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Abstract—Blockchain-based decentralized applications have
garnered significant attention and have been widely deployed in
recent years. However, blockchain technology faces several chal-
lenges, such as limited transaction throughput, large blockchain
sizes, scalability, and consensus protocol limitations. This pa-
per introduces an efficient framework to accelerate broadcast
efficiency and enhance the blockchain system’s throughput by
reducing block propagation time. It addresses these concerns
by proposing a dynamic and optimized Blockchain Neighbor
Selection Framework (BNSF) based on agglomerative clustering.
The main idea behind the BNSF is to divide the network into
clusters and select a leader node for each cluster. Each leader
node resolves the Minimum Spanning Tree (MST) problem for
its cluster in parallel. Once these individual MSTs are connected,
they form a comprehensive MST for the entire network, where
nodes obtain optimal neighbors to facilitate the process of
block propagation. The evaluation of BNSF showed superior
performance compared to neighbor selection solutions such as
Dynamic Optimized Neighbor Selection Algorithm (DONS), Ran-
dom Neighbor Selection (RNS), and Neighbor Selection based on
Round Trip Time (RTT-NS). Furthermore, BNSF significantly
reduced the block propagation time, surpassing DONS, RTT-
NS, and RNS by 51.14%, 99.16%, and 99.95%, respectively. The
BNSF framework also achieved an average MST calculation time
of 27.92% lower than the DONS algorithm.

Keywords—Blockchain; scalability; agglomerative clustering;
broadcasting; optimized neighbor selection; minimum spanning
tree; parallel processing

I. INTRODUCTION

Blockchain (BC) is a decentralized ledger technology
that operates on a peer-to-peer (P2P) network, utilizing a
cryptographic chain of blocks and consensus algorithms to
verify and store data in decentralized networks [1]. BC was
initially introduced in 2008, credited to Satoshi Nakamoto
[2]. It enables nodes that do not have mutual trust to reach
a consensus on a sequential collection of blocks containing
multiple transactions, all without the need for a third party
[3]. In recent years, BC has garnered increasing attention due
to its numerous advantages compared to traditional databases
[4]. BC is immutable, transparent, secure, and decentralized,
resulting in a significant reduction in the likelihood of a Single
Point of Failure (SPF) [5]. This enhances its reliability and
efficiency in comparison to conventional data storage systems.
The networks within BC can manage information securely and
protect it from tampering, even when there are many malicious
nodes [6]. In addition, no third-party authentication is required,
as BC operates without central management. These features are
highly valuable and find application not only in cryptocurren-
cies but also in a wide range of fields [7]. Therefore, BC has
a broad spectrum of applications in emerging fields such as

5G [8], [9], [10], smart cities [11], [12], [13], the internet of
things [14], [15], [16], social networking [17], [18], [19], and
artificial intelligence [20], [21], [22].

Although BC has many great advantages, it still has some
drawbacks, such as the scalability problem that arises when
the number of users in the BC system increases significantly.
Scalability in BC is typically measured in transactions per sec-
ond (TPS) [23], [24]. A more scalable BC allows for a higher
number of transactions between network nodes, resulting in
increased bandwidth consumption and network latency. Con-
sequently, the primary challenge with BC technology lies in its
low transaction transfer rate and approval time. For instance,
Bitcoin can handle only 7 TPS, resulting in significantly lower
throughput compared to widely used mainstream payment
platforms such as PayPal, which achieves a transfer rate of
500 TPS, and Visa, which surpasses 4000 TPS. Ethereum is
Another example that can achieve approximately 15 TPS [25].
Obviously, neither Bitcoin nor Ethereum can meet the demands
of large-scale trading scenarios.

BC is mainly composed of three layers: the data layer,
the consensus layer, and the network layer [26]. Within the
data layer, there exists a chain of interconnected data blocks,
supported by hashing algorithms and Merkle trees to protect
the integrity and traceability of block data. The consensus layer
encompasses a variety of consensus algorithms that facilitate
data consistency among network nodes [27]. On the other
hand, the network layer comprises mechanisms for propagating
data and verifying transactions [28], [29].

Solutions for BC scalability are classified by implementa-
tion layer [30]. State-of-the-art BC research addresses scal-
ability in three key areas. In the data layer, compression
reduces transaction and block sizes, minimizing bandwidth use
[31]. The consensus layer improves communication for faster
transactions and lower latency [32]. In the network layer, the
gossip algorithm and P2P structure are optimized for enhanced
peer communication, boosting BC system performance [33],
[34].

Gossip broadcasting in the BC network results in the du-
plication of information and inefficient bandwidth utilization.
However, as the number of peers joining the network increases,
duplication and bandwidth utilization also increase due to a
higher probability of selected peers interfering with the gossip
process [35]. Therefore, alternative techniques for broadcasting
blocks in the network, such as Random Neighbor Selection
(RNS), where shared data propagates through random paths
[36], lead to an inefficient data propagation scheme. This
inefficiency arises from the probability of redundancy in the
exchanged messages between network nodes. This redundancy
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occurs due to cycling in the randomly chosen data paths result-
ing in longer delivery times and lower levels of consistency.
Nevertheless, most BC systems support RNS. Some methods
have been proposed to improve the Neighbor Selection (NS)
process locally, addressing the dynamicity problem. Bi et al.
[37] introduced an NS protocol based on network latency,
where nodes assess the Round Trip Time (RTT) to their
neighboring nodes. Consequently, nodes prioritize neighbors
with the lowest RTT for the NS process. Nonetheless, none of
these solutions has proposed an ideal NS strategy.

In this paper, an Efficient Blockchain Neighbor Selection
Framework (BNSF) is introduced to accelerate block propaga-
tion and enable node communication with selected neighbors.
The network is divided into clusters using agglomerative
clustering. Within each cluster, a leader node is chosen to
resolve the Minimum Spanning Tree (MST) problem using
Dijkstra’s Algorithm. Subsequently, the MST for the entire
network is obtained by connecting the MSTs from the network
clusters.

The key contributions of this paper are summarized as
follows:

1) Addressing the scalability issue of the BC network
by optimizing the NS process in a dynamic network
topology.

2)  Reducing the total calculation time to construct the
general MST for the entire network by dividing the
network into clusters using agglomerative clustering,
constructing the MST for each cluster, and finally
connecting them to obtain the general MST.

3) Utilizing multi-threading technology: each cluster
computes the MST in parallel to accelerate execution
time. This approach also takes advantage of multi-
ple CPUs or cores, resulting in further performance
improvements.

4)  Reducing duplicates in data exchanged between net-
work nodes, as each node shares data with its MST
optimal neighbors (MON) without cycling in selected
paths.

5) Reducing the total propagation time of exchanged
data between network nodes.

The remaining sections of this paper are structured as
follows: Section II analyzes relevant literature, Section III
provides a detailed explanation of the proposed BNSF, Section
IV presents the evaluation of BNSF, and finally, Section V
summarizes the most significant findings and conclusions.

