
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

1 | P a g e  

www.ijacsa.thesai.org 

A Comparative Analysis of Traditional and Machine 

Learning Methods in Forecasting the Stock Markets 

of China and the US 

Shangshang Jin 

Department of Art and Science, Johns Hopkins University, Washington, D.C., United States 

 

 
Abstract—In the volatile and uncertain financial markets of 

the post-COVID-19 era, our study conducts a comparative 

analysis of traditional econometric models—specifically, the 

AutoRegressive Integrated Moving Average (ARIMA) and Holt's 

Linear Exponential Smoothing (Holt's LES)—against advanced 

machine learning techniques, including Support Vector 

Regression (SVR), Long Short-Term Memory (LSTM) networks, 

and Gated Recurrent Units (GRU). Focused on the daily stock 

prices of the S&P 500 and SSE Index, the study utilizes a suite of 

metrics such as R-squared, RMSE, MAPE, and MAE to evaluate 

the forecasting accuracy of these methodologies. This approach 

allows us to explore how each model fares in capturing the 

complex dynamics of stock market movements in major 

economies like the U.S. and China amidst ongoing market 

fluctuations instigated by the pandemic. The findings reveal that 

while traditional models like ARIMA demonstrate strong 

predictive accuracy over short-term horizons, LSTM networks 

excel in capturing complex, non-linear patterns in the data, 

showcasing superior performance over longer forecast horizons. 

This nuanced comparison highlights the strengths and limitations 

of each model, with LSTM emerging as the most effective in 

navigating the unpredictable dynamics of post-pandemic 

financial markets. Our results offer crucial insights into 

optimizing forecasting methodologies for stock price predictions, 

aiding investors, policymakers, and scholars in making informed 

decisions amidst ongoing market challenges. 
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I. INTRODUCTION 

The post-COVID-19 era has ushered in an era of 
heightened volatility and uncertainty in financial markets 
worldwide [1]. Particularly, the stock markets of China and the 
United States, two leading global economies, have garnered 
significant attention from investors, policymakers, and scholars 
alike. Precise forecasting of stock prices in these markets is 
crucial for informed decision-making and effective risk 
management. However, the challenge of accurate stock price 
prediction remains formidable due to the complex interplay of 
factors such as economic indicators, market sentiment, 
geopolitical events, and policy changes. 

Our study adopts a two-pronged methodological approach. 
Initially, we leverage traditional econometric models, 
specifically the AutoRegressive Integrated Moving Average 
(ARIMA) model [2] and Holt's Linear Exponential Smoothing 
(Holt's LES) [3], known for their robustness in time series 
forecasting. These models, grounded in historical data patterns 
and statistical principles, offer a foundational understanding of 

stock price movements, emphasizing the linear aspects of 
financial time series. However, the intricate dynamics of post-
pandemic markets—characterized by abrupt changes and non-
linear patterns—necessitate a more adaptive and sophisticated 
analysis framework. Enter machine learning techniques: 
Support Vector Regression (SVR) [4], Long Short-Term 
Memory (LSTM) networks [5], and Gated Recurrent Units 
(GRU) [6]. These methods bring to the fore the capability to 
model complex, non-linear relationships and capture deep 
temporal dependencies, which are often missed by traditional 
models. By incorporating both traditional and machine learning 
methodologies, our study aims to harness the complementary 
strengths of each approach, ensuring a comprehensive and 
nuanced exploration of forecasting accuracy in the tumultuous 
environment of post-COVID-19 stock markets. This hybrid 
approach not only facilitates a direct comparison of predictive 
performances but also sheds light on the evolving nature of 
financial time series analysis in response to unprecedented 
market conditions. 

In this study, we conduct a comparative analysis of the 
forecasting performance of both traditional and machine 
learning models on the daily stock prices of the S&P 500 Index 
in the United States and the SSE Index in China in the post-
COVID-19 period. We assess the forecasting accuracy of 
ARIMA, Holt's LES, SVR, LSTM, and GRU models using 
evaluation metrics such as R-squared (𝑅2), Root Mean Square 
Error (RMSE), Mean absolute percentage error (MAPE), and 
Mean Absolute Error (MAE). By shedding light on the 
strengths and weaknesses of different forecasting approaches, 
this study seeks to contribute to the ongoing pursuit of effective 
stock market prediction tools in the post-COVID-19 era. 

