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Abstract—This research focuses on investigating the issue of 

accurately controlling the location of the ball in the ball and plate 

system. The findings of this research have practical applications 

across several domains, including optimizing the alignment of 

solar panels to enhance their energy generation capacity. In this 

work, we propose the development of a system dynamics model 

using the Euler-Lagrangian approach. Furthermore, we analyze 

a technique in the frequency domain known as the geometric 

approach to create a state-feedback control that ensures the 

stability of the system. This study primarily focuses on analyzing 

the characteristic equations associated with the closed-loop 

system, while also considering the impact of feedback delay. 

Ultimately, the proposed technique is substantiated by presenting 

simulation data for validation. 
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I. INTRODUCTION 

We are intrigued by this article's exploration of the issue of 
position control of the ball in the ball and plate system. The 
main objective is to accurately identify the stable region of the 
closed-loop system. The parameters within this region ensure 
system stability. Consequently, additional requirements can be 
incorporated into the controller, with the aim of finding the 
optimal parameters within this region that not only guarantee 
stability, but also achieve a desired level of precision and speed 
for the system. 

This objective is achieved by utilizing both state feedback 
control and a frequency analysis technique known as the 
Geometric method [2]. To evaluate the efficiency of the 
developed controllers, we have opted to focus on a highly 
responsive technology known as the Ball and Plate technology. 
The potential uses of this research are manifold, such as 
utilizing sensors to assess radiation and then adjusting the 
panel support to optimize the orientation of solar panels and 
enhance their efficiency. 

Multiple control rules have been devised to regulate the 
location of the ball on the plate [1]-[4]-[7]-[8]. Nevertheless, 
the majority of these studies rely on a real-time model [5], 
which entails a continuous measurement in real-time. 
However, this hypothesis fails to accurately capture the actual 
dynamics of the system [3]. 

The ball and plate structure is a development of the ball and 
beam system. Due to its uncomplicated setup and easy 
implementation, it has become a much sought-after device for 
controller implementation. By utilizing the touch screen as a 
position sensor in conjunction with a standard PID controller, it 

is possible to conduct real-world experiments [13]-[14]. 
Furthermore, a ball and plate system was created for 
educational purposes [15]-[16]. Several academics have 
developed a fuzzy control method using this teaching 
equipment [17]-[18]. 

Due to the more advanced study on the ball-beam systems, 
we were particularly interested in the models referenced in 
sources [6]-[9]. These models may be classified into two 
distinct types.  The first group employs neutral functional 
differential equations [11], whereas the second category 
utilizes retarded functional differential equations [9]-[12]. 

Therefore, we suggest utilizing a ball and plate system 
model that relies on retarded functional equations [9], together 
with frequency domain synthesis techniques (refer to [2] and 
[10]), to construct a state feedback control rule [2]. This 
method may ascertain the stability zone of the system in the 
control parameter space, while considering the impact of 
feedback delay. Consequently, it is permissible to choose the 
parameters of the control rule that fall inside the stable zone 
and satisfy the necessary specifications. 

The subsequent sections of this article are structured in the 
following manner. Section 2 presents the ball and plate system 
model, which is based on retarded functional equations. In 
Section 3, we focus on the synthesis of state feedback control 
laws to guarantee the stability of the closed-loop system. 
Section 4 presents an illustrative scenario taken from existing 
literature, and simulations validate the suggested methodology. 
Ultimately, we arrive to a conclusion in Section 5. 

NOMENCLATURE 

𝐿𝑋 Plate length in x-direction 

𝐿𝑌 Plate length in y-direction 

𝑟𝑀 Motor arm length 

𝑟𝑏 Ball radius 

𝑚𝑏 Ball mass 

𝐽𝑏 Moment of inertia of the ball 

𝛼 Plate angle around the x-axis 

𝛽 Plate angle around the y-axis 

𝜗𝑥 Motor angle around the x-axis 

𝜗𝑦 Motor angle around the y-axis 

𝐾 State feedback gain  

𝑥(𝑡) State space vector 

𝜏𝑥 System feedback delay along the x-axis 

𝜏𝑦 System feedback delay along the y-axis 

Ω Set of crossing frequency 
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II. BALL AND PLATE SYSTEM MODELING 

In this section we will determine the linear model of the 
ball and Plate system (see Fig. 1). For this, we will first apply 
Lagrange's method, then we will linearize the model found 
around the operating point. Finally we will present the model 
in the state space. 

