges related mainly to 
the complexity of recognizing effectively and rapidly drones 
and other airborne targets present in the sky sharing many 
characteristics with drones that mislead the system. Further, the 
research tasks related to tracking multiple airborne targets have 
not been thoroughly studied in the existing literature. 

In this study, we aim to develop an advanced detection and 
tracking model that can identify and track the most common 
targets in the sky. Computational experiments are conducted 
through the training, validation, and testing of a model on real-
world data. This model is practical based on computational 
results. Therefore, integrating DeepSort with YOLOv7 is 
promising due to its real-time object detection capabilities and 
tracking precision. In addition, using DeepSort for tracking 
coupled with YOLOv7 for detection offers a significant 
approach compared to individual applications of these models. 
This research article aims to contribute to advancing airborne 
target tracking technology, evaluating the DeepSort with 
YOLOv7 algorithm's effectiveness in tracking diverse targets 
under varying scenarios. In the following, Section II provides a 
summary of the research studies on airborne target detection 
and tracking, whereas the solving methodology and 
experimental setup are presented in Section III. The 
experimental details and results are highlighted in Section IV. 
We conclude by discussing the advantages and limitations of 
the proposed model in Section V. 

II. LITERATURE REVIEW 

This section delineates existing methods for airborne target 
tracking, emphasizing the advancements and limitations. It 
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covers various algorithms and their applications in tracking 
airborne targets. 

The rise of Artificial Intelligence (AI) has improved many 
conventional applications, systems and tasks in several 
domains such as, autonomous cars, smart cities, smartphones, 
smart truck distribution [6] and pandemic detection [7]. 

Recently, the field of airborne targets detection and 
tracking has witnessed significant advancements, driven by the 
outstanding rise of drones across various sectors. Several 
research studies have addressed the challenges and risks posed 
by the proliferation of drones, necessitating the development of 
robust anti-drone systems capable of accurate detection and 
tracking. 

In study [8], the authors present the small drone tracking 
results using the radar-based range estimation, as well as the 
receding horizon tracking model of unauthorized drones 
through the use of the receding horizon maximization 
technique and the fisher information matrix predictive model. 
Combining these two approaches yields the best localization 
results. The tracking approach proposed in study [9] uses a 
time difference of arrival estimation algorithm based on Gauss 
priori probability density functions with Kalman filters. The 
combination of these models achieved good results for drone 
tracking. Also, the paper  in [10] has proposed a tracking 
model which analyses the generated acoustic signatures of the 
drones using beamforming algorithm. The conducted 
experiments show that depending on the type of the drones, 
they can be tracked up to 250 meters. Further, a radar tracking 
and detection method based on phase-interferometry and joint 
range-Doppler-azimuth processing is presented in study [11]. 
All of the extracted features from the developed model are 
used to classify drones.  Another drone position tracking 
proposed in study [12] uses the received signal strength 
indication (RSSI) signals to estimate the distance and angle of 
the target to track the aerial target. It uses the estimated 
distance and angle to gradually track the target through the 
incorporation of CDQA and ADCA algorithms. The 
implementation of the proposed approach is not implemented 
on real environment. 

The combination of DeepSort and Yolo has been used in 
different detection and tracking applications. The authors in 
study [13] have used a combination of YOLOv3 and RetinaNet 
for generating detections in each frame along with DeepSort 
algorithm to track multiple objects from a drone-mounted 
camera. Comparing the results of the experiment with the 
existing state-of-the-art models, the detection and tracking 
combination shows competitive performances on VisDrone 
2018 dataset. Similarly, the paper [14] has proposed to use 
Yolov4 to detect and localize vehicles within the restricted 
zone along with DeepSort to track them to reinforce aerial 
surveillance. 

To the best of our knowledge, there has been no study that 
has utilized DeepSort in conjunction with YOLOv7 to detect 
and track multiple airborne targets specifically for deployments 
in anti-drone systems. 