II. RELATED WORK

In this section, several modern network layer scalability
solutions are presented. These solutions primarily focus on
enhancing either the gossip algorithm or the P2P network
architecture. Research studies aiming to improve the gossip
algorithm focus on reducing duplicate data or increasing
block propagation speed [38]. The proposed solutions aim
to decrease the level of duplication caused by the gossip
algorithm or to reduce block propagation time through an
enhanced gossip protocol. Following are some of the recent
work representing such solutions.

The Fastchain protocol, designed to enhance the scalability
of BC as described in [39], operates through a mechanism in

Vol. 15, No. 3, 2024

which a node with limited bandwidth transmits a block to a
node possessing higher bandwidth capacity. Subsequently, the
latter node distributes the block to all other nodes in the net-
work. Nodes with restricted bandwidth prioritize connections
with nodes that possess higher bandwidth and disconnect from
nodes whose bandwidth is less than a specific threshold. The
implementation of Fastchain comprises two essential stages,
namely the bandwidth monitoring phase and the neighbor
update phase. In the bandwidth monitoring phase, every node
maintains a table containing the recent bandwidth information
of its neighboring nodes. During the neighbor update phase,
nodes periodically update their connections with neighbors,
continuously disconnecting from those with slow and low
bandwidth. FastChain enhances the effective block rate, re-
sulting in a 40% increase in the number of blocks added
to the chain compared to bitcoin. Furthermore, it improves
throughput by 20% to 40%.

Baniata and Anaqreh [40] introduced a Dynamic Optimized
Neighbor Selection Algorithm (DONS) for P2P network man-
agement within the BC. A leader peer is selected to oversee
the network and construct its topology using neighbor lists
from regular peers. The resulting MST guides the leader in
identifying optimal neighbors, enhancing transaction through-
put by minimizing propagation delay. However, leader changes
necessitate network topology reconstruction and requesting
neighbors’ lists. With growing peer numbers, MST compu-
tation time increases, leading to inefficient bandwidth use.
Additionally, leader unavailability risks both topology loss and
reselection overheads.

BlockP2P [41] is a clustering method designed to enhance
transaction throughput by reducing the latency within the BC
network. It proposes to group BC nodes into clusters based
on their geographic location, which leads to a cluster with
a small diameter and high connectivity, thus reducing the
diffusion time within the block. The authors defined three
types of nodes, leaf nodes, core nodes, and a routing node
for each cluster, which is randomly selected from the core
nodes. Routing nodes in different clusters are interconnected to
forward transactions or blocks, thus ensuring full connectivity
between clusters. Transaction throughput increased by about
90% due to reduced latency. The clustering method has better
bandwidth efficiency with a small network size compared to
random neighbor selection. However, congestion can occur in
the cluster as the network grows and the efficiency within
the cluster decreases. This approach is susceptible to network
partitioning and over-reliance on a single node.

The authors in [42], [43] proposed a score-based NS
protocol for constructing a BC network. This protocol assigns
higher scores to peers with lower propagation delays compared
to peers with higher propagation delays. Subsequently, peers
with the highest scores are chosen as neighbors. Every miner
node assesses its neighboring nodes based on the disparity
between the time the block was created and the time it
was received at the recipient node. Once a node successfully
receives ten blocks, it proceeds to update its list of neighbors.
In this update, the node randomly selects new neighbors and
includes only those with high scores. Neighbor nodes exhibit-
ing faster transfer of new blocks compared to other neigh-
bors are assigned higher scores, indicating superior network
communications capabilities. Thus, miners prefer neighbors
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with higher scores in the NS process. This method leads to
excessive dependence on the nodes that have the shortest total
propagation time, which can reduce node performance.

Deshpande et al. [44] proposed a centralized solution. This
solution utilizes the principles of Software-Defined Network-
ing (SDN) to reduce the excessive overhead in managing
a distributed network for blockchains. Servers create a P2P
topology using clustering techniques and assign neighbors to
each peer using the RNS method. Unlike other clustering-based
approaches, the proposed method offered a flexible means
of network management, incorporating constraints to mitigate
congestion issues within the cluster. In the proposed central-
ized network model, topology management has demonstrated a
notable reduction in bandwidth consumption compared to the
traffic caused by managing distributed network models. This
approach can improve the transfer rate of transactions in BC
networks. Due to reduced responsibilities, network peers can
allocate all available resources to process a greater number of
transactions. However, it should be noted that as the network
size grows, the time required for calculating the structure also
increases.

Vu and Tewari [45] proposed a probability-based gossiping
method for neighbor selection. A network node sends several
inventory messages (INV) that are used in Bitcoin and count
the number of responses received. The sending and receiving
ratio is the probability used to determine which neighbor
gets the new block. As a result of this approach, there was
a reduction in the number of messages transmitted by the
network nodes. Additionally, this approach reduces duplication
compared to the default gossip protocol employed in Bitcoin.
Moreover, probability calculations are not disregarded but
retained for subsequent transmissions, as well as the size of
the network. However, excessive and frequent sending of INV
messages between network nodes results in network overhead
and consumption of network resources.

The authors in [46] propose Trust-based Optimum Neigh-
bor Selection (TONS), an optimized algorithm for blockchain
networks in IoT environments, addressing the challenge of
unreliable or malicious nodes. TONS employs a trust and
reputation model to evaluate node reliability, ensuring min-
ers communicate with the most trustworthy neighbors. The
algorithm computes optimal neighbor selection considering
both delivery time rates and node reputation. Experimental
simulations show TONS outperforms traditional methods in
efficiency and effectiveness. However, TONS introduces a high
time cost for computing trust measures, and the energy con-
sumption associated with computing trust measures between
nodes increases.

Table I summarizes the main works that have addressed
the neighbor selection problem in BC networks.

III. BLOCKCHAIN NEIGHBOR SELECTION FRAMEWORK
(BNSF)

In this section, a detailed explanation of the proposed
BNSF is provided, including all the used methods and imple-
mented algorithms as well. The proposed framework analyzes
and evaluates an alternative method for selecting neighbors for
the Gossip communication protocol in a public BC network to
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accelerate the final latency. Furthermore, it introduces a multi-
leader scenario to reduce the calculation time of the MST
topology for the entire network as the network size increases.
Fig. 1 illustrates the BNSF architecture.

A. The Proposed System Model

The examined permission-less public BC network topology
denoted as G, consists of a set of nodes S = {s1, $2,...,5n5},
where N represents the total number of nodes within the
network. The set S is divided into a set of clusters C

{c1,¢2,...,¢pm}, where M < N. Each cluster ¢; € C
comprises a set of nodes S; = {s1,82,...,8n,}, With i =
1,2,3,..., M. The value of N is calculated as follows:
M
N=>n 1)
i=1

Each cluster ¢; € C can be represented as a weighted
undirected graph G; = (S;, E;, W;). S; denotes the set of
nodes in cluster ¢;, F; = €s;s; | si, 8; € Si} represents the
finite set of edges (i.e., communication channels) connecting
the nodes, and W; = {weSiSJ_ | €s;5; € Ei} is a finite set of
weights assigned to F;. It can be represented as a function
W; : E; — R*, where RT denotes the set of positive real
numbers.

