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Abstract—This paper investigates the intelligent delivery 

UAV path planning and control problem based on the Internet of 

Things and edge computing, and proposes a novel model and 

algorithm to realize the collaborative optimization of the path 

planning and control of the UAV, which improves the intelligence 

level and flight efficiency of the UAV. In this paper, the 

mathematical model of UAV path planning and control is firstly 

established, the relationship and influencing factors among the 

elements of UAV, edge server, delivery task, path planning and 

control are analyzed, and the optimization objectives and 

constraints are proposed. Then, this paper designs an algorithmic 

framework for UAV path planning and control, using the 

support and guidance of edge computing to achieve the 

cooperative optimization of path planning and control of UAVs, 

taking into account the constraints and objectives of the UAVs 

themselves, as well as the synergy and competition between 

UAVs. Then, this paper proposes specific algorithms for UAV 

path planning and control, adopting methods such as meta-

heuristics, to solve the optimization problem of UAV path 

planning and control, and improve the intelligent level and flight 

performance of UAVs. 
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I. INTRODUCTION 

With the development of IoT technology, more and more 
smart devices are connected to the Internet, forming a huge 
data source. This data is characterized by massive, diverse, 
real-time, dynamic, etc., which pose great challenges to 
traditional cloud computing platforms, such as high latency, 
low bandwidth, low reliability, and high energy consumption. 
To address these issues, edge computing, as an emerging 
computing paradigm, shifts computing resources from cloud 
centers to servers on the edge side of the network to provide 
computing support for connected end devices. Edge computing 
enables local processing and analysis of data, reduces data 
transmission and latency, and improves the quality of service 
and user experience while protecting data security and privacy 
[1]. 

The computing power and battery capacity of UAVs are 
very limited, which cannot meet the demands of complex data 
processing and long flight times. Therefore, combining edge 
computing and UAVs to build a mobile edge computing 
network based on UAVs is an effective solution. In this kind of 
network, UAVs can transmit data to the edge side for fast 
processing and analysis through the communication connection 

with edge servers, and at the same time obtain guidance and 
support from the edge side to improve the intelligence level 
and flight efficiency of UAVs. The generalized UAV path 
planning framework is shown in Fig. 1 [2], [3]. 

Path planning and control of UAVs is one of the core 
technologies of UAVs, which determines the flight trajectory 
and maneuvers of UAVs and directly affects the performance 
and safety of UAVs. In the UAV-based mobile edge 
computing network, the path planning and control of UAVs 
should not only consider the UAVs’ own constraints and 
objectives, such as flight time, energy consumption, load, and 
task completion, but also consider the influencing factors of 
edge computing, such as the location and number of edge 
servers, computational capacity, and communication link 
quality. In addition, when multiple UAVs perform delivery 
tasks in the same area at the same time, the synergy and 
competition between UAVs, such as path conflict, resource 
allocation, and task coordination, are also considered. 
Therefore, the study of intelligent delivery UAV path planning 
and control based on IoT and edge computing is a topic of 
great theoretical significance and practical value [4]. 

Current research has mainly focused on the enhancement of 
quality of service and user experience of IoT applications by 
edge computing, while less consideration has been given to the 
enhancement of intelligence and efficiency of IoT devices by 
edge computing. As a typical IoT device, the improvement of 
intelligence and efficiency of UAVs can not only enhance the 
function and performance of UAVs, but also reduce the 
operation cost and risk of UAVs [5]. Therefore, it is a 
meaningful work to study how to optimize the path planning 
and control of UAVs using edge computing. 

Under the cooperative operation environment, the edge 
computing-based intelligent delivery UAV system can better 
balance the load of each UAV and ensure the fairness of task 
allocation and the effectiveness of resource use by dynamically 
adjusting the path planning strategy. In addition, this approach 
can also achieve dynamic optimization of UAV paths, avoid 
flight conflicts, and adapt to changing environmental 
conditions and task priorities, thus significantly improving the 
operational efficiency and task completion quality of the entire 
UAV cluster. 