A. Preliminaries 

Considering 𝐸𝑘  and 𝐸𝑝  respectively the kinetic and 

potential energy of the system. 

The Lagrangian equation is then expressed as: 

𝜕

𝜕𝑡
(

𝜕𝐿

𝜕𝑥̇
) −  

𝜕𝐿

𝜕𝑥
= 0                           (1) 

with 

𝐿 = 𝐸𝑘 −  𝐸𝑝                               (2) 

The total kinetic energy of the ball is equal to the sum of 
the translational kinetic energy 𝐸𝑘,𝑇  and the rotational kinetic 

energy 𝐸𝑘,𝑅 with: 

𝐸𝑘,𝑇 =  
1

2
 𝑚𝑏𝑣𝑏

2  =  
1

2
 𝑚𝑏(𝑥̇𝑏

2 + 𝑦̇𝑏
2)              (3) 

𝐸𝑘,𝑅 =  
1

2
 𝐽𝑏𝜔𝑏

2  =  
1

2
 𝐽𝑏

(𝑥̇𝑏
2+𝑦̇𝑏

2)

𝑟𝑏
2                   (4) 

Thus 

𝐸𝑘 =  
1

2
 (𝑚𝑏 +

𝐽𝑏

𝑟𝑏
2) (𝑥̇𝑏

2 + 𝑦̇𝑏
2)                  (5) 

 
Fig. 1. Structure of the ball and plate system. 

Taking into consideration the angles between the plate and 
the axes 𝑂𝑥 and 𝑂𝑦 (see Fig. 2), the potential energy can be 
expressed by: 

   𝐸𝑝  =  −𝑚𝑏𝑔𝑥𝑏 sin(𝛼)−𝑚𝑏𝑔𝑦𝑏  sin(𝛽)          (6) 

Thus 

𝐿 = 
1

2
 (𝑚𝑏+

𝐽𝑏

𝑟𝑏
2)(𝑥̇𝑏

2+𝑦̇𝑏
2)

                        + 𝑚𝑏𝑔𝑥𝑏 sin(𝛼) + 𝑚𝑏𝑔𝑦𝑏 sin(𝛽)
         (7) 

 

So applying the Lagrangian Eq. (1) where 𝐿 is described by 
Eq. (7), we have: 

𝜕

𝜕𝑡
(

𝜕𝐿

𝜕𝑥̇
) =

𝜕

𝜕𝑡
((𝑚𝑏 +

𝐽𝑏

𝑟𝑏
2) 𝑥̇𝑏)=(𝑚𝑏 +

𝐽𝑏

𝑟𝑏
2) 𝑥̈𝑏       (8) 

𝜕𝐿

𝜕𝑥
= 𝑚𝑏𝑔 sin(𝛼)                          (9) 

 
Fig. 2. Side view of the ball and plate system. 

After simplification, we therefore have the differential 
equation of the motion of the ball along the x-axis : 

𝑥̈𝑏 =
𝑚𝑏𝑔𝑟𝑏

2

𝑚𝑏𝑟𝑏
2+𝐽𝑏

 sin(𝛼)                     (10) 

Similarly, following the same steps, the differential 
equation of the motion of the ball along the y-axis is described 
by the following equation. 

𝑦̈𝑏 =
𝑚𝑏𝑔𝑟𝑏

2

𝑚𝑏𝑟𝑏
2+𝐽𝑏

 sin(𝛽)                    (11) 

In order to determine a mathematical model between the 
inputs of the system (𝜗𝑥 and 𝜗𝑦) and the outputs of the system 

(𝑥, 𝑦). 