The MST for cluster ¢; in G; is denoted as M ST, =
(S:, T;, WMST) where S; represents the set of nodes, T}
denotes the set of edges forming the MST, and WM ST s
a finite set of weights assigned to T;. Similarly to before, the
weights are defined by the function WM : T, — RT.

Each node s; € S;, where j = 1,2,3,...,n;, has a
neighbor set denoted by .47, (s;). The neighbor set .47, (s;)
consists of nodes that are directly connected to s; within the
cluster c;. This can be represented as:

Nei(85) = {sk | sk € Si, sk # 55, (s5,88) € B} (2)

E; represents the set of edges in the graph G; associated
with cluster ¢;. The expression (s;, si) € E; checks if there
exists an edge between nodes s; and s; in the graph G;
associated with cluster c¢;. The condition s; # s; ensures that
s; is not included in its own neighbor set. With this notation,
each node s; € S; is aware of its neighbor set .47, (s;).

The edge matrix Ag is an N x N matrix with elements
{€s;s; }» where 4,5 = 1,2,3,..., N. It represents the connec-
tivity and relationships between nodes in the network G. Each
element e, s, in the matrix represents the presence or absence
of an edge between nodes s; and s;.

The distance between clusters c; and c; is represented as
D(c;,¢;). It is initialized with the distances between nodes
s; € ¢;and s € ¢j, where s;, 55 € {(i,5)]i =1,2,...,n4,j =
1,2,...,n;}. The distance between clusters ¢; and c¢; is
determined using the Complete-linkage method, which selects
the largest distance among all pairs of nodes s; € c¢; and
S5 € ¢yt

{D(si,5,)} 3)

D(ci,cj) = max

8i€Ci,8;5€C;

The distance between nodes s; and s; is calculated using
the Euclidean distance formula:
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TABLE I. A COMPARISON OF THE PROPOSED FRAMEWORK WITH RELATED WORK. NOTABLE ABBREVIATIONS: PB - PUBLIC BC, DT - DYNAMIC
NETWORK TOPOLOGY, CL - CLUSTERING, GV - GLOBAL VIEW, LN - EFFECTIVE IN LARGE NETWORKS

Ref PB DT CI GV LN Limitations
[39] v v % % % Each noc}e mAus_t maintain Fhe latest bandwidth tablf: which periqdically updates neighbor connections to get the latest update.
Nodes with limited bandwidth always rely on the highest bandwidth nodes
[40] v v X v X The network topology calculation time increases with the size of the network. The overhead incurred by frequent leader selections
[41] X v v X X The network is vulnerable to congestion and over-reliance on a single node in network traffic
[42], [43] X X X X X Network excessively depends on a single node with the shortest propagation time. Consequently, it is prone to congestion.
[44] v v v X X As the number of nodes increases, the calculation time for network topology also rises.
[45] v X X X X The excessive and frequent transmission of INV messages leads to network overhead.
[46] v X X v v High time cost for computing trust measures and the increased energy consumption.
BNSF v v v v v

D(si,s5) = \/(szx — sj.x)2 + (s;y — sj.y)2 %)

The collection of root nodes of the MST for all clusters
can be denoted as:

R=Jr (5)

i=1

Here, r; denotes the root node of its corresponding clus-
ter ¢;. The union symbol J indicates the combination of
root nodes from all clusters, forming the collection R. Sub-
sequently, the proposed framework establishes connections
among all these root nodes, creating a comprehensive MST
for the entire BC Network.

Optimal neighbor nodes for a given node s; can be rep-
resented as MON (s;) = {(s1,w1), (s2,w2),...,(Sn,wn)},
where each pair ((sj,w;)) denotes an optimal neighbor node
s; and its corresponding weight value w; for the node s;.

The MST., of each cluster ¢; is computed in a sepa-
rate thread to reduce BNSF processing time, which is rep-
resented as x; € AX. The set of threads X', denoted as
X = {x1,22,...,2,}, encompasses all the threads involved
in calculating the MSTs of the clusters. Each element x; € X
represents an individual thread responsible for computing the
MST,, of cluster ¢;. Table II summarizes the main symbols
used in the BNSF model.

In the following sections, the phases of the proposed BNSF
framework are explained in detail.

B. Phase 1: Network Clustering

Agglomerative Clustering (AC) is applied in a bottom-
up manner to group network nodes by considering their
similarities [47]. Initially, each node is treated as an individual
cluster. Subsequently, clusters are successively combined until
all nodes are contained within a single large cluster. At each
iteration of the algorithm, the two clusters ¢; and c; that have
not been previously merged are examined, and the distance
D between the two clusters is computed. The pair with the
minimum value in distance D is then selected and joined
to form a new cluster, denoted as cnw. Once the clusters
are joined, the algorithm proceeds to calculate the distances
D(cpew, cx;) between the newly formed cluster cpey and all

TABLE II. LIST OF SYMBOLS USED IN THE BNSF MODEL

S Set of nodes within the network G.
N Total number of nodes.
n; Number of nodes within cluster ¢;, where n; is a subset of V.
C Set of clusters within the network G.
c; Cluster of nodes, where ¢; € C.
M Number of clusters within the network G.
S Set of nodes within cluster ¢;, where 7 < M.
S5 Network node, where s; € S;.
He, (s5) Neighbor set for every node s; € S; in cluster c;.
k Number of neighbors for every node s; € S;.
E; Set of edges within the network G; of cluster c;.
W, Set of weights within the network G; of cluster c;.
Ag Edge matrix.
D(sq,s5) Distance between two nodes s; € ¢; and s; € c;j.
MON (s;) Set of optimal neighbor nodes s; for the node s;.
X List of n threads, where each x; € X represents an individual thread.

other clusters. This operation is repeated until the cluster set
C with size M is constructed (Fig. 2(B)).

In Step-1, the BNSF framework applies AC Algorithm 1
as follows:

First, the network graph G is converted into an edge
matrix Ag for AC application. Then, distance or similarity
information is calculated for every pair of nodes using Eq.
4. Next, the complete linkage function is employed to group
the nodes into a hierarchical cluster tree. Close clusters are
linked to each other using the linkage function. Complete-
linkage clustering, also known as farthest-neighbor aggregation
[48], is a method of AC for calculating the distance between
clusters in hierarchical clustering, as shown in Eq. 3.