However, the existing studies on airborne tracking have 
shown a limited exploration of the specific research aspect 

addressed in this study, specially tracking the most common 
airborne targets. The majority of existing research in this 
domain has predominantly concentrated on drone detection 
only, with comparatively less emphasis on the comprehensive 
investigation of the aspect central to our research. Motivated by 
these limitations and the need for a comprehensive tracking 
approach, this paper proposes a novel DeepSort algorithm 
integrated with the YOLOv7 detection model. By combining 
the real-time detection capabilities of YOLOv7 with the robust 
object association and tracking features of DeepSort, our 
proposed methodology aims to address the existing gaps and 
improve the state-of-the-art in airborne targets detection and 
tracking. 

III. SOLVING METHODOLOGY 

In this study, we propose the use of DeepSort algorithm 
with the YOLOv7 model for detecting and tracking the most 
encountered airborne targets. This methodology section 
outlines the dataset used, model training process, 
hyperparameters, and evaluation metrics. 

A. Data Collection 

Our developed detection and tracking models are trained on 
the most encountered airborne targets in the sky which anti-
drone systems should recognize rapidly and effectively without 
causing false alarms. We have gathered a diverse dataset 
containing video and images with labeled bounding boxes 
around the targets of interest. The airborne targets in the 
dataset comprise drones, birds, airplanes, daytime frames, and 
buildings, which reflects the complexity of real-world 
detection and tracking scenarios. Indeed, we have trained our 
detection on five airborne target classes, namely drones, birds, 
airplanes, dayframes, and buildings. The images are collected 
mainly from [15], [16], [17] and annotated according to the 
Yolo format: object class, x,  y, width, and height in the 
corresponding annotation text files. Following, we have used 
videos from  [18]  to perform the tracking process. The 
provided videos highlight mostly drones in different contexts 
and under different conditions Furthermore, the used dataset 
ensures variability in lighting conditions, backgrounds, sizes, 
orientations, and occlusions to improve the used algorithm's 
performance and robustness. 

B. DeepSort Model 

Deep Simple Online and Real-time Tracking (DeepSort) is 
primarily a tracking model that works in conjunction with 
single-shot and two-shot object detection models, such as You 
Only Look Once (YOLO) to track targets and objects in real-
time across frames in a video sequence [19]. The DeepSort is 
used for multiple target tracking in videos. It combines two 
main components: a detection model (like YOLO, SSD, or 
Faster R-CNN) that identifies the targets in each frame from 
the video, and a tracking algorithm that maintains the identity 
of these objects across frames and follows closely the motion 
of the targets. Initially, the detection model identifies the class 
of the target and generates bounding boxes around these 
targets, providing also their corresponding positions and labels. 
Following, DeepSort extracts relevant features from the 
detected bounding boxes, which represent the visual 
characteristics and appearance of the targets. The numerical 
representation of these features is typically created by a neural 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

453 | P a g e  

www.ijacsa.thesai.org 

network that performs the detection and tracking. Furthermore, 
using these extracted features, DeepSort associates objects 
detected in different frames. The DeepSort algorithm 
associates detections across frames. Matching detections and 
maintaining consistent identities through the consecutive 
frames is achieved by minimizing costs, such as the Hungarian 
algorithm. Also, DeepSort uses a prediction mechanism to 
maintain track of occluded or temporarily undetected objects 
until they reappear. As a result, temporary occlusions are less 
likely to occur. For each target identified in the video, 
DeepSort produces a continuous set of tracks related to their 
motion. In addition, the generated tracks contain the unique 
identity of targets across frames, allowing comprehensive 
analysis of object movement. In this research study, using 
Yolov7 as input, The DeepSORT algorithm perform tracking 
of different airborne targets. In situations with dynamic aerial 
movement and occlusions, DeepSort's capacity to associate and 
track objects across frames by utilizing appearance features and 
motion information is essential for preserving identities. 