From Fig. 2 we can write : 

sin(𝜗𝑥) 𝑟𝑀 = 𝑠𝑖𝑛(𝛼)𝐿𝑋 = ℎ             (12) 

By combining (10) and (12), we have: 

𝑥̈𝑏 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑋

 sin(𝜗𝑥)             (13) 

𝑦̈𝑏 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑌

 sin(𝜗𝑦)             (14) 

B. The Linearized Model of the Ball-Plate System 

The linearization of the model in Eq. (13), (14) around the 
operating point (𝑥 = 0, 𝑦 = 0), assuming a small variation of 
the 𝜗𝑥 and 𝜗𝑦 angles, leads us to the following equations : 

𝑥̈𝑏 = 𝐺𝑥  𝜗𝑥                              (15) 

𝑦̈𝑏 = 𝐺𝑦 𝜗𝑦                              (16) 

with 

𝐺𝑥 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑋

   and   𝐺𝑦 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑌

 

Remark : 

Given the similarity of the x- and y-axis models, in the 
following we will start the study based on the x-axis modeling 
and deduce at the end the results for the y-axis. 

As a result, the state space model of the Ball and Plate 
System along the x-axis can be written as follows: 
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{
  𝑥̇(𝑡)  =  𝐴 𝑥(𝑡)  +  𝐵 𝑢(𝑡 − 𝜏𝑥)

 𝑦(𝑡)  =  𝐶 𝑥(𝑡)                             
            (17) 

Where 𝑥(𝑡) =  [𝑥𝑏(𝑡) 𝑥̇𝑏(𝑡)] 𝑇 is the state vector, 𝑢(𝑡) =
 𝜗𝑥(𝑡) is the input, 𝜏𝑥 is the feedback delay and  

𝐴 = [
0 1
0 0

] , 𝐵 = [
0

𝐺𝑥
] , 𝐶 = [1 0] 

III. STATE-FEEDBACK CONTROLLER 

This part will concentrate on the construction of a state 
feedback controller in order to guarantee the stability of the 
closed-loop system. As stated previously, we will employ a 
geometric approach [2] to identify the specific area in the 
control parameter space where stability may be guaranteed. 

A. Geometric Approach Principle 

The geometric technique [2] is a frequency-based 
methodology that enables the determination of stability areas 
and regions where the measurement error converges to zero 
during the synthesis of the observer. Hereafter, we just provide 
the fundamental aspects to resolve this issue. 

B. Stability Regions 

Next, we will implement the various stages of the 
geometric technique to determine the stability region of the 
closed-loop system. 

The state feedback controller is characterized by: 

𝑢(𝑡)  =  −𝐾𝑥  𝑥(𝑡)                        (18) 

𝐾𝑥   is the state feedback gain that guarantees the stability of 
the system (17) for any 𝜏𝑥 < 𝜏𝑥

∗   (where 𝜏𝑥
∗  is the maximum 

delay 𝜏𝑥 ). 

If the controllability of (𝐴, 𝐵) is assumed, the goal is to 
find the gain 𝐾𝑥  that will define the characteristic equation of 
the closed-loop system: 

𝐻(𝑠, 𝑒−𝜏𝑥𝑠) = det (𝑠𝐼2 − (𝐴 − 𝐵𝐾𝑥  𝑒−𝜏𝑥𝑠))=0    (19) 

is Hurwitz for any  𝜏𝑥 < 𝜏𝑥
∗  

By employing the Laplace transform, we can express the 
system as follows: 

{
  𝑠 𝑥(𝑠)  =  𝐴 𝑥(𝑠)  +  𝐵 𝑢(𝑠)𝑒−𝜏𝑥𝑠

     𝑦(𝑠)  =  𝐶 𝑥(𝑠)                             
         (20) 

Also, the state-feedback controller takes the following 
form: 

𝑢(𝑠)  =  −𝐾𝑥   𝑥(𝑠)                        (21) 

 
where,  𝐾𝑥 = [𝑘𝑥1 𝑘𝑥2]  is the state feedback gain. 