Against the background of the current rapid development of 
the Internet of Things (IoT) and drone technology, intelligent 
distribution drones have shown broad application prospects in 
the field of logistics and distribution due to their unique 
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advantages of high efficiency, convenience and flexibility. 
However, in the process of executing distribution tasks, UAVs 
are limited by their own limited computing power, short 
battery life and instability of wireless communication, 
especially in the face of large data volume, real-time response 
requirements of high scenarios, the traditional centralized cloud 
computing architecture is difficult to meet the needs of 
efficient and accurate path planning and control. In addition, 
when multiple UAVs work together, it is also necessary to take 
into account the fairness of task allocation, path conflict 
avoidance, and overall task completion efficiency and many 
other issues [6], [7]. Therefore, this paper proposes a research 
method for intelligent distribution UAV path planning and 
control based on IoT and edge computing, which can make up 
for the shortcomings of traditional methods in processing 
large-scale data, real-time decision-making, and responding to 
changes in the local environment of the UAV, and by 
integrating the advantages of IoT and edge computing, it can 
effectively solve the computational bottlenecks and 
communication delays faced by UAVs when they perform their 
tasks. IoT technology enables UAVs to acquire and transmit 
rich environmental information in real time, while edge 
computing can provide instant computing resources and 
services near the data source, greatly reducing the delay of data 
transmission and improving the data processing speed, which 
in turn supports UAVs to make more accurate and real-time 
path planning and control decisions. 

 
Fig. 1. Drone path planning model. 

The research contributions of this paper mainly include the 
following aspects: (1) Constructed a mathematical model for 
intelligent delivery UAV path planning and control based on 
IoT and edge computing environment, deeply analyzed the 
interaction mechanism among core elements such as UAVs, 
edge servers, and delivery tasks, and clarified the objective 
function and necessary constraints for optimizing the path 
planning and control of UAVs. (2) Designed a set of new 
Algorithmic framework, which takes into account the 
individual performance constraints and target requirements of a 
single UAV when performing a task, as well as the fair 
scheduling, path conflict avoidance, and overall task efficiency 
optimization of multiple UAVs when performing tasks 
together. (3) A specific path planning and control algorithm for 
intelligent delivery UAVs is proposed, which combines the 
heuristic, meta-heuristic, and machine learning methods to 
solve the problems of UAVs in actual operation. The path 
optimization problem of UAVs in actual operation improves 
the intelligence level and flight execution efficiency of the 
UAV system. 

The main content is divided into five sections.  Section I 
introduces the research background. Section II analyzes the 
current research status. Section III explains the research 
methods. Section IV analyzes and discusses the research results. 
Finally, Section V concludes the paper.. 

II. LITERATURE REVIEW 

Cui et al. [8] studied a cooperative path planning algorithm 
for UAV clusters based on edge computing, which uses the 
location information and movement laws of the edge server to 
guide the path planning of the UAVs, while taking into account 
the synergy and competition between the UAVs, to optimize 
the UAVs’ task completion and flight efficiency. Cui et al. [9] 
investigated a collaborative task allocation method for UAV 
clusters based on edge computing, which utilizes the edge 
server’s computational capability and data analysis advantages 
to provide decision support for task allocation for UAV 
clusters, while optimizing the UAVs’ task execution 
effectiveness by considering the UAVs’ energy consumption, 
flight time, and task priority. Dec et al. [10] utilized the 
communication resources and link quality of the edge server to 
provide communication optimization for UAV clusters, while 
factors such as communication demand, communication 
interference and communication cost of UAVs are considered 
to optimize the communication performance and 
communication efficiency of UAVs. Ding et al. [11] 
investigated a cooperative security assurance method for UAV 
clusters based on edge computing, which utilizes the security 
technology and security policy of edge servers to provide 
services for UAV clusters to provide security assurance, while 
considering factors such as the security demand, security threat 
and security cost of UAVs, to optimize the level of security 
and the security benefit of UAVs. 

In summary, the research related to UAV path planning and 
control has been relatively mature, and the number of its results 
is shown in Fig. 2. Although the above series of studies have 
made significant progress in edge computing-based UAV 
cluster path planning, task assignment, autonomous navigation, 
communication optimization, and security, there are still some 
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important limitations and knowledge gaps to be addressed in 
this area. First, most current research focuses on single or 
partial optimization objectives, such as information update 
speed, energy consumption, flight time, and mission 
completion, while it remains a challenge to maximize the 
overall effectiveness of UAV clusters in the context of multi-
objective optimization. Second, although edge computing 
enhances the real-time computation and decision-making 
capabilities of UAVs, in practical applications, the 
computational resources of edge servers are not unlimited, and 
how to effectively schedule and utilize them under resource-
constrained conditions to cope with large-scale and high-
density UAV cluster operations is an issue that needs to be 
explored in depth. Furthermore, the reliable communication, 
obstacle avoidance and adaptive flight capabilities of UAVs in 
complex and dynamic environments need to be further 
strengthened, especially in extreme or unexpected situations, 
how to utilize edge computing technology to improve the 
UAV's anti-interference capability and fault recovery speed, 
and to safeguard the flight safety and service continuity needs 
more research. In addition, current research has not paid 
enough attention to and explored in-depth the compliance 
issues of edge computing in UAV applications, which involve 
user privacy, data security, and regulatory compliance. In 
summary, although edge computing-based UAV clustering 
research has achieved a series of results, limitations in multi-
objective optimization, efficient scheduling in resource-
constrained environments, adaptation to complex 
environments, and legal and ethical issues reveal the large 
research space and development potential that remain in this 
area. 