In complete linkage, the distance D(c;,c;) between two
clusters ¢; and c; is determined as the maximum distance
observed between any individual node s; in the first cluster
¢; and any individual node s; in the second cluster c;.
The dissimilarity between clusters c¢; and c; is defined as
max D (s;,s;), where s; € ¢; and s; € c¢;. The two
clusters ¢; and c; that exhibit the highest similarity with the
minimum value in D are merged into a new cluster, denoted
as Cpew = ¢; U ¢y

Afterward, determine the point at which to divide the
hierarchical tree into clusters by specifying the number of
clusters M. Then, apply AC to the network edge matrix Ag
until the desired number of clusters M is achieved. Finally,

www.ijacsa.thesai.org

1334 |[Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Network Clustering
Phase

Cluster Leader
Selection Phase

_—_—— —

Each Leader Constructs MST

I
I

I

I

I

Broadcast MST I

I

I

I
I
MST Construction :
Phase I
I
I
I

_—_—— —

I
I
Neighbor Selection :
Process Phase I

I

I

I

Select Leader Miner for each cluster

Vol. 15, No. 3, 2024

—_—— e e e e D e e e e e e e — = o

Leader Announcement

Find MST Optimal Neighbors (MON)

|
[ o BT Gl s G0, | |
[

[

[

Using MON in NS Process I

|

|

Fig. 1. The main steps involved in the proposed BNSF framework.

the cluster set C is obtained through the application of AC.

C. Phase 2: Cluster Leader Selection

This phase is responsible for two main steps: cluster leader
selection and leader announcement. The BNSF framework
requires a global view of the BC network. All nodes s; € S
have equal privileges in the public and permissionless BC
network GG. However, the proposed BNSF selects one of these
nodes to perform MST calculations for all other nodes. Each
cluster of nodes ¢; needs to choose a single node s; € S;
as its Leader Node (LN). LN possesses more privileges than
other nodes in the same cluster, granting it a global view of the
entire cluster. Additionally, LN collects information from the
other nodes within the same cluster and uses it to generate
the MST for the entire cluster ¢;. Thus, each node s; in
cluster c; can select its optimal neighbors from the generated
MST for exchanging new blocks or transactions. Moreover,
the network’s global view is influenced by nodes joining or
leaving, necessitating regular updates to the calculated MST
to accommodate changes in the network G.

In Step-2, the cluster leader selection proposed by the
BNSF framework can be described as follows:

A random leader selection scenario is proposed. For each
cluster ¢; in the network topology G, BNSF selects a cluster
node s; € S; to be the LN of its cluster ¢;. The LN is randomly
chosen to build the MST for its cluster ¢;. Random leader
selection enhances network security because attackers cannot

Algorithm 1 Apply Agglomerative Clustering

Input: Number of nodes N, Number of clusters M and Set
of nodes S
Output: Clusters set C.
1: Set the edge matrix Ag = 0. /* Initialize A */
2: for j < 1to N do
3 for k< 1to N do
4 if s;, is a neighbor of s; then
5: set €55, < 1 within the edge matrix Ag.
6
7
8

end if
end for
: end for
/* Apply Agglomerative Clustering(M, S, N) on

Ap*/

9: C = {c1,¢2,...,cn}, where each ¢; contains one node
s;. /* Initialize C*/

10: Calculate D(c;, c;) between every pair of clusters ¢;,¢; €
C using Eq. 3

11: while M < length(C) do /*where M is the desired
number of C */

12: Find the pair of clusters with minimum D(c¢;, ¢;)

13: Cnew < ¢ U ¢j.

14: Remove ¢;,¢; from C and add cpey to C /* Update
C. */

15: Calculate D(cpew, ¢k ), Where ¢ represents the other
clusters.

16: end while

17: Return C.
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(b) Network Node Clustering

(d) Comprehensive MST by
Connecting Cluster MSTs

Fig. 2. An illustrative example showing the practical application of the proposed BNSF framework in a real-case scenario.

predict which node to target in advance. Moreover, it maintains
the decentralization of the network since no complex hardware
is required. This means that any node s; can construct an MST
for its cluster ¢; without needing specialized equipment or high
power.

The process of re-selecting a new leader is performed
after a certain period to reduce network traffic. The BNSF
framework allows new nodes to join the BC network only
after the end of this period, so new nodes attempting to join the
network are added to a waiting queue by the BNSF framework.
New nodes in the waiting queue join the network when this
period expires. Then, the network topology is once again
divided into a set of clusters. Subsequently, a leader node is
selected for each cluster to create a new MST for its cluster.
If a node leaves the network, only the network topology of
the cluster to which it belongs will be changed. Consequently,
only a new leader for this cluster is re-selected. The new
leader node then creates an MST for its cluster. Afterward, the
BNSF framework connects it with the MSTs of other clusters.
This makes the proposed framework dynamic in response to
changes in network topology. The global MST of the entire
network is then used in the NS process.

In Step-3, the leader announcement proposed by the BNSF
framework can be described as follows:

Following the leader selection process, the BNSF notifies

all nodes s; € S; in cluster ¢; about the new leader by sending
announcement messages to all of them. Additionally, it informs
the new leader of their responsibility for creating the MST for
their cluster and broadcasting it to all nodes within the cluster.
This enables the nodes to choose the optimal neighbor for data
exchange within the BC network through the provided MST.

D. Phase 3: MST Construction using Dijkstra’s Algorithm

After announcing the cluster leader with their new respon-
sibility for creating the MST using Dijkstra’s Algorithm [49]
and subsequently broadcasting the MST to all nodes in the
cluster, the MST creation process can be described as follows:

In Step-4, each LN builds the MST network topology of
its cluster ¢; by collecting neighbor information .4, (s;) for
each node s; in cluster ¢;. When the nodes S; receive the
announcement message from the LN, every node transmits its
neighbors’ information .4, (s;) back to the LN. The LN then
uses the collected information to generate a comprehensive
view of the network topology for its cluster c¢; and constructs
the MST for the cluster, as shown in Fig. 2(C). Subsequently,
the BNSF framework connects the generated MSTs for each
cluster with each other. Finally, a global MST network topol-
ogy is created for the entire BC network, as illustrated in Fig.
2(D). This global MST can be utilized by network nodes S in
the process of selecting neighbors for broadcasting data within
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Algorithm 2 Construct MST for each Cluster using Dijkstra’s
Algorithm

Input: Network cluster ¢; = (S;, E;)

Output: MST graph for cluster c;.

/1 d[;] represents the distances between a node s; and its parent
node

/I pl;] represents parent nodes for all nodes s; € S;.