The characteristic equations related to the closed-loop 
system are as follows: 

𝐻(𝑠, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥) = 𝑄(𝑠) + 𝑃(𝑠)𝑒−𝜏𝑥𝑠        (22) 

The polynomials 𝑄(𝑠) and 𝑃(𝑠) are defined as follows: 

𝑄(𝑠) =  𝑠2 ,    𝑃(𝑠) =  𝐺𝑥(𝑠𝑘𝑥2 + 𝑘𝑥1)        (23) 

The characteristic Eq. (22) has real coefficients, therefore, 
the conjugate of each root is also a solution of this equation, so 
we have the following equations: 

𝐻(𝑠, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥) = 𝑄(𝑠) + 𝑃(𝑠)𝑒−𝜏𝑥𝑠 = 0

 𝐻(−𝑠, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥) = 𝑄(−𝑠) + 𝑃(−𝑠)𝑒𝜏𝑥𝑠 = 0
   (24) 

In this analysis, we will start by examining a zero-delay 
closed-loop system and endeavor to identify conditions that 
govern the corrector parameters and guarantee the system's 
stability (17). 

𝐻(𝑠, 𝑘𝑥1, 𝑘𝑥2, 0) = 0  is thus the Hurwitz characteristic 
polynomial. More precisely, for the complex left half-plane to 
contain all of its roots, the following conditions must be met: 

𝑘𝑥1 > 0,   𝑘𝑥2 > 0                      (25) 

This represents a first requirement on the parameters of the 
controller. 

C. Crossing Curves 

For determining the gain 𝐾𝑥   that guarantees the roots are 
distributed in the complex left half plane, one must initially 
identify the parameters of the state feedback gain 𝐾𝑥   that 
contain a minimum of one pure imaginary root in the 
characteristic equation (19). This is the same as attempting to 
solve the equation: 

∀𝜔 > 0, 𝜏𝑥
∗  ∈  ℛ+, 𝐻(𝑗𝜔, 𝑒−𝑗𝜔 𝜏𝑥

∗
) = 0       (26) 

The retrieved K-parameters define the so-called crossing 
points. Consequently, this enables the generation of crossing 
curves in the region of the parameters (𝑘𝑥2, 𝑘𝑥1). 

By considering the system (17), we can define the crossing 
points in the space (𝑘𝑥2, 𝑘𝑥1) as follows: 

Proposition 1 

For a delay 𝜏𝑥
∗ > 0  and  𝜔 ∈ Ω , the crossing points are 

defined by the following equations: 

  𝑘𝑥1 =
𝜔2 cos(𝜔𝜏𝑥

∗ )

𝐺𝑥
                           (27) 

  𝑘𝑥2 =
𝜔 𝑠𝑖𝑛(𝜔𝜏𝑥

∗ )

𝐺𝑥
                            (28) 

where Ω  is the set of frequencies and  𝜔 ∈ ℛ+  such that  
  𝐻(𝑗𝜔, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥

∗) = 0   has at least one solution (𝑘𝑥1, 𝑘𝑥2). 

Proof: From the characteristic equation (26) we have : 

 −𝜔2 + 𝐺𝑥(𝑗𝜔𝑘𝑥2 + 𝑘𝑥1)𝑒−𝑗𝜔 𝜏𝑥
∗

= 0 

Then, considering the real and imaginary parts, we get : 

{
−𝜔2 + 𝐺𝑥(𝜔𝑘𝑥2 sin(𝜔 𝜏𝑥

∗) + 𝑘𝑥1 cos(𝜔 𝜏𝑥
∗)) = 0

𝜔𝑘𝑥2 cos(𝜔 𝜏𝑥
∗) − 𝑘𝑥1 sin(𝜔 𝜏𝑥

∗) = 0
 

Solving these two equations leads to Eq. (27) and (28). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 3, 2024 

971 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. Crossing curves with 𝜏𝑥
∗ = 0.3. 

 

Fig. 4. Crossing curves with  𝜏𝑥
∗ = 0.6. 

 

Fig. 5. Crossing curves with  𝜏𝑥
∗ = 0.9. 

Therefore, through the examination of various delay values 
𝜏𝑥

∗ ∈ {0.3, 0.6, 0.9} , the crossing curves illustrated in Fig. 3, 
Fig. 4 and Fig. 5. The provided curves illustrate the progression 

of the controller parameters (𝑘𝑥2, 𝑘𝑥1) in response to variations 
in the system's pulsation which the Eq. (27) and (28) describe. 