 

Fig. 2. Number of research results related to UAV path planning. 

III. RESEARCH METHODOLOGY 

A. UAV Path Planning Model 

Suppose there are N  drones, M  edge servers, and K  

delivery tasks. Each UAV i  has an initial position 
0

ip
 and a 

target position 
f

ip
, as well as some constraints, such as 

maximum speed imaxv
, maximum acceleration imaxa

, maximum 

turning angle imax
, maximum flight time imaxt

, maximum 

payload imaxw
 etc. [12]. Each edge server 

j
 has a fixed 

location jq
, as well as some resource parameters such as 

computing power jc
, storage capacity js

, communication 

bandwidth jb
, etc. [13], [14]. Each delivery task k  has a 

weight of the demanded item kw
, a location of the demanded 

item ksr
, a location of the delivery destination kdr

, and a 

delivery time window 
,[ ]kmin kmaxt t

. The distance between the 
UAV, the edge server, and the delivery task can be measured in 

terms of the Euclidean distance, i.e., 
  ( (, ) )Td x y x y x y  

, 
where x and y are any two position vectors [15], [16]. 

The purpose of path planning and control of UAVs is to 

find a set of optimal control inputs 
 iu t

 that enable the UAV 
to complete the delivery task while satisfying constraints and 
minimizing some optimization objective function. The 
optimization objective function can be the UAVs’ total flight 
time, total flight distance, total energy consumption, total 
delay, etc., or it can be a weighted function that integrates 
several factors. For example, if the optimization objective is to 
minimize the total flight time of the UAV, then the 
optimization objective function is specifically shown in Eq. (1). 

where, 
f

it  is the time for the UAV i  to reach the target 
position [17], [18]. 

 
0

1

min

f
i

N
t

i

dt




   (1) 

The constraints for path planning and control of UAVs 
include kinematics and dynamics constraints of UAVs, 
collision avoidance constraints between UAVs, communication 
connectivity constraints between UAVs and edge servers, 
matching constraints between UAVs and delivery tasks, and 
time window constraints for delivery tasks. Each delivery task 
can only be executed by one UAV, as shown in Eq. (2). Where 

iky
 indicates whether the UAV i  executes the delivery task k

, which takes the value of 0 or 1. The load capacity of the UAV 
cannot exceed the maximum limit, i.e., Eq. (3) [19]. 

 1

, 1, ,

N

k ik

i

x y k K



  
       (2) 

 1

, 1, ,

K

ik ik imax

k

w y w i N



  
                (3) 

where, ikw
 denotes the weight of the item for the delivery 

mission k  and imaxw
 denotes the maximum load capacity of 

the drone i . 

The drone cannot fly beyond the maximum limit, as shown 
in Eq. (4) [20]. 
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where, 
,( )d  

 denotes the distance between two locations, 

ks
 denotes the location of the demanded item of the delivery 

task  k , kt  denotes the location of the delivery destination of 

the delivery task k , 
0

ip
 denotes the initial location of the 

drone i , jq
 denotes the location of the edge server 

j
, 

t

ip
 

denotes the location of the drone  i , imaxd
 denotes the 

maximum flight distance of the drone i , and ijz
. Indicates 

whether the drone i  is connected to the edge server 
j

, which 
takes the value of 0 or 1. The drone must complete the delivery 
within the time window of the delivery task, as shown in Eq. 
(5) [21], [22]. 
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
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 

 



       (5) 

B. Algorithmic Framework 

The path planning and control algorithm framework for 
smart delivery UAVs based on IoT and edge computing builds 
a complete set of decision-making processes, as shown in Fig. 
3. The framework covers six key steps from information 
interaction to real-time control: 

 
Fig. 3. Path planning and control algorithm framework based on IoT and 

edge computing. 

Step I: In the initialization phase of the system, the UAV 
establishes a stable communication link with the edge server 
through IoT technology, and sends its real-time status data as 
well as the specific demand parameters of the delivery task it is 
carrying to the edge server. The server receives and stores this 
information and analyzes and preprocesses it in depth [23]. 