/I @Q represents a temporary list of node .S;

1: procedure COMPUTE_MST(c;)

2 Initialize d[s1] < 0, p[s1] — None and Q) < S;
3 Initialize M ST as an empty graph.

4: for all s; € S; except{s;} do

5: d[s;] + o0

6 p[si] + None

7 end for

8: while () is not empty do

9: u < node in @ with the minimum distance d[u]
10 Remove u from Q

11: for all neighbor s; of u do

12: if weight(u, s) < d[s;] then

13: d[s;] < weight(u, s;)

14: plsi] + u

15: end if

16: end for

17: end while

18: //Constructs the M ST for cluster ¢;
19: for all s; € S; do

20: if p[s;] # None then

21: Add edge (s;,p[s;]) with edge_weight d[s;] to
the M ST

22: end if

23: end for

24: Return M ST.
25: end procedure

Algorithm 3 Construct Comprehensive MST (M STt om)

Input: Clusters set C, Network graph G.
Output: M ST, : Comprehensive MST for all nodes.
1: MSTeom < Empty Graph
2: R = {}. //R represents the set of root nodes for clusters
C
3: for ¢; in C do
4: MST,, <+ run COMPUTE_MST(¢;) in a separate
thread z;
Add root node of MST,, to R
Add nodes and edges of M ST,, to MSTiom
end for
Connect root nodes in R based on edges in G to form
MS Tcom
9: Return M ST,

A

the network. Algorithm 2 provides a detailed view of how the
leader node develops the network MST.

Algorithm 2 can be explained as follows:

First, select the first node s; from cluster ¢; as the source
node and initialize the set () as the cluster’s set of nodes (line
2). Then, initialize the distance set d[s;] and the parent set p[s;]
for each node s; in cluster ¢; (lines 4 — 7). Subsequently, the
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algorithm starts with the source node s; and traverses multiple
adjacent nodes to explore all interconnected edges. It identifies
a collection of edges that form a tree encompassing every
vertex, with each vertex representing a BC network node (lines
11 — 17). Finally, the distance and parent for each node are
stored for use in constructing the MST topology (lines 19 —
23).

Afterward, the MST network topology of cluster c; is
constructed by acquiring the distances d[s;] to reach nodes
from their parent nodes p[s;], for each node s; € S; within
cluster ¢;. A node without a parent node is considered the
root node of the MST. Ultimately, the algorithm constructs
the MST of cluster ¢; using node predecessors p[s;| and their
corresponding distances d[s;] (lines 20 — 24). Finally, the
root node r of each MST cluster is connected. This results
in a global M ST, for the entire BC network, as shown in
Algorithm 3, which is then used in the process of selecting the
optimal neighbor for data transmission in the network.

Algorithm 3 is used to compute the M ST, for each cluster
¢; in parallel and build a comprehensive M ST, for the entire
BC network topology by connecting all root nodes R of the
clusters’ MSTs.

The use of multiple threads X within Algorithm 3, also
known as parallel computing [50], can accelerate the exe-
cution of the idea in several ways. By dividing a problem
into smaller sub-problems that can be solved independently,
multiple threads can work on different parts of the problem
simultaneously, leading to faster execution times. Additionally,
parallel computing can be used to take advantage of multiple
CPUs or cores, resulting in further performance improvements.
Therefore, parallel computing can be a powerful tool for
accelerating the execution of ideas and achieving our goals
more efficiently.

In Step-5, each LN broadcasts the M STy to its cluster
members. In cluster ¢;, each node s; derives its own optimal
neighbors MON (s;) from the received M ST om. These op-
timal neighbors are then used by nodes in the NS process to
transmit new blocks or transactions over the BC network.

E. Phase 4: Neighbor Selection (NS)

In Step-6, each node s; in the BC network that receives
the M ST,on, from the LN of its cluster, extracts its optimal
neighbor nodes MON (s;) from the received M STeom by
running Algorithm 4.

In Step-7, the proposed framework replaces the RNS
approach with more informed selection criteria, resulting in
improved metrics for the BC network, including the average
time it takes to broadcast a new block or transaction and
achieve lower finality times. Network nodes s; € S use their
MON(s;) in the NS process to optimally select neighbors,
share data, and propagate new blocks and transactions. Each
node s; within a cluster ¢; can determine the most suitable
neighbors for transmitting and broadcasting information to
both nodes within its cluster and nodes in other clusters. This
selection process relies on the M STon provided by the cluster
leader, allowing each node to identify the optimal neighbors
from the MON for data exchange. This proposed approach,
built upon the utilization of M STy, rather than random selec-
tion, significantly improves network performance. It achieves
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Algorithm 4 Find MON (s;) for each node s;

Input: M ST¢om, Node s;.
Output: MST Optimal Neighbors MON (s;) for node s;.

1: procedure FIND_MON(M ST,om, Si)

2: MON (87,) = {}

3: for s; in M ST, do // search for node s; in the
MSTcom

4 if 85 =8 then

5 for all neighbor s, of s; do

6: w < weight(s;, sp)

7 MON (s;) = MON (s;) U{(sg,w)}

8: end for

9: break

10: end if

11: end for

12: return MON (s;)
13: end procedure

this by decreasing the time required for broadcasting data or
blocks within the network, enabling quicker data exchange
among network nodes, reducing overall network bandwidth
utilization, and effectively reducing the possibility of duplicate
data. Consequently, the risk of transmitting the same informa-
tion to a particular node multiple times is diminished since the
selection of the same node from multiple neighbors is avoided
during data exchange.

F. An Illustrative Example

This section provides an example that demonstrates how
the MST works to construct a general M ST, for the entire
permissionless public BC network. A random deployment of
10 nodes, denoted as S = {1,2,3,...,10}, is used and
visualized in Fig. 2(A). The average number of neighbors is
denoted by k, which equals 5.

Table III summarizes the edge weights between the 10
nodes. A value of 0 represents that there is no edge between
these nodes.

TABLE III. EDGE WEIGHT BETWEEN THE 10 NODES

nodes 1 2 3 4 5 6 7 8 9 10
0 65 50 28 73 38 10 78 0 98

—

2 65 0 0 0 0 0 78 T7T 82 0
3 50 0 0 0 0 0 0 0 0 12
4 28 0 0 0 0 0 54 21 96 0
5 73 0 0 0 0 0 19 91 45 70
6 38 0 0 0 0 0 47 0 0 51
7 10 78 0 54 19 47 0 47 32 37
8 78 77 0 21 91 0 47 0 14 0
9 0 82 0 96 45 0 32 14 0 0
10 98 0 12 0 70 51 37 0 0 0

Algorithm 1 applies the agglomerative clustering algorithm
to segment these nodes into two distinct clusters (M = 2):
1 = {3,6,10} and co = {1,2,4,5,7,8,9}, as displayed in
Fig. 2(b). Initially, each data node forms an individual cluster:
{1}, {2}, {3}, {4}, {5}. {6}, ..., {10}. Algorithm 1 calculates
distances between all cluster pairs using Euclidean distance,
subsequently merging the closest clusters into single entities.
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For instance, if the closest clusters are {3} and {10}, they
merge into a new cluster: {3, 10}. This process iterates, adjust-
ing the hierarchy to include {1}, {2}, ..., {3,10}, ..., {9}.
After each merge, distances between the new cluster and other
clusters are recalculated. As an illustration, subsequent clusters
such as {3,10} and {6} merge into {3,6,10}. This iterative
process persists until the desired number of clusters is achieved
(M = 2). Now we have the two clusters ¢; = {3,6,10} and
co ={1,2,4,5,7,8,9}.