D. Direction of the Crossing 

Using the approach detailed in [2], we can determine the 
direction of the crossing. To do so, we have to consider the 
numbers 𝑅𝑖 and 𝐼𝑖 , defined by: 

𝑅0 + 𝑗𝐼0  =   𝑗
𝜕𝐻(𝑠,𝑘𝑥1,𝑘𝑥2,𝜏𝑥

∗ )

𝜕𝑠
|

𝑠=𝑗𝜔

𝑅1 + 𝑗𝐼1   =  −
1

𝑠
 
𝜕𝐻(𝑠,𝑘𝑥1,𝑘𝑥2,𝜏𝑥

∗ )

𝜕𝑘𝑥2
|

𝑠=𝑗𝜔

𝑅2 + 𝑗𝐼2   =  −
1

𝑠
 
𝜕𝐻(𝑠,𝑘𝑥1,𝑘𝑥2,𝜏𝑥

∗ )

𝜕𝑘𝑥1
|

𝑠=𝑗𝜔

          (29) 

By applying the principles outlined in reference [2], it is 
now possible to ascertain the direction of crossing, which 
denotes the path followed by the roots of 𝐻(𝑗𝜔, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥

∗) =
0   as they traverse the imaginary axis. 

Mathematically, a direction going from left to right is 
translated by the following inequality: 

𝑅2𝐼1 − 𝑅1𝐼2 > 0 

Thus, taking into consideration the expression of the 
numbers 𝑅𝑖 and 𝐼𝑖  defined by (29), after calculation we have : 

𝑅2𝐼1 − 𝑅1𝐼2 =
𝐺𝑥

2

𝜔
 > 0                    (30) 

We can therefore deduce that the direction of the crossing 
is to the right. 

E. Regions of Stability 

Using the findings from the preceding sections, we will 
now identify the areas of stability for the system. This implies 
that all values of the gains 𝐾𝑥 , for which the Eq. (19) is 
Hurwitz for any delay 𝜏𝑥 belongs to the interval [0,  𝜏𝑥

∗] . 

Thus, taking into consideration condition (25) on the one 
hand, and the crossing curve that delimits the stability region 
on the other hand, we have identified the stability region of the 
closed-loop system. Fig. 6 illustrates this region in case  𝜏𝑥

∗ =
0.6 𝑠 . 

 

Fig. 6. The stability area of a closed loop system with 𝜏𝑥
∗ = 0.6 
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Every set of parameters (𝑘𝑥1
∗ ,  𝑘𝑥2

∗ ) inside the shown region 
in Fig. 6, determines a gain 𝐾𝑥

∗ = [𝑘𝑥1
∗    𝑘𝑥2

∗ ] which guarantees 
the closed-loop system's stability for any delay 𝜏𝑥  such that 
𝜏𝑥 < 𝜏𝑥

∗  . Subsequently, we will determine the critical delay 
value 𝜏𝑥

∗  , beyond which stability cannot be assured. 

Proposition 3. Critical delay 

The state feedback controller  𝑢(𝑡)  =  − 𝐾𝑥
∗ 𝑥(𝑡) , with 

𝐾𝑥
∗ = [𝑘𝑥1

∗    𝑘𝑥2
∗ ]   , asymptotically stabilizes the closed loop 

system (17) for any 𝜏𝑥 < 𝜏𝑥  
∗ , such as 𝜏𝑥

∗  is defined by: 

𝜏𝑥  
∗ =

1

𝜔
 𝐴𝑟𝑐𝑐𝑜𝑠 [

𝑘𝑥1
∗  𝜔2

𝐺𝑥((𝑘𝑥1
∗ )2+(𝜔𝑘𝑥2

∗ )2)
]             (31) 

Proof: Considering the characteristic Eq. (22) and 
positioning at the limit of stability, i.e., assuming that it admits 
a root  𝑠 = 𝑗𝜔 , we thus have: 

𝑄(𝑗𝜔) + 𝑃(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑥  
∗

= 0                 (32) 