Step Ⅱ: The edge server uses matching algorithms to assign 
optimal or sub-optimal delivery tasks to each UAV based on 
the received UAV status and task demand information, aiming 
to achieve an optimal balance of several key performance 
indicators, such as total flight time, distance, energy 
consumption, and latency. Subsequently, the server will send 
the allocation results back to the relevant drones in real time 
[24]. 

Step Ⅲ: Immediately after getting the task assignment, the 
UAV uses the path planning algorithm to autonomously design 
an efficient flight path from its current location to the target 
location based on the matching scheme provided by the edge 
server. In this process, the kinematics and dynamics constraints 
of the UAV itself are fully considered to ensure safe flight 
while avoiding collisions with other UAVs and the time 
window requirements of the delivery task are strictly followed. 
After the planning is completed, the UAV sends the finalized 
path information to the edge server again [25]. 

Step Ⅳ: Based on the path planning results submitted by 
all UAVs, the edge server performs global path optimization 
using a cooperative optimization algorithm to promote 
effective collaboration and competition among multiple UAVs, 
so as to achieve the overall optimal or near-optimal path layout 
of the entire distribution network. The optimized path planning 
scheme is then fed back to the participating drones. 

Step Ⅴ: The UAV applies the appropriate control algorithm 
to generate a set of best-fit control input commands based on 
the co-optimization path returned by the server. The UAV 
performs precise flight operations accordingly and is able to 
adjust its control strategy in real time to respond to changing 
environmental factors. This set of control inputs is also 
reported by the UAV to the edge server for monitoring and 
recording [26]. 

Step Ⅵ: In the whole monitoring process, the edge server 
utilizes monitoring algorithms to monitor and estimate the 
actual flight status of each UAV in real time, and to evaluate 
and feedback its flight performance, forming a closed-loop 
control system. Fig. 3 is the algorithm for path planning and 
control of smart delivery UAVs based on IoT and edge 
computing [27]. 

C. Solution Algorithm 

The algorithm is divided into two levels, local planning and 
global optimization, using the collaboration between the edge 
nodes of the UAV and the cloud to achieve the goal of finding 
an optimal or near-optimal path that satisfies multiple objective 
functions in a dynamically changing environment. This study 
will explain each step of the algorithm step by step below: 

Step 1: At the edge node of the UAV, based on the current 
position, speed, target, obstacles and other information, a local 
path planning algorithm, such as the artificial potential field 
method, etc., is used to generate a short-term path, i.e., a 

genotype X. The specific formula is: 1 2( , , , )NX x x x 
 

where N  is the length of the genotype, which is determined by 

the maximal flight time of the UAV, T , and the flight interval, 

t , i.e., /ΔN T t . ix
 is the i  th flight action, which takes 

Communication links  

IoT 

Technology Edge servers  

Assigning 

Tasks

Matching 

Algorithm 

Parameters  many UAVs

Many 

possible 

pathways

Global path 

optimization

Feedback



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 3, 2024 

1072 | P a g e  

www.ijacsa.thesai.org 

the value of 
 , , , , ,A B L R U D

 and means forward, backward, 
left turn, right turn, up and down, respectively. For example, 

 , , , , , , , ,X A A L U A R D A 
 means the drone first advances 

two steps, then turns left, rises, advances, turns right, descends, 
advances, and so on [28]. 

This study utilize the artificial potential field method to 
solve the initial solution. This study abstract the operating 
environment of the UAV as a potential field, in which the 
target point exerts a gravitational force on the UAV, the 
obstacle exerts a repulsive force on the UAV, and the UAV, 
under the action of the combined force, moves in the direction 
of decreasing potential energy until it reaches the target point 
or encounters a local minimum. The specific formula is: 

a rF F F 
 where F  is the combined force, aF

 is the 

gravitational force, and rF
 is the repulsive force. The formula 

for the gravitational force is: a a aF k U  
 where ak

 is the 

gravitational coefficient, aU
 is the gradient of the 

gravitational potential field, and aU
 is the gravitational 

potential field function, which is generally defined as a 
function of the distance from the UAV to the target point, i.e. 

21
( , )

2
a a gU k X X 

 where 
( ), gX X

 is the Euclidean 

distance between the position of the UAV X  and the position 

of the target point gX
, i.e. The Euclidean distance, i.e.: 

2 2 2( , ) ( ) ( ) ( )g g g gX X x x y y z z     
 The formula 

for repulsion is: r r rF k U 
 where rk

 is the repulsion 

coefficient, rU
 is the gradient of the repulsive potential field, 

and rU
 is the repulsive potential field function, generally 

defined as a function of the reciprocal of the distance from the 
UAV to the obstacle [29].  