Algorithm 2, ”Construct MST for each Cluster,” is used to
calculate the MST for each of the two clusters individually.
The resulting MSTs for the clusters are presented in Fig. 2(c).
Consider the example of cluster c; = {1,2,4,5,7,8,9}. We
begin by initiating the MST construction for this cluster. A
queue () is established, containing nodes 1, 2, 4, 5, 7, 8, and
9. The initial distances and parent node references for each
node are outlined in Table IV at step 1. The MST construction
starts with node 1 as the source node, assigned a distance of
0. The algorithm removes node 1 from () and proceeds to
evaluate neighboring nodes connected to 1 within the cluster
co. Nodes {2,4,5,7,8} exhibit edge weights to node 1 that
are smaller than their initial distances (infinity). Consequently,
the algorithm updates the distances and parents of these nodes
as indicated in Table IV at step 2.

Subsequently, with @ = {2,4,5,7,8,9}, node 7 emerges
as the node with the minimum-weight edge to node 1, weigh-
ing 10. Among the remaining nodes in @, {2, 4, 5, 8,9} possess
edge weights to node 7. However, nodes 2 and 4 do not have
their distances and parents updated due to their existing lower
distances compared to the new edge weights. After removing
node 7 from (), the algorithm only updates the distances and
weights of nodes {5,8,9}, as presented in Table IV at step
3. Continuing with @ = {2,4,5,8,9}, node 5 stands out as
having the smallest edge weight to node 7, amounting to 19.
First, Node 5 is then removed from Q. Nodes {8,9} exhibit
edge weights to node 5, but due to higher weights of 91 and
45 for nodes 8 and 9 respectively, their distances and parents
remain unchanged.

The progression leads to @ = {2,4,8,9}. Among the
remaining nodes, node 4 stands out for its smallest edge weight
to node 1, measuring 28. Node 4 is removed from (). Although
nodes {8, 9} also have edge weights to node 4, only node 8 has
its parent and distance updated due to its lower weight of 21,
as seen in Table IV at step 4. Continuing, with Q = {2,8,9},
node 8 displays the smallest edge weight to node 4, measuring
21. Node 8 is removed from ). Among the remaining nodes
in ), node 2 has a higher weight than its current distance,
leading to no update in its distance and parent. The algorithm
proceeds to update only the parent and distance of node 9 in
Table IV at step o.

This leaves @ = {2,9}. Node 9 holds the smallest edge
weight to node 8, weighing 14. However, node 2 does not have
its distance and parent updated due to its higher weight of 82.
The algorithm only removes node 9 from (). Finally, node 2
remains within ), connected to node 1 with an edge weight
of 65. The algorithm proceeds by removing node 2 from @,
resulting in an empty queue. As node 2 does not have any
unvisited neighbors, the algorithm terminates.

The last step involves constructing the MST using the
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stored distances and parent node values of the cluster nodes.
Furthermore, the root node of the MST for each cluster c¢ is
denoted as r.. Consequently, the root nodes for the clusters
are 1 = {3} and 73 = {1}. The union of all root nodes from
the clusters is represented as R = {3,1}.

TABLE IV. THE DISTANCES AND PARENT REFERENCES FOR CLUSTER c3

nodes 1 2 4 5 7 8 9
step 1 pls] None None None None None None  None
d[s] 0 59 9 00 o0 oo S
step 2 p[s] None 1 1 1 1 1 None
d[s] 0 65 28 73 10 78 00
step 3 p[s] None 1 1 7 1 7 7
d[s] 0 65 28 19 10 47 32
step 4 p[s] None 1 1 7 1 4 7
d[s] 0 65 28 19 10 21 32
step 5 p[s] None 1 1 7 1 4 8
d[s] 0 65 28 19 10 21 14

Ultimately, the BNSF framework establishes connections
between all root nodes, resulting in a comprehensive M ST, o,
for the entire BC Network, as illustrated in Fig. 2(d). This
M ST.om serves as the optimal pathway for data propagation
within the BC network, ensuring efficient communication and
dissemination of information among the nodes. Each node
within the network extracts its optimal neighbors (MONs) from
the comprehensive M ST,y based on Algorithm 4.

In this example, the MONs of node 1 encom-
pass a dictionary of nodes with their weight values
{(2,65), (3,50), (4,28),(7,10)}, enabling seamless data ex-
change. Notably, these MONs correspond to nodes with the
lowest weights compared to other neighbors in the original
BC network, thereby speeding up the data transfer process
throughout the network. Through the BNSF approach, the BC
network achieves an efficient structure, facilitating secure and
rapid data transmission across the entire network.

G. Complexity Analysis of Algorithms

Mainly BNSF consists of four algorithms, Algorithm 1
consists of two steps: filling the edge matrix Ag from BC net-
work graph G and applying agglomerative clustering on Ag.
The first step involves a loop and a nested loop, with O(N?)
time complexity where N is the total BC network nodes. The
second step has a loop with O (V) time complexity. Inside this
loop (line 12), Calculating pairwise distances between clusters
O(N?). Thus, the overall complexity is roughly O(N?3).

Algorithm 2 operates in two phases: the first phase calcu-
lates the shortest paths using Dijkstra’s algorithm, which runs
in O(n?) time. n denotes the number of nodes within cluster
c;, where n; is a subset of N. The second phase constructs
an MST using the calculated predecessor nodes. This phase
requires considering all nodes and their corresponding prede-
cessor edges, which results in an overall time complexity of
O(n;). Therefore, the complexity of the entire algorithm is
deterzmined by Dijkstra’s algorithm phase, which is typically
O(n3).

K2

Algorithm 3 concurrently constructs MSTs for multiple
clusters. The complexity analysis centers on the function
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Compute_MST(¢;), which exhibits a time complexity of
O(n?), where n; represents the count of nodes within cluster
¢;, and ¢ ranges from 1 to M. The overall complexity is
bounded by max(O(n3)), where j indicates the cluster index
associated with the maximum number of nodes. This arises due
to the parallel construction of MSTs across all clusters. This
approach leverages the advantages of multi-threading while
respecting the underlying cluster computation complexity.

The complexity analysis of Algorithm 4 is as follows:
initializing M ON (s;) as an empty set takes O(1) time. The
outer loop iterates through each node s; in the MSTcom,
which depends on network nodes N. Inside, a loop iterates
through each neighbor s;, of the current node s;. The overall
complexity is O(N) (outer loop) * O(k) (inner loop), where
k represents the average number of neighbors for a node s;.
For sparse BC networks, complexity is nearly linear; for dense
networks, it approaches O(Nk).

IV. EXPERIMENTS AND RESULTS

This section includes the main experiments and evaluation
of the proposed framework. The used network datasets, perfor-
mance measures, and the conducted experiments are discussed
in detail. Network data used in this study was generated by
the simulator developed by [51]. The simulator built a random
network topology using a random network model, namely the
Barabasi-Albert (BA) model [52]. It simulates nodes in real
networks, which can be found in many natural and human-
generated systems, including but not limited to the Internet,
social networks, and the World Wide Web.