Using the expression of 𝑃 and 𝑄 and the formula of Euler, 
we thus have: 

cos(𝜔 𝜏𝑥
∗) − j sin(𝜔 𝜏𝑥

∗) =  
𝑘𝑥1

∗  𝜔2 − 𝑗𝜔3 𝑘𝑥2
∗

𝐺𝑥((𝑘𝑥1
∗ )2 + (𝜔𝑘𝑥2

∗ )2)
 

By equality of the real parts of this equation we obtain the 
relation in Eq. (31) 

Proposition 4. Critical frequency of crossing 

The critical frequency of crossing 𝜔0 is defined by: 

𝜔0 = √𝛼1+√𝛼1
2+4𝛼0

2
                           (33) 

With 

𝛼0 =  (𝐺𝑥𝑘𝑥1
∗ )2   and   𝛼1 =  (𝐺𝑥𝑘𝑥2

∗ )2 

Proof: From Eq. (32), we have: 

𝑒−𝑗𝜔𝜏𝑥  
∗

=
−𝑄(𝑗𝜔)

𝑃(𝑗𝜔)
                          (34) 

 𝑒𝑗𝜔𝜏𝑥  
∗

=
−𝑄(−𝑗𝜔)

𝑃(−𝑗𝜔)
                          (35) 

By multiplying the two Eq. (34) and (35), we have: 

𝑄(𝑗𝜔)𝑄(−𝑗𝜔) − 𝑃(𝑗𝜔)𝑃(−𝑗𝜔) = 0 

After simplification, we have the following equation: 

𝜔4 − 𝛼1𝜔2 − 𝛼0 = 0                     (36)     

     

By solving this equation and considering only positive 
frequencies, we find the result in Eq. (33). 

F. Results for the y-axis 

The state feedback controller providing closed-loop system 
stability along the y-axis is defined by: 

𝑢(𝑡)  =  −𝐾𝑦 𝑥(𝑡)                      (37) 

where,  𝐾𝑦 = [𝑘𝑦1 𝑘𝑦2]  is the state feedback gain and 

𝑥(𝑡) =  [𝑦𝑏(𝑡) 𝑦̇𝑏(𝑡)] 𝑇 is the state vector. 

Taking into consideration the expression of the numbers 𝑅𝑖 
and 𝐼𝑖 , defined by Eq. (29), after calculation we have : 

𝑅2𝐼1 − 𝑅1𝐼2 =
𝐺𝑦

2

𝜔
 > 0                      (38) 

So we have the same results along the y-axis, i.e. a 
direction of passage from left to right. 

Based on this result on the one hand and on the crossing 
curve that delimits the region of stability on the other hand, we 
have thus determined the region in which all the roots of the 
characteristic equation have a strictly negative real part, in 
other words, we have identified the region of stability of the 
closed-loop system that controls the evolution of the ball along 
the y-axis. 

Therefore, Fig. 7 illustrates the stability region for 𝜏𝑦
∗ =

0.8 𝑠  

Also, the critical delay is specified as: 

𝜏𝑦  
∗ =

1

𝜔
 𝐴𝑟𝑐𝑐𝑜𝑠 [

𝑘𝑦1
∗  𝜔2

𝐺𝑦((𝑘𝑦1
∗ )2+(𝜔𝑘𝑦2

∗ )2)
]             (39) 

Where the gain of state feedback 𝐾𝑦
∗ = [𝑘𝑦1

∗     𝑘𝑦2
∗ ] 

stabilizes the closed-loop system for any delay 𝜏𝑦 that is less 

than 𝜏𝑦  
∗ . 

IV. SIMULATION 

We will now illustrate the results found in the preceding 
sections. Thus, the ball and plate system described in Section 2 
is taken into consideration, its dynamics are determined by Eq. 
(13) and (14) with: 𝐿𝑋 = 0.134 𝑚 , 𝐿𝑌 = 0.168 𝑚 , 𝑟𝑀 =
0.0245 𝑚 , 𝑟𝑏 = 0.02 𝑚 , 𝐽𝑏 = 0.0000416 𝑘𝑔 ∗ 𝑚2 ,  𝑚𝑏 =
0.26 𝑘𝑔 . And the system feedback delay along the x-axis and 
the y-axis are respectively  𝜏𝑥 = 0.6𝑠 ,   𝜏𝑦 = 0.8𝑠 . 