In order to avoid the UAV being affected by obstacles that 

are too far away, a maximum influence distance of 0  is 
generally set, and the repulsion force is zero when 

  0, oX X  
. In order to avoid the UAV falling into a local 

minimum, some heuristics are generally set, such as increasing 
the virtual target point, changing the direction of the repulsion 
force, and increasing the memory. 

Step 2: On the edge node of the UAV, calculate the fitness 

value of the genotype, i.e., 
 f X

, and communicate it with 
the edge nodes of other UAVs to exchange information and 
coordinate conflicts to form a local population Pl. The fitness 
function is a function used to measure the merit of the 
genotype, defined as a weighted sum of multiple objective 
functions, as shown in (6). 

1 2 3 4( ) ( ) ( ) ( ) ( )t d e lf X w F X w F X w F X w F X   
    (6) 

where, 1 2 3 4, , ,w w w w
 is the weight coefficient, 

 tF X
 is 

the total flight time of the UAV, 
 dF X

 is the total flight 

distance of the UAV, 
 eF X

 is the total energy consumption 

of the UAV, and 
 lF X

 is the total delay of the UAV [30]. 
These subfunctions can be computed based on the flight 
dynamics model and communication model of the UAV. For 
example, if this study assume that the flight speed of the UAV 

is v , the flight time interval is t , the energy consumption of 

the flight maneuver is ie
, and the delay of the flight maneuver 

is 
 il , as in Eq. (7)-(10). 

 
( ) ΔtF X N t

   (7) 

 
( ) ΔdF X Nv t

   (8) 

 1

( )

N

e i

i

F X e




   (9) 

 1

( )

N

l i

i

F X l




   (10) 

At the edge nodes, UAVs need to communicate with other 
UAVs to exchange their genotypes and fitness values, as well 
as other information such as position, speed, and target. 
Through communication, UAVs can coordinate their flight 
maneuvers to avoid collision or conflict with other UAVs. The 
communication can be broadcast, multicast or unicast, the 
frequency of the communication can be fixed or dynamic, and 
the protocol of the communication can be TCP, UDP or others. 
The effectiveness of communication can be measured by 
metrics such as communication success rate, communication 
delay, communication overhead, etc. The purpose of 

communication is to form a localized population lP
, i.e., a set 

of genotypes, each of which has an adaptation value indicating 
its degree of superiority or inferiority in the current 
environment. 

Step 3: In the cloud, based on the genotypes and fitness 
values sent by the edge nodes of all UAVs, a global path 
optimization algorithm is used to generate a global population 

gP
 by performing crossover, mutation, and selection 

operations on the local populations, and send it to the edge 
nodes of the corresponding UAVs. The purpose of the global 
path optimization algorithm is to improve the global fitness 
while ensuring the local fitness, i.e., to meet the individual 
needs of the UAVs while achieving the collective collaboration 
of the UAVs and optimizing the overall performance. The 
parameters of the global path optimization algorithm are 

determined by gN
, i.e., the global population size. 

Suppose the parameters of the network are   and the 

output of the network is 
 ,Q s a  which represents the 
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estimate of the value of 
Q

 for taking action a  in state s . The 

true reward is r , the next state is 's , the next action is 'a , 

and the discount factor is 


. Then the error between the output 
of the network and the true reward is specified as shown in Eq. 
(11). 

 
( , ) ( max ( , ))

a
Q s a r Q s a


      

        (11) 

Here, 
 

'
', '

a
r maxQ s a 

 is the target 
Q

 value that 
represents the expectation of the maximum cumulative reward 

that can be obtained after taking action a  in state s . This error 
is also called Temporal Difference Error (TDE) and reflects the 
gap between the network’s estimate and the true reward. 

In order to make the output of the network closer to the true 
reward, this study need to minimize this sum of squares of 
error as shown in Eq. (12). 

 

2

( , , , )

1
( )

2
s a r s D

L

 

  

  (12) 

Here, D  is a batch of experience tuples randomly selected 
from the experience playback pool, also called a mini-batch 
(Mini-batch). This Loss Function (Loss Function) reflects the 
performance of the network, the smaller the better. 

To minimize this loss function, this study needs to update 
the parameters of the network using gradient descent or some 
other optimization algorithm as shown in Eq. (13). 