Therefore, in an anti-drone system, YOLOv7 operates as 
the initial detection module, processing input data to identify 
potential airborne targets. Detected objects, along with their 
bounding box coordinates and confidence scores, are then 
passed to DeepSort for tracking. DeepSort associates 
detections across frames, maintaining tracks for each identified 
target. The integrated system continuously analyzes the 
behavior of airborne targets, enabling real-time monitoring and 
threat assessment. 

C. Experimental Setup 

The experiments are conducted on a local machine using a 
NVIDIA Quadro P4000, an Intel(R) Xeon(R) W-2155@ 
3.30GHz with 32GB of main memory, and Windows® as the 
operating system. As well as that, we have used Pytorch 
version 1.13.1 along with Cuda 11.6 and Cudnn v8.8 for 
running the Yolo model. Furthermore, selecting appropriate 
hyperparameters is crucial for the training and tuning of the 
developed model. Our process of tuning hyperparameters 
entails carefully adjusting their corresponding values to find 
optimal rates. Table I shows the hyperparameters used during 
training. 

TABLE I.  THE HYPERPARAMETERS USED 

Hyperparameter Value Hyperparameter Value 

Epochs 150 Learning rate (lr) 0.01 

Batch size 16 Weight decay 0.005 

Image size 640×640 Momentum 0.937 

Warmup epochs 3 Scale 0.5 

Left and right flip 0.5 Translate 0.1 

D. Evaluation Metrics 

Evaluation metrics for our detection models include the 
following assessment metrics: Recall (R), Precision (P), Mean 
Average Precision (mAP), F1 score, and Frames Per Second 
(FPS). This allows a better evaluation of the developed models 
for multi-class detection since it utilizes verified and missed 
detection samples associated with the detection of each class 
target, such as False Positives (FP), False Negatives (FN), True 

Positives (TP) and True Negatives (TN). When it comes to P, 
the relevant detection results are considered, while recall is the 
total number of correct detections. Equations for determining 
these evaluation metrics are shown below: 

TP
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TP FN
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


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For each category, the mean Average Precision represents 
the overall area under the precision-recall curve. 
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where, N  is the number of target classes and nAP   is the 

mean mean average precision for each class. 
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where, I is the total number of images used in the inference 
phase. 

IV. RESULTS AND DISCUSSION 

Using the tracking algorithm DeepSort and our detection 
model Yolov7, we present the results of the experiments 
conducted in this section. A detailed analysis of the 
quantitative metrics follows, providing insights into the 
strengths of the proposed approach. 

A. Detection Performance 

As first step, the detection model is run to recognize and 
identify the airborne targets efficiently and accurately. We 
have compared several single-shot object detector algorithms 
[20] to select the suitable model that satisfies the speed 
performance compromise required for anti-drone deployment. 
The efficacy of our developed model has been demonstrated in 
Table II, which details a selection of the experimental results of 
the most used models, based on detection performance 
confidence scores and inference speed. Therefore, it is shown 
that Yolov7 model surpasses the other models based on the 
provided results of detection metrics and inference speed. Also, 
the Yolov7 model reaches high accuracy and fast speed, 
comprises between speed performances. In addition, we have 
completed the model analysis by comparing the detection 
performance with respect to the precision and recall of each 
class in Table III. Indeed, it is shown that the model effectively 
detects the targets reaching high rates of the used evaluation 
metrics. 

Fig. 1 shows the detection performance of the selected 
Yolov7 model as well as the generated loss and the behavior at 
each epoch during the training. The training and validation 
behaviors of the model are described in detail with respect to 
the aforementioned metrics; recall, precision, mAP@0.5 and 
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mAP@0.5–0.95, as well as objects, classes and boxes losses. 
The curves converge to a fixed threshold after training for 150 
epochs. Additionally, the model has demonstrated both optimal 
performance and high generalization ability without bias, 
variance, or overfitting or underfitting. Training and validation 
curves have similar behaviors with no gaps between them, and 
they converge at the same time (≈ 75 epochs). This model 
proves its effectiveness by continuously recording loss, 
precision, recall, and mAP metrics during training and 
validation processes. 