Thus, considering the regions of stability shown in Fig. 6 
and Fig. 7, we arbitrarily choose two pairs ( 𝑘𝑥1

∗ ,  𝑘𝑥2
∗ ) =

(0.45,   0.6) and (𝑘𝑦1
∗ ,  𝑘𝑦2

∗ ) = (0.35 , 0.75) . 

i.e. 

𝐾𝑥 = [0.45 0.6]                       (40) 

𝐾𝑦 = [0.35 0.75]                     (41) 

From Eq. (31) and (39), we then calculate the critical 
values of feedback delays: 

𝜏𝑥  
∗ = 0.9403  , 𝜏𝑦  

∗ = 1.2399              (42) 

Which means that the state feedback gains  𝐾𝑥  and  𝐾𝑦 

stabilize the system (17) such that 𝜏𝑥  and 𝜏𝑦  both fall within 

the intervals [0,   0.9403) and [0,   1.2399), respectively. 

We then get, on the one hand, Fig. 8 and Fig. 9, which 
illustrate the evolution over time of the ball position defined by 
the coordinates ( 𝑥𝑏  , 𝑦𝑏) , and on the other hand, Fig. 10 
illustrates the evolution of the ball on the plate in the 
(𝑥 , 𝑦) plane. 

Now, choose two other pairs inside the stability regions 
illustrated in Fig. 6 and Fig. 7. 
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(𝑘𝑥1
∗ ,  𝑘𝑥2

∗ ) = (0.25, 1.7)                  (43) 

 (𝑘𝑦1
∗ ,  𝑘𝑦2

∗ ) = (0.55 , 1.45)               (44) 

Thus, we find the evolution of the ball coordinates 
(𝑥𝑏  , 𝑦𝑏)  presented in Fig. 11, Fig. 12, Fig. 13, and the critical 
values of the delays : 

𝜏𝑥  
∗ = 0.6888  , 𝜏𝑦  

∗ = 0.8694              (45) 

 

Fig. 7. The stability area of a closed loop system with  𝜏𝑦
∗ = 0.8. 

 

Fig. 8. Temporal evolution of  𝑥𝑏  with the state feedback gain (40). 

 

Fig. 9. Temporal evolution of  𝑦𝑏  with the state feedback gain (41). 

 

Fig. 10. Evolution of the position of the ball with the state feedback gains 

(40) and (41). 

Comparing the results illustrated in Fig. 10 and Fig. 13, we 
can see that a slight change in the values of the gains 𝐾𝑥 and 
𝐾𝑦 leads, on the one hand, to a decrease in the critical values of 

the delays 𝜏𝑥  and 𝜏𝑦  (See results (42) and (45)), and 

consequently to a restriction on the permitted values of the 
delays, and, on the other hand, to an increase in the 
oscillations, which leads to an increase in the system response 
time. 

 

Fig. 11. Temporal evolution of  𝑦𝑏  with the state feedback gain (43). 

 

Fig. 12. Temporal evolution of  𝑦𝑏  with the state feedback gain (44). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 3, 2024 

974 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 13. Evolution of the position of the ball with the state feedback gains 

(43) and (44). 

It therefore seems that it is imperative to develop an 
algorithm to identify the best gains belonging to the stability 
regions that best meet the required specifications. 

V. CONCLUSION 

This article examines the issue of control in the ball and 
plate system.  By analyzing the impact of feedback delays and 
employing a geometric methodology, we have identified the 
range of gains that guarantee the system stability. 
Subsequently, we demonstrated the feasibility of this method 
using a simulated analysis. It should be mentioned, however, 
that to guarantee the validity of these results, an accurate 
measurement of the system's state is required.  Thus, in future 
work, we will enhance the efficacy of the controller through 
the implementation of an observer such as the Luenberger 
observer. Also to improve the performance of the controller, 
we will prioritize the creation of an algorithm that enables the 
selection of suitable gains, considering the attributes of the 
transient regime, such as response time, rise time, and 
overshoot. 