II. RELATED WORK 

Traditionally, stock price prediction has relied on 
econometric models and time-series analysis techniques like 
AutoRegressive Integrated Moving Average (ARIMA) and 
Linear Exponential Smoothing Model (LSE) . These models 
excel at capturing linear relationships and seasonality in the 
data. Nevertheless, their ability to handle the inherent 
complexities and non-linearities of stock market dynamics is 
limited [7]. 

Machine learning and deep learning techniques have 
emerged as promising alternatives for stock market prediction, 
offering the potential to capture intricate patterns and 
relationships in financial data [8], [9]. Methods such as Support 
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Vector Regression (SVR), Long Short-Term Memory networks 
(LSTM), and Gated Recurrent Units (GRU) can process large-
scale datasets, recognize non-linear relationships, and learn 
from sequential information, making them well-suited for 
forecasting stock prices. 

For instance, Gülmez [9] explored machine learning 
models for stock market prediction, underscoring the 
effectiveness of the LSTM model with two dropout layers. The 
study noted the potential for performance improvement by 
optimizing hyperparameters such as the number of neurons, 
batch size, and epoch count. Gülmez's research also employed 
the Support Vector Regression (SVR) model, optimizing 
hyperparameters via grid search with Scikit-learn's library. 
Employing 10-fold cross-validation and RMSE as a loss 
measurement, the study highlighted that hyperparameter tuning 
significantly impacts the SVR's forecasting performance. 

Md et al. [10] introduced a novel Multi-Layer Sequential 
Long Short-Term Memory (MLS LSTM) model for stock price 
prediction, utilizing Samsung stock data from 2016 to 2021. 
Comprising three vanilla LSTM layers and a dense layer, the 
MLS LSTM model exhibited high accuracy (95.9% and 
98.1%) and a low average error percentage (2.18%) on the 
testing dataset. The study revealed that multi-layered LSTMs 
outperform single-layered LSTMs, with added layers 
enhancing accuracy. 

In another study, Yu et al. [11] proposed a predictive model 
for stock price index realized volatility (RV) based on 
optimized variational mode decomposition (VMD), deep 
learning models, including LSTM and GRU, and the Q-
learning algorithm. The model was applied to the RV 
sequences of the SSEC, SPX, and FTSE indices. The VMD 
method decomposed the RV sequences into intrinsic mode 
functions (IMFs), which were then predicted using the LSTM 
and GRU models. Q-learning determined the optimal model 
weights for an integrated approach. Performance evaluation 
using MAE, MSE, HMAE, HMSE, and MDM demonstrated 
the model's superior performance over comparison models in 
both emerging and developed markets. 

Recent literature shows that machine learning methods, 
including SVR, LSTM, and GRU, have gained popularity due 
to their ability to tackle non-linear problems and learn complex 
patterns in large-scale datasets [12]. These models can capture 
complex relationships in financial data and enhance prediction 
accuracy. However, they come with drawbacks such as high 
computational requirements, risk of overfitting, and reduced 
interpretability [13], [14]. Additionally, machine learning 
models often require meticulous hyperparameter tuning, which 
can be time-consuming and computationally intensive [15]. 

III. METHODOLOGY 

In this study, we examine the predictive performance of 
both traditional statistical methods and machine learning 
techniques for forecasting the stock price. We compare the 
ARIMA model and the ETS model from the traditional 
methods against the SVR, LSTM networks, and GRU networks 
from the machine learning approaches. Our analysis focuses on 
one-step-ahead out-of-sample forecasting. 

A. AutoRegressive Integrated Moving Average (ARIM) 

The ARIMA model, commonly recognized as the Box-
Jenkins model, is a fundamental tool in time-series forecasting. 
It merges autoregressive (AR) and moving average (MA) 
components to effectively model stationary time series with 
minimal parameters. In contrast to pure AR and MA models, 
the ARIMA model introduces a differencing (I) component to 
ensure stationarity of the series [2]. By blending these three 
components—autoregressive, differencing, and moving 
average—the ARIMA model offers a holistic approach to 
capturing temporal dependencies in data [16]. 