The simulation starts by generating a random BC network,
where a miner node is selected at random as the source node
for a data block. Subsequently, the source node shares the
generated block with its neighboring nodes, and each neighbor
continues this process with its own neighbors, creating a
cascade effect. The simulation concludes once a block has
successfully reached all nodes in the network.

The experiments were conducted on a DELL laptop featur-
ing an Intel i5-5200U CPU (4 Cores, 2.2GHz), 12GB DDR3
RAM, a 250GB SSD Drive, and a Windows 10 operating
system. The experimental results are checked and evaluated
using the following performance metrics:

e  Total Propagation Time (T'P) (us): is the time it takes
for block data sent from a randomly selected miner
node to propagate to all nodes within the network.

e MST,m calculation time (M ST-CT) (sec): is the
actual time required to build the M ST.,, network
topology for the entire BC network.

e  Number of exchanged blocks (/V B): denotes the count
of blocks exchanged between network nodes in order
to broadcast the block sent from a randomly selected
miner node, including redundant or repeated blocks
that a node could receive from different neighbors
until it reaches all network nodes.

The experiments conducted in this paper are classified into
the following categories:

e Experiments 1 and 2 focus on analyzing the corre-
lation between the BNSF parameters (Avg. no. of
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neighbors k, no. of clusters M, and no. of nodes )
and performance metrics.

e  Experiment 3 aims to enhance BNSF by employing
various clustering algorithms such as Agglomerative,
K-means, and Community Louvain.

e  Experiment 4 involves comparing BNSF with other
methods, specifically DONS, RTT-NS, and RNS.

Experiment 1

This experiment examines and discusses the effect of the
average number of neighbors per node k£ on performance
metrics TP and M ST-CT, considering various numbers of
nodes N (e.g., 500, 1000, and 1500). The number of clusters
C is constant, set to 5. In Fig. 3(A), on the left-hand side, T'P
is plotted against k (e.g., 5, 10, 15, 20). T'P decreases by up to
68.57% when k equals 20 and N equals 1500. In general, as
k increases, T'P decreases correspondingly. This is due to the
increase in the number of potential neighbors for each node in
the network, providing more options to select the best neighbor
node and consequently build a better M ST,y network with
lower weight. The more neighbors a node has, the better the
M ST.om becomes. As a result, the process of broadcasting
new blocks improves, as it relies on the best-created M ST, o,
leading to faster block propagation in the network.

In Fig. 3(B), on the right-hand side, M ST-CT is plotted
against k. As observed, M ST-CT slightly reduces by 4.84%
when £ is set to 20, and N is 1500. As k increases, the change
in M ST-CT remains minimal for every N of nodes, indicat-
ing that varying the number of neighbors for each node in
the network does not significantly impact the calculation time
required to construct the M ST, topology of the BC network.
Conversely, the increase in the number of nodes N within

the network significantly affects the M ST, calculation time
MST-CT.
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Fig. 3. Average number of neighbors (k) vs. (A) The average total
propagation time (7'P) and (B) the M STtom calculation time.

Experiment 2

In this experiment, the impact of the number of clusters M
on performance metrics 7'P and M ST-CT is discussed while
considering different numbers of nodes N (e.g., 500, 1000,
and 1500). The average number of neighbors for every node
k is constant, set to 15. In Fig. 4(A), TP is plotted against M
(e.g., 2,4, 6,8, and 10). Generally, as M increases, the value of

Vol. 15, No. 3, 2024

TP changes correspondingly but with irregular values. When
N is equal to 500, it can be observed that with a significantly
increased number of clusters M and a small number of nodes,
there is a considerable increase in the propagation time 7'P.
Consequently, it is better to choose a small number of clusters
to match the small number of nodes. Furthermore, when N
equals 1000 and 1500, a larger number of clusters can be
selected due to the increased node count to obtain the best
performance and the lowest propagation time 7'P.

In Fig. 4(B), M STy calculation time (MST-CT) is
plotted against the number of clusters M (e.g., 2, 4, 6, 8, and
10). When the number of clusters M increases, M ST-CT
changes slightly for every N of nodes. Therefore, increasing
or decreasing the number of network clusters does not sig-
nificantly affect the calculation time required to construct the
M ST:om topology of the BC network. In contrast, M ST-CT
is notably influenced by the increase in the number of nodes
N within the network.
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Fig. 4. Number of clusters (M) vs. (A) The average total propagation time
(T'P) and (B) M ST¢om calculation time.

Experiment 3

In this experiment, the BNSF framework was developed
using different clustering algorithms to examine the efficiency
of the proposed model, with a specific focus on agglomerative
clustering. Two clustering algorithms, namely K-means and
Community Louvain, were compared with the Agglomerative
algorithm. K-means clustering [53] is a method that aims to
group N nodes into M clusters by ensuring that each node is
assigned to the cluster with the closest mean value, also known
as the cluster center or centroid. On the other hand, Community
Louvain is a clustering technique designed for large networks.
It computes the best partition of the graph nodes by maximiz-
ing modularity using the Louvain heuristics. This results in the
partition with the highest modularity achieved by the Louvain
algorithm [54].

The number of clusters M is constant and set to 5 for
both the agglomerative and K-means clustering methods. The
configuration of the network size and the average number
of neighbors per node is modified. This is done to demon-
strate the advantages of the proposed framework with the
Agglomerative clustering method in various real-life scenarios.
Table V displays the best outcomes for the Total Propaga-
tion Time, highlighted in bold. As shown in Table V, the
BNSF framework with Agglomerative clustering achieves the
highest performance with the lowest propagation time. When
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TABLE V. DEVELOPING THE BNSF FRAMEWORK WITH DIFFERENT CLUSTERING ALGORITHMS

Model Network parameter No.Nodes Total Propagation Time (us)
Avg.no.neighbors Agglomerative K-means Community Louvain
Mean SD Mean SD Mean SD

500 393.2 7.05 1399.2  330.66 | 2007.8  226.71

10 1000 409.6 53.36 13358 466.54 | 3030.4  367.69

1500 498.2 81.89 17504 369.61 3486.2  245.82

500 313 60.99 | 8574 207.52 | 2112.6  405.23

BA 15 1000 323.8 65.14 1216 398.4 2567.4  273.12
1500 344.4 29.71 16162 395.1 3185.6  352.66

500 277.2 21.73 1107.6  184.96 14354 208.94

20 1000 273.2 31.42 11904  238.18 1980.8  349.22

1500 294.4 33.32 10912 241.54 | 23682  307.62

comparing it to other clustering algorithms like K-means, it
outperforms by 73.02%, and when compared to Community
Louvain, it outperforms by 87.57%, with k set to 20 and N
set to 1500 in terms of T'P.