As shown in Fig. 2 to Fig. 5, we have generated the 
evolution of the R, P and F1 curves with respect to the 
confidence score to provide deeper insight into the model. As 
can be seen from the curves, birds, drones, and airplane targets 
have similar and close detection behaviors, except for the 
building and dayframe classes. The precision, recall, and F1 
curves show that the detection performances of all categories 
are above 90%. The precision-recall curve (see Fig. 3) shows 
that the model has a 96.8% mAP (area under the curve), which 
corresponds to a 96.8% precision-recall rate. Also, the 
precision-recall curve shows that the threshold performance 
metrics for bird is 0.997, drone 0.973, dayframe is 0.994, 
airplane 0.959 and building is 0.989. This percentage value 
also indicates whether the model is able to detect targets while 
guaranteeing a satisfactory recall and precision rate. As shown 
in F1-confidence curve (see Fig. 5), the confidence score is set 
at 0.467, which is important since starting from this point, the 
metrics are optimized and the performance balance is achieved. 
Additionally, the F1 curve shows the weighted harmonic of 
precision and recall, as well as the optimized confidence 
threshold of 0.467, which is highly required to perform an 
accurate, real-time detection. Other evaluation criteria such as 
confusion matrices, inference times, and real-time detection 
images have emphasized the model's performance. The 
confusion matrix of our model is shown in Fig. 6. There are 

five target classes with true positives located along the 
diagonal in dark blue. According to the true positive values, the 
proposed model is very effective and efficient at detecting and 
identifying the types of drones. To make the results more 
intuitive, we have integrated visualization about the detection 
performance of the model.  Fig. 7 shows the detection of the 
airborne targets using unseen random images that confirm the 
model's ability to detect the aforementioned target classes. 

TABLE II.  EXPERIMENTAL RESULTS OF DETECTION MODELS 

Model Precision Recall mAP@0.5 
mAP@0.5-

0.95 

Inference 

time (ms) 

Yolov5 0.916 0.902 0.923 0.701 65.3 

Yolov6 0.834 0.87 0.891 0.64 74 

Yolov8 0.897 0.868 0.921 0.709 46 

Yolov7-

d6 
0.957 0.928 0.966 0.712 38.5 

Yolov7-

w6 
0.957 0.942 0.968 0.711 29.5 

Yolov7 0.973 0.957 0.982 0.753 27.5 

TABLE III.  PERFORMANCE OF THE MODEL WITH RESPECT TO EACH 

TARGET CLASS 

Target Precision Recall mAP@0.5 mAP@0.5-0.95 

all 0.973 0.957 0.982 0.753 

Bird 0.997 0.997 0.997 0.85 

Drone 0.956 0.958 0.973 0.549 

Dayframe 0.995 0.966 0.994 0.79 

Airplane 0.931 0.959 0.959 0.776 

Building 0.989 0.912 0.989 0.798 

 

 

Fig. 1. Performance behavior of the improved model. 

mailto:mAP@0.5/
mailto:mAP@0.5/
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Fig. 2. Evolution of the performance of Yolov7 model with respect to 

Precision evolution curve over the target classes. 

 
Fig. 3. Evolution of the performance of the Yolov7 model with respect to 

Precision- Recall evolution curve over the target classes. 

 
Fig. 4. Evolution of the performance of Yolov7 model with respect to Recall 

evolution curve over the target classes. 