It is expressed as follows: 

(1 − ∑ 𝜙𝑖𝐿
𝑖)(1 − 𝐿)𝑑𝑋𝑡 = (1 + ∑ 𝜃𝑖𝐿

𝑖)𝜖𝑡
𝑞
𝑖=1

𝑝
𝑖=1  (1) 

Here, 𝜙𝑖  denotes the AR parameters, 𝜃𝑖  the MA 
parameters, d is the order of differencing, L is the lag operator, 
𝑋𝑡 is the time series value at time t, and 𝜖𝑡 signifies the white 
noise error term. 

B. Holt's Linear Exponential Smoothing Model (Holt's LES) 

Holt's Linear Exponential Smoothing model, also known as 
the Holt's Linear model, is a time-series forecasting method 
that captures the linear trend and level components in the data. 
It is particularly useful for datasets with trends but no seasonal 
patterns. The model uses two smoothing equations to estimate 
the level and trend components, respectively [17]. 

Let 𝑦𝑡  be the observed value at time t, 𝑙𝑡 be the estimated 
level at time t, and 𝑏𝑡  be the estimated trend at time t. The 
smoothing equations are given by: 

𝑙𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1)

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1
  (2) 

Here, 𝑦𝑡  is the observed value, 𝑙𝑡  the estimated level, and 𝑏𝑡 
the estimated trend at time t.𝛼 and 𝛽 are smoothing parameters 
between 0 and 1. The h-period ahead forecast is: 

𝑦̂𝑡+ℎ = 𝑙𝑡 + ℎ ⋅ 𝑏𝑡     (3) 

In this study, the optimal values of 𝛼 and 𝛽 a re determined 
by minimizing the Mean Squared Error (MSE) of the model on 
the training data. 

C. Support Vector Regression (SVR) 

SVR is a machine learning algorithm for regression 
analysis. It extends the concept of Support Vector Machines 
(SVM) used for classification tasks to the regression context. 
SVR aims to find a hyperplane that best fits the data points 
while maximizing the margin from the closest data points 
(support vectors) (Liu, Wang and Gu, 2021). 

Given a training dataset 𝐷 = {(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)}, SVR 
aims to find a function 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 that approximates the 
relationship between the input features 𝑥 and the target variable 
𝑦. 
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SVR introduces the 𝜀 -insensitive loss function, meaning 
that the error is only considered if it exceeds a certain threshold 
𝜀. The SVR objective is to minimize the cost function: 

𝐿(𝑤, 𝑏) =
1

2
∥ 𝑤 ∥2+ 𝐶 ∑  𝑛

𝑖=1 (𝜉𝑖 + 𝜉𝑖
∗)       (4) 

subject to the constraints: 

𝑦𝑖 − 𝑤 ⋅ 𝑥𝑖 − 𝑏 ≤ 𝜖 + 𝜉𝑖

𝑤 ⋅ 𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

  (5) 

where,  𝑤 denotes the weight vector and 𝑏 is the bias term. 
𝐶  is the regularization parameter that controls the trade-off 
between maximizing the margin and minimizing the error. The 
slack variables, 𝜉𝑖 and 𝜉𝑖

∗, handle instances that are difficult to 
separate perfectly. 

In this study, we use the Radial Basis Function (RBF) 
kernel, which is defined as: 

𝐾(𝑥, 𝑧) = exp(−𝛾 ∥ 𝑥 − 𝑧 ∥2)  (6) 

D. Long Short-Term Memory (LSTM) 

LSTM networks, introduced by Hochreiter and 
Schmidhuber [5], are a specialized variant of recurrent neural 
networks (RNN) meticulously engineered to address sequence 
prediction challenges. Their distinctive architecture, which 
facilitates the retention of patterns over extended durations, 
renders LSTMs especially proficient for time series modeling. 
In the context of this study, we harness the capabilities of the 
LSTM network for our forecasting endeavors. 