Experiment 4

The proposed BNSF framework is assessed in terms of
total propagation time and message complexity in comparison
to commonly employed neighbor selection methods such as
DONS, RNS, and NS based on local RTT. The four neighbor
selection methods are compared under identical network con-
ditions, with the same block originating from the same source
node.

Several experiments have been conducted using a random
network model, specifically the Barabasi-Albert (BA) model.
The number of nodes N and the average number of neighbors
for every node k were varied to capture the behavior of the
proposed framework under different network sizes.

The efficiency of BNSF was examined in terms of TP,
MST-CT, and NB. The number of clusters M for BNSF
equals 3 for N = 500, equals 5 for NV = 1000, and equals 7
for N = 1500.

In this part of the experiment, the network size and the
average number of neighbors for every node are varied with
k =10, 15, and 20 to illustrate the robustness of the proposed
BNSF framework in diverse real-life scenarios. The results
obtained from all algorithms, along with the outcomes of
different simulation scenarios, are presented in Table VI.

According to Table VI, the BNSF framework and the
DONS algorithm do not have redundant blocks when ex-
changing information between nodes in the BC network,
as nodes keep track of the replicated blocks they receive.
The more redundant blocks, the more blocks are exchanged
between nodes in the network, resulting in higher overhead
on communication links and computational burden at the node
level. Consequently, this leads to an elevated total propagation
time. However, the BNSF framework outperforms the other
algorithms, namely RNS and RTT-NS, in terms of the number
of blocks exchanged within the network.

The proposed BNSF framework also outperforms the
DONS algorithm on other points like the propagation time
of blocks within the network (1T'P) and the duration needed
to construct the M ST.,, of the BC network (M ST-CT).

Furthermore, according to Table VI, the proposed BNSF
framework outperforms the other algorithms like DONS (by
51.14%), RTT-NS (by 99.16%), and RNS (by 99.95%) in terms
of TP, when k equals 20, and N equals 1500.
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Fig. 5. Average M ST-CT for BNSF and DONS with Different Numbers of
Nodes N.

In Fig. 5, the proposed BNSF framework is compared with
the DONS algorithm in terms of M ST-CT, which is plotted
against the number of nodes N (e.g., 500, 1000, and 1500).
As observed, the average M ST-C'T achieved by the proposed
BNSF framework is 28.48% lower than that of the DONS
algorithm. These results demonstrate the superior performance
of BNSF over the DONS algorithm.

When increasing the number of clusters, the MST-CT
should exhibit variations for different node counts N (e.g.,
500, 1000, and 1500), depending on the network topology and
the distribution of nodes within clusters. Thus, the calculation
time required for constructing the M STom topology of the BC
network is significantly influenced by the number of clusters in
the network and its size, reducing it to approximately 27.92%
below that of the DONS algorithm. Computing the M ST
for each cluster of nodes in separate threads will result in
minimizing the calculation time for the complete BC network’s
M STeom.

V. CONCLUSIONS AND FUTURE WORK

The paper introduces an improved dynamic neighbor selec-
tion BNSF framework to tackle neighbor selection and scal-
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TABLE VI. PERFORMANCE OF THE PROPOSED BNSF FRAMEWORK AGAINST DONS, RTT-NS, AND RNS METHODS ON A RANDOMLY GENERATED
NETWORK MODEL (BA) WITH VARYING SIZES

Model Network parameter | No.Nodes Total Propagation Time (us)
Avg.no.neighbors BNSF DONS RTT-NS RNS
Mean SD Mean SD Mean SD Mean SD
500 330.2 30.10 | 59033 942 18837 723.82 167146.67 18073.32
10 1000 409.6 53.36 | 894 236.99 | 38864.33 1554.55 335111.33  30211.1
1500 536 58.51 | 999.67 157.05 | 60596 3977.12 | 546851.67  63705.87
500 298.6 34.46 | 499 113.92 14123 1182.76 135582.33  20082.65
BA 15 1000 323.8 65.14 | 523.67 84.39 2993433  2358.39 | 389176 19521.17
1500 335.8 82.33 | 892 94.16 45594.33 1127.41 586644.33  88479.45
500 263.4 17.83 | 390.4 59.81 10923.8 1193.06 135820 22940.17
20 1000 273.2 3142 | 4984 60.43 23308.2 722.98 327798 54554.98
1500 298.8 4276 | 611.6 57.98 35393.6 2042.82 | 548139.4 64174.62
Avg Number of exchanged blocks (NB)
BNSF DONS RTT-NS RNS
Mean SD Mean SD Mean SD Mean SD
500 500 0 500 0 674 13.64 6088.67 702.89
10 1000 1000 0 1000 0 1340.33 52.64 12047.67 1138.42
1500 1500 0 1500 0 2060 68.59 20227.67 2491.43
500 500 0 500 0 610.67 23.61 4929.33 734.42
BA 15 1000 1000 0 1000 0 1266.33 49.88 14730 700.33
1500 1500 0 1500 0 1884.67 16.78 21983 3551.55
500 500 0 500 0 578.8 19.03 5071 936.52
20 1000 1000 0 1000 0 1166 8.44 12402.2 2208.76
1500 1500 0 1500 0 1768.2 26.76 20802.8 2561.74

ability issues in public blockchain networks. This framework
reduces block propagation time, enhancing block or transaction
throughput compared to traditional methods. As blockchain
networks expand, the BNSF framework adapts by dividing
the network topology into clusters and utilizing a multi-leader
node approach. Multi-threading is employed to compute the
MST of clusters concurrently, thereby enhancing scalability
and ensuring efficient neighbor selection for faster and more
streamlined block propagation.

The proposed BNSF framework demonstrates a significant
reduction in total block propagation time, with a decrease
of up to 68.57% when the average number of neighbors is
20 for each node and the total number of network nodes
is 1500. Utilizing agglomerative clustering achieves superior
performance, outperforming K-means by 73.02% and Com-
munity Louvain by 87.57% in total block propagation time,
with similar network parameters.

The results of the proposed work showed a significant
improvement in block propagation for networks of various
sizes, surpassing state-of-the-art methods. The proposed BNSF
framework is also effective in large-scale networks with a
high node count. These experiments also revealed the BNSF
framework’s exceptional performance compared to alternative
neighbor selection methods such as DONS, RNS, and RTT-NS.
Furthermore, it decreases the overall time for block propaga-
tion, surpassing DONS by 51.14%, RTT-NS by 99.16%, and
RNS by 99.95%. Additionally, the BNSF framework achieves
an average M ST,y calculation time of 27.92% lower than the
DONS algorithm. Finally, it ensures the absence of redundant
blocks during information exchange among nodes in the BC
network.

In future work, further investigation will be conducted into

alternative clustering methods for network partitioning and
the exploration of alternative protocols for identifying leader
nodes within clusters to enhance the efficiency of the BNSF
framework. The impact of these choices on the framework’s
performance and efficiency will be thoroughly examined. Ad-
ditionally, potential upgrades to the BNSF framework to serve
as a comprehensive gossip and consensus protocol for public
blockchain networks will be explored.
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