Furthermore, the developed model is capable of detecting 
the most encountered targets in real-time. The model has 
average inference of 27.5 ms, 1.1 ms for Non Max Supression 
(NMS) process and an ability to infer images in 0.002 seconds 

per image. Additionally, the FPS metric also determines the 
capacity of the model to process a set of images per second, 
which is dependent on the model's performance. Considering 
that the model is tested on 1179 images, it reaches a frame rate 
of 42, 8 FPS. This model represents the optimal performance 
speed compromise, as well as being qualitative and 
quantitative. Additionally, the model’s performance was 
evaluated using unseen images containing airborne targets that 
were barely visible to the human eye under complex 
conditions, mainly due to the altitudes and distances with 
respect to the observer. 

 
Fig. 5. Evolution of the performance of Yolov7 model with respect to F1 

evolution curve over the target classes. 

In view of the provided results, we confirm that our 
proposed model has the high inference time and the best 
precision, recall mAP@50 and mAP@50–95, thus 
outperforming the other models proposed in the literature. 

Additionally, we have used performance and speed  

Evaluation metrics that is suitable for our requirements and 
constraints to assess effectively the tested models during the 
development of our final Yolov7 model. 

B. DeepSort Tracking Results 

Using the selected model Yolov7, we have performed the 
tracking on different videos to assess the tracking ability. As 
part of the current study, Deepsort is used to track airborne 
targets for anti-drone deployment. It uses the patterns learned 
from the pre-trained Yolov7 detection model and later 
combines that with temporal information to predict associated 
targets' trajectories. The system keeps track of all objects by 
mapping their unique identifiers [21]. We have deployed the 
DeepSort on real-time videos that contain drones in different 
contexts, environments and times of the day to assess its ability 
to keep the target within the field of view. Fig. 8(a) and Fig. 
8(b) represents a selection the tracking deployed on real-time 
video sequences. It is shown that model efficiently identifies 
and tracks the airborne targets, mainly drones and dayframes 
presents in the videos. 
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Fig. 6. Confusion matrix. 

 
Fig. 7. Detection results of Yolov7 model. 
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(a) 

 

 

 
(b) 

Fig. 8. (a) Captures from the tracking on different video sequences, (b) 
Captures from the tracking on different video sequences. 

We demonstrate the efficacy of DeepSort in our 
experiments in tandem with the pre-trained YOLOv7 model for 
tracking the selected airborne targets. With robust tracking 
accuracy across diverse scenarios and ability to handle 
challenges such as target occlusions and rapid movements, the 
integrated system demonstrated the ability to perform 
effectively in challenging scenarios. 

In comparison with the state-of-of the-art papers [8], [9], 
[10], [11], [12] , the proposed tracking approach outperforms 
the other proposed models based on the ability of our model to 
detect and identify five airborne targets using a varied and 
diversified dataset and also the high tracking performance to 
track the detected targets while generating bounding box 
around it and drawing its motion line across the successive 
frames. Further, the proposed model is able to detect, identify 
and track multi-airborne targets at different views, capture 
angles and environment which enhance significantly the 
overall performance.  Therefore, the proposed DeepSort 
algorithm with Yolov7 provides the best compromise between 
the performance and speed and thus satisfying the anti-drone 
requirements and challenges. 

V. CONCLUSION AND PERSPECTIVES 

Detecting and tracking airborne targets represent important 
task for the effectiveness of an anti-drone process. Our paper 
presents a real-time model for identifying and tracking 
common airborne targets. Based on experimental results, the 
models have 42.8 FPS detection speed, 0.957 recall, 0.973 
precision, 0.732, 0.982 map@0.50–0.95 and 0.753 map@0.50–
0.95. In comparison with various benchmark instances recently 
published in the literature, the proposed model provides a high 
detection rate and fast inference times. Therefore, the 
combination of DeepSort algorithm and Yolov7 model 
provides high detection and tracking performance tested on 
real-time videos. The conducted experiments showed 
satisfactory results since the targets are detected and tracked 
rapidly and effectively across the successive frames of the 
videos. It suggests potential enhancements and future research 
directions to improve the algorithm's efficacy. In future work, 
we are going to collect a larger video dataset including also 
airplanes, and birds in the same sequences to improve further 
the tracking process. 
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