LSTM networks consist of memory cells that are regulated 
by three gates: forget, input, and output gates. These gates 
determine how information flows through the memory cells. 

Forget Gate: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (7) 

Input Gate: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶̃𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)
        (8) 

Update of Cell State: 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡   (9) 

Output Gate: 

𝑜𝑡  = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡  = 𝑜𝑡 × tanh(𝐶𝑡)
  (10) 

where, 𝜎 represents the sigmoid function, 𝑊 and 𝑏 are the 
weight matrices and biases for each gate, respectively, 𝑥𝑡 is the 
input at time 𝑡, and ℎ𝑡 is the output. 

E. Gated Recurrent Unit (GRU) 

Introduced by [18], GRUs are a streamlined variant of the 
RNN designed to adeptly capture long-term sequence 
dependencies. Functioning as a simplified version of LSTMs, 
GRUs are characterized by two pivotal gates: the update gate 
and the reset gate. The update gate is instrumental in 
determining the proportion of the preceding hidden state that 
should be relayed to the subsequent state. Concurrently, the 
reset gate ascertains the extent to which the prior hidden state 
is disregarded. The computations for the GRU model are as 
follows: 

𝑟𝑡  = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)

𝑧𝑡  = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)

ℎ̃𝑡  = tanh(𝑊 ⋅ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡] + 𝑏)

ℎ𝑡  = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡

 (11) 

where, 𝑟𝑡  and 𝑧𝑡  are the reset and update gates at time 𝑡 
respectively, 𝜎 denotes the sigmoid activation function, 𝑊 and 
𝑏  are the weight matrices and bias vectors, ⊙  represents 
element-wise multiplication, and ℎ𝑡 is the hidden state at time 
𝑡. 

F. Grid Search Hyperparameter Tuning 

In this study, optimizing hyperparameters becomes 
paramount to ensure the robustness of machine learning 
models. As demonstrated in Fig. 1, our approach harnesses a 
comprehensive grid search to navigate the vast hyperparameter 
space. For the SVR model, adjustments are made to the 
regularization parameter, gamma, and epsilon values. 
Meanwhile, the LSTM's performance is fine-tuned considering 
the number of units, dropout rate, and batch size. On the other 
hand, the GRU model sees alterations in its units, batch size, 
and number of epochs. This methodical approach, anchored in 
a three-dimensional exploration, seeks to refine our forecasting 
tools, aligning them with the sophisticated dynamics of today's 
financial markets. 

 

Fig. 1. 3D visualization of grid search. 
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G. Evaluation Metrics 

To evaluate the predictive performance of the models, 
followed by [19] and [20], we utilize several well-established 
metrics: R-squared (𝑅2 ), Root Mean Square Error (RMSE), 
Mean Absolute Percentage Error (MAPE) and Mean Absolute 
Error (MAE). Each metric provides a different perspective on 
the quality of the predictions. 

𝑅2 : 𝑅2  measures the proportion of the variance in the 
dependent variable that is predictable from the independent 
variable. It ranges from 0 to 1, with 1 indicating perfect 
prediction. It is calculated as follows: 

𝑅2 = 1 −
∑  (𝑦𝑡−𝑦̂𝑡)2

∑  (𝑦𝑡−𝑦‾)2   (12) 

RMSE (Root Mean Square Error): RMSE represents the 
square root of the second sample moment of the differences 
between predicted and observed values or the quadratic mean 
of these differences. It is interpreted as the standard deviation 
of the unexplained variance: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑡=1   (𝑦𝑡 − 𝑦̂𝑡)2  (13) 

The Mean Absolute Percentage Error (MAPE): MAPE 
provides an easy-to-interpret measure of the average prediction 
error in percentage terms. It is especially useful when 
comparing the performance of different models on the same 
dataset. 