REFERENCES 

[1] E.F. Sinaga, E.B. Manurung, V.A. Chee and A. Djajadi, “Building and 
controlling a ball and plate system,” International Conference on 
Advances in Communication Network and Computing, March 2011. 

[2] K. Lefrouni and R. Ellaia, “State-feedback control in TCP network: 
geometric approach,” International Review of Automatic Control, vol. 8, 
pp. 127-133, 2015. 

[3] F. Dušek, D. Honc and K. R. Sharma, “Modelling of ball and plate 
system based on first principle model and optimal control,” 21st 

International Conference on Process Control, Strbske Pleso, pp. 216-
221, 2017. 

[4] B. Heeseung and L. Young, “Implementation of a ball and plate control 
system using sliding mode control,” IEEE Access, pp. 32401-32408, 
vol. 10, May 2018. 

[5] A. Knuplez, A. Chowdhury and R. Svecko, “Modeling and control 
design for the ball and plate system,” pp. 1064-1067, vol. 2, 2004. 

[6] B. Meenakshipriya, K. Kalpana, “Modelling and control of ball and 
beam system using coefficient diagram method (CDM) based PID 
controller,” IFAC Proceedings Volumes, vol. 47, pp. 620-626, 2014. 

[7] C.C. Ker, C. E. Lin and R. T. Wang, “Tracking and balance control of 
ball and plate system,” Journal of the Chinese Institute of Engineers, vol. 
30:3, pp. 459-470, 2007. 

[8] D. Xiucheng, Z. Yunyuan, X. Yunyun, Z. Zhang and S. Peng, “ Design 
of PSO fuzzy neural network control for ball and plate system,” 
International Journal of Innovative Computing, Information and Control,  
vol. 7, pp. 7091-7103, 2011. 

[9] G. Buza, T. Insperger, “Mathematical models for balancing tasks on a 
see-saw with reaction time delay,” IFAC-Papers OnLine, vol. 51, pp. 
288-293, 2018. 

[10] W. Michiels and S. Niculescu, “Stability and stabilization of time-delay 
systems: an eigenvalue-based approach,” Advances in Design and 
Control, 2007. 

[11] H. Eduardo, H. Hernán and M. Mark, “Existence of solutions for second 
order partial neutral functional differential equations,” Integral 
Equations and Operator Theory, vol. 62, pp. 191-217, 2008. 

[12] T.H. Baker, “Retarded differential equations,” Journal of Computational 
and Applied Mathematics, vol 125, pp. 309-335, 2000. 

[13] J. H. Park and Y. J. Lee, “Robust visual servoing for motion control of 
the ball on a plate,” Mechatronics, vol. 13, Iss. 7, pp. 723-738, 
September 2003. 

[14] C. Cheng and C. Tsai, “Visual servo control for balancing a ball-plate 
system,” International Journal of Mechanical Engineering and Robotics 
Research, vol. 5, no. 1, pp. 28-32, January 2016. 

[15] A. Kastner, J. Inga, T. Blauth, F. Köpf, M. Flad and S. Hohmann, 
“Model-based control of a large-scale ball-on-plate system with 
experimental validation,” IEEE International Conference on 
Mechatronics, 18-20 March 2019. 

[16] C. Ionescu, E. Fabragas, S. Cristescu, S. Dormido and R. De Keyser, “A 
remote laboratory as an innovative educational tool for practicing 
control engineering concepts,” IEEE Transactions on Education, 56(4), 
pp. 436-442, November 2013. 

[17] R. Singh and B. Bhushan,“ Real-time control of ball balancer using 
neural integrated fuzzy controller,” Artificial Intelligence Review, vol. 
53, pp. 351–368, 2020. 

[18] E. Zakeri, S.A. Moezi and M. Eghtesad, “Tracking control of ball on 
sphere system using tuned fuzzy sliding mode controller based on 
artificial bee colony algorithm,” Int. J. Fuzzy Syst, vol. 20, pp. 295-308, 
2018. 

 