 
( )L     

   (13) 

Here,   is the Learning Rate, which controls the step size 

of the parameter update, and 
 L 

 is the Gradient of the 
loss function with respect to the parameter, which indicates the 
direction of change of the loss function in the parameter space. 
By updating the parameters in the opposite direction of the 
gradient, this study can make the loss function gradually 
decrease, thus making the output of the network closer to the 
true reward. 

Step 4: Evaluate the network, i.e., use the updated network 
to generate a new genotype, i.e., a new path, for each UAV, 
and then compute the fitness value of that genotype, i.e., 

 f X
, and evaluate the network according to the size of the 

fitness value and select the optimal or better network as the 
current optimal or near-optimal solution. 

Assuming that the parameters of the updated network are 
' , for each UAV, this study can use the network to generate a 

new genotype as shown in Eq. (14). 

 1 2( , , , )NX x x x 
  (14) 

where, 
 ,i a ix argmax Q s a  , denotes the action with the 

largest value of 
Q

 output by the network in the state is
. This 

genotype is the output of the network and indicates the optimal 
or near-optimal path given by the network. 

Then, this study can calculate the fitness value for that 
genotype as shown in Eq. (15). 

1 2 3 4( ) ( ) ( ) ( ) ( )t d e lf X w F X w F X w F X w F X   
 (15) 

Here, 1 2 3 4, , ,w w w w
 is the weight coefficient, 

 tF X
 is 

the total flight time of the UAV, 
  dF X

 is the total flight 

distance of the UAV, 
 eF X

 is the total energy consumption 

of the UAV, and 
 lF X

 is the total delay of the UAV. These 
subfunctions can be calculated based on the flight dynamics 
model and communication model of the UAV. This fitness 
value reflects the merit of the genotype, the larger the better. 

Finally, this study can evaluate the networks based on the 
magnitude of the fitness values and select the optimal or better 
network as the current optimal or near-optimal solution. For 
example, this study can use a sliding window to record the 
parameter and fitness values of a number of recent networks, 
and then select the network with the largest fitness value from 
them, or use a Softmax function to randomly select a network 
based on the proportion of fitness values. 

Step 5: Termination judgment, i.e., to determine whether 
the preset termination conditions, such as the maximum 
number of training times, the minimum error, the maximum 
fitness value, etc., are reached. If the termination conditions are 
met, the current optimal network and its fitness value are 
output, and the algorithm ends; otherwise, return to the second 
step and continue training. 

Suppose set a termination condition such as 

or ( ) or ( )t T L f X  ò
. Where t  is the current 

number of trainings, T  is the maximum number of trainings, 

 L 
 is the current value of the loss function, ò  is the 

minimum error, 
 f X

 is the current fitness value, and 


 is 
the maximum fitness value. These conditions indicate our 
expectation of the performance of the network, and if they are 
met, this study consider the network to have converged or to 
have found a good enough solution. If the termination 
conditions are met, the current optimal network and its fitness 
value are output and the algorithm ends, i.e.: 

Output , ( )f X 
 where 

*  is the current optimal network 

parameters, 
*X  is the current optimal genotype, and 

 *f X
 

is the current optimal fitness value. These outputs indicate the 
optimal or near-optimal path planning strategies this study 
have found. Otherwise, return to step 2 and continue training. 
This indicates that this study needs to continue sampling 
experience, updating the network, and evaluating the network 
until the termination condition is met. 
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IV. RESULT AND DISCUSSION 

In order to verify the validity and superiority of the model 
of “Intelligent Delivery UAV Path Planning and Control Based 
on IoT and Edge Computing” proposed in this paper, I 
designed two simulation scenarios, namely, the urban 
environment and the rural environment, to simulate the UAVs 
carrying out the delivery tasks under different geographic and 
communication conditions. I used Matlab software to 
implement the model in this paper, as well as several 
comparison algorithms, including: (1) Random algorithm 
(Random): the UAV randomly selects one direction to fly until 
it encounters an obstacle or boundary, and then randomly 
selects another direction to fly until it completes the delivery 
task or runs out of power. (2) Shortest Path: Based on the map 
information, the UAV uses Dijkstra's algorithm or A* 
algorithm to calculate the shortest path from the starting point 
to the end point, and then flies along the path until it completes 
the delivery task or runs out of power. (3) Greedy algorithm 
based on maximum information age: the UAV selects a 
direction to fly each time based on the map information, so that 
the information age after the flight is the maximum, i.e., the 
time since the last data collection is the longest, and then flies 
along that direction until it completes the delivery task or runs 
out of power. (4) Path planning algorithm based on information 
age: the UAV uses a path planning algorithm based on 
information age according to the map information to calculate 
the optimal path from the starting point to the end point, and 
then flies along that path until it completes the delivery task or 
runs out of power. (5) The model in this paper: the UAV uses 
the intelligent delivery UAV path planning and control model 
based on IoT and edge computing proposed in this paper based 
on the map information, utilizes the powerful arithmetic power 
of the edge servers to make up for the lack of the on-board 
platforms, carries out the cluster’s information processing and 
fusion on the side of the base station, and assists the cluster in 
real-time task trajectory planning, so as to achieve a more 
stable connection, a more secure flight, and a more efficient 
The mission is more stable connection, safer flight, and more 
efficient. 

This study used the following evaluation metrics to 
measure the performance of various algorithms: (1) delivery 
success rate (2) delivery time (3) delivery distance (4) delivery 
energy consumption (5) delivery delay, and the specific 
evaluation process is shown in Fig. 4. 

 

Fig. 4. Evaluation process. 

This study assume that the maximum flight time of the 

UAV is T , the flight speed is v , the flight interval is t , the 

energy consumption of the flight maneuver is ie
, and the 

delay of the flight maneuver is il , then this study have: 
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i iD N v t 
, iN
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drone. 1
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s i
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N
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iN

i j
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
. je
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of the 
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Delivery Delay

sN

i
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, iL

 is the delay of the i  th UAV to 

complete the delivery task, i.e., 1

iN

j
j

Li l



, jl

 is the delay of 

the 
j
 th flight maneuver of the i  th UAV. 

This study conducted simulation experiments in urban and 
rural environments, and each algorithm was repeated 10 times 
and the average value was taken as the result. The map size of 
the urban environment is 1000 × 1000 with 50 obstacles, each 
of which is 20 × 20 in size, 10 UAVs, each of which has a 
randomly generated start and end point, 5 edge servers, each of 
which has a coverage area of 200 × 200, a communication 
success rate of 0.8, and a communication latency of 0.1 
seconds. The rural environment has a map size of 2000 × 2000, 
10 obstacles, each of which has a size of 40 × 40, 20 drones, 
each of which has a randomly generated start and end point, 3 
edge servers, each of which has a coverage of 400 × 400, a 
communication success rate of 0.6, and a communication delay 
of 0.2 seconds. This study lists the experimental results of 
various algorithms in the two environments in Table Ⅰ and 
Table Ⅱ, respectively. 

From Table Ⅰ, it can be seen that the model in this paper has 
a higher delivery success rate, shorter delivery time, shorter 
delivery distance, lower delivery energy consumption and 
lower delivery delay than other algorithms in urban 
environments, which indicates that the model in this paper is 
able to effectively utilize the advantages of the Internet of 

Algorithm

Environment

Indicators

Random
Shortest Path 

Algorithm

Greedy 

Algorithm

Information Age Based Path 

Planning Algorithm
Proposed

Urban environment Rural environment

(1) Delivery 

Success Rate

 (2) Delivery 
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 (3) Delivery 
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 (4) Delivery 

Energy 

Consumption

 (5) Delivery 

Latency

Results
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Things (IoT) and edge computing to improve the efficiency 
and quality of the delivery of unmanned aerial vehicles 
(UAVs). 

From Table Ⅱ, it can be seen that the model in this paper 
also has a higher delivery success rate, shorter delivery time, 
shorter delivery distance, lower delivery energy consumption 
and lower delivery delay compared to other algorithms in rural 
environments, which indicates that the model in this paper is 
able to adapt to different geographic and communication 
conditions, and maintains the UAVs’ delivery performance and 
stability. 

In order to further analyze the superiority of the model in 
this paper, this study also performed some sensitivity analysis, 
i.e., this study varied the values of some parameters and 
observed the change in the performance of various algorithms. 
This study changed the following parameters respectively: 

TABLE I.  EXPERIMENTAL RESULTS IN AN URBAN ENVIRONMENT 

Algorithm 

name 

Distributi

on success 

rate 

Deliver

y time 

Distributi

on 

Distance 

Distributio

n energy 

consumpti

on 

Delay 

in 

deliver

y 

Randomiz

ed 

algorithm 

0.32 9.75 9750 4875 975 

Shortest 

path 

algorithm 

0.68 6.12 6120 3060 612 

Greedy 
algorithm 

0.72 7.24 7240 3620 724 

ATP 

algorithm 
0.76 6.84 6840 3420 684 

The model 
in this 

paper 

0.92 5.28 5280 2640 528 

TABLE II.  EXPERIMENTAL RESULTS IN A RURAL SETTING 

Algorithm 

name 

Distributi

on success 

rate 

Deliver

y time 

Distributi

on 

Distance 

Distributio

n energy 

consumpti

on 

Delay 

in 

deliver

y 

Randomiz
ed 

algorithm 

0.25 19.5 19500 9750 1950 

Shortest 
path 

algorithm 

0.65 12.24 12240 6120 1224 

Greedy 

algorithm 
0.70 14.48 14480 7240 1448 

ATP 

algorithm 
0.75 13.68 13680 6840 1368 

The model 

in this 

paper 

0.90 10.56 10560 5280 1056 

This study lists the distribution success rates of various 
algorithms with different parameters in Table Ⅲ, respectively. 

TABLE III.  DISTRIBUTION SUCCESS IN URBAN ENVIRONMENTS 

Parameter 

name 

Paramet

er 

value 

Randomiz

ed 

algorithm 

Shortest 

path 

algorith

m 

Greedy 

algorith

m 

ATP 

algorith

m 

The 

mod

el 

in 

this 

pape

r 

Number of 
drones 

10 0.32 0.68 0.72 0.76 0.92 

Number of 

drones 
20 0.28 0.64 0.68 0.72 0.88 

Number of 
drones 

30 0.24 0.60 0.64 0.68 0.84 

Number of 

drones 
40 0.20 0.56 0.60 0.64 0.80 

Number of 
drones 

50 0.16 0.52 0.56 0.60 0.76 

Number of 

obstacles 
10 0.36 0.72 0.76 0.80 0.96 

Number of 
obstacles 

20 0.32 0.68 0.72 0.76 0.92 

Number of 

obstacles 
30 0.28 0.64 0.68 0.72 0.88 

Number of 
obstacles 

40 0.24 0.60 0.64 0.68 0.84 

Number of 

obstacles 
50 0.20 0.56 0.60 0.64 0.80 

Number of 
edge servers 

3 0.28 0.64 0.68 0.72 0.88 

Number of 

edge servers 
6 0.30 0.66 0.70 0.74 0.90 

Number of 
edge servers 

9 0.32 0.68 0.72 0.76 0.92 

Number of 

edge servers 
12 0.34 0.70 0.74 0.78 0.94 

Number of 
edge servers 

15 0.36 0.72 0.76 0.80 0.96 

Communicati

on success 
rate 

0.6 0.28 0.64 0.68 0.72 0.88 

Communicati

on success 
rate 

0.7 0.30 0.66 0.70 0.74 0.90 

Communicati

on success 

rate 

0.8 0.32 0.68 0.72 0.76 0.92 

Communicati

on success 

rate 

0.9 0.34 0.70 0.74 0.78 0.94 

Communicati
on success 

rate 

1.0 0.36 0.72 0.76 0.80 0.96 

Communicati
ons delay 

0.1 0.32 0.68 0.72 0.76 0.92 

Communicati

ons delay 
0.2 0.30 0.66 0.70 0.74 0.90 

Communicati
ons delay 

0.3 0.28 0.64 0.68 0.72 0.88 

Communicati

ons delay 
0.4 0.26 0.62 0.66 0.70 0.86 

Communicati
ons delay 

0.5 0.24 0.60 0.64 0.68 0.84 
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From Table Ⅲ, it can be seen that the model in this paper 
maintains a high delivery success rate for different parameter 
values in urban environments, which indicates that the model 
in this paper is able to adapt to different number of UAVs, 
number of obstacles, number of edge servers, communication 
success rate, and communication delays, and has strong 
robustness and flexibility. 

V. CONCLUSION 

In this paper, a novel model and algorithm are proposed for 
the intelligent delivery UAV path planning and control 
problem based on the Internet of Things and edge computing, 
which realizes the collaborative optimization of the path 
planning and control of the UAV, and improves the 
intelligence level and flight efficiency of the UAV. The main 
contributions and innovations of this paper are: this proposes 
an intelligent delivery UAV path planning and control model 
based on the Internet of Things and edge computing, which 
provides an effective solution for the enhancement of the 
intelligence and efficiency of UAVs. In this paper, an algorithmic 
framework for UAV path planning and control is designed to achieve 
the co-optimization of path planning and control of UAVs using the 
support and guidance of edge computing, taking into account the 

constraints and objectives of the UAVs themselves, as well as the 
synergies and competitions among the UAVs. 
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