The MAPE is calculated as follows: 

MAPE =
100

𝑛
∑  𝑛

𝑡=1 |
𝑦𝑡−𝑦̂𝑡

𝑦𝑡
|         (14) 

Mean Absolute Error (MAE): MAE measures the average 
of the absolute differences between the predicted and observed 
values. It provides an idea of the magnitude of the error, 
without considering the direction. Lower MAE values indicate 
a better fit to the data. It is calculated as: 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑡=1 |𝑦𝑡 − 𝑦̂𝑡|        (15) 

where, 𝑦𝑡  is the actual value at time 𝑡, 𝑦̂𝑡  is the predicted 
value at time  , and 𝑦‾ represents the mean of the actual values.  

H. Forecasting Algorithm 

Our methodology, detailed in Fig. 2, commenced by 
dividing the data into training and testing subsets. Depending 
on the chosen model-traditional techniques like ARIMA and 
Holt's LES or more contemporary machine learning 
approaches-appropriate parameter optimization processes were 
undertaken, with the latter employing a grid search. Using a 
rolling window framework, we executed forecasts for three 
distinct time horizons: H=1, 10, and 30 days. Utilizing the 
rolling window approach, each forecast integrated the most 
recent observation from the testing set into the training dataset. 
This method allowed our models to consistently update and 
adapt based on the newest economic data available. Once the 

end of the testing data was reached, we compared the 
performance of the various models under different forecasting 
time horizons using key metrics such as 𝑅2, RMSE, MAE and 
MAPE. 

 

Fig. 2. Flowchart of algorithm. 

IV. NUMERICAL RESULTS 

A. Data Description 

This study evaluates the daily performance of two major 
stock market indices, the S&P 500 and the Shanghai Stock 
Exchange (SSE) Composite Index, spanning December 31, 
2012, to December 31, 2022. These indices were chosen due to 
their importance in representing overall stock market 
performance in the United States and China, respectively, and 
their influence on global financial markets. Both are market-
capitalization-weighted, capturing broad market movements 
efficiently. 

We obtain daily closing prices of the indices from the 
Yahoo Finance API, a publicly accessible and reliable data 
source extensively used in financial research. The data, 
adjusted for splits and dividends, provide an accurate 
representation of the indices' performance over the period. 

The data are partitioned into training and testing sets. The 
training set, consisting of data before 2020, is used to calibrate 
forecasting models, while the testing set, from January 1, 2020, 
to December 31, 2022, evaluates their out-of-sample 
performance. 

Table I summarizes the descriptive statistics of the daily 
closing prices for both indices over the study period. The S&P 
500 index, with a mean of 2742.1700 and standard deviation of 
873.0140, traded between 1426.1900 and 4796.5600. The SSE 
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index had a mean of 3017.0600, standard deviation of 
527.9180, and prices between 1950.0100 and 5166.3500. The 
S&P 500 displays a negative kurtosis of -0.6494 and positive 
skewness of 0.6749, suggesting a less peaked and right-skewed 
distribution. The SSE index, with a kurtosis of 0.8312 and 
near-zero skewness of 0.0525, indicates a more peaked and 
symmetric distribution. There are 2519 and 2428 observations 
for the S&P 500 and SSE indices, respectively. Fig. 3 and Fig. 
4 depict the time series of daily closing prices for the S&P 500 
and SSE indices. 

TABLE I. DESCRIPTIVE STATISTICS FOR THE S&P 500 AND SSE INDICES 

Index S&P500 SSE 

Mean 2742.1700 3017.0600 

Std 873.0140 527.9180 

Minimum 1426.1900 1950.0100 

Maximum 4796.5600 5166.3500 

Kurtosis -0.6494 0.8312 

Skewness 0.6749 0.0525 

Count 2519 2428 

 
Fig. 3. S&P 500 index price. 

 

Fig. 4. SSE index price. 

B. Determination of Parameters of Traditional Methods 

For the ARIMA models, we use an automatic order 
selection method that seeks to minimize the Akaike 
Information Criterion (AIC). The ARIMA model parameters 
include the order of the autoregressive (AR) and moving 
average (MA) components, as well as the degree of 
differencing. Given the daily frequency of the data, we focus 
on non-seasonal models. Through this procedure, we identify 
ARIMA (2,1,0) as the best model for the SSE index, while 

ARIMA(1,1,1) with an intercept is chosen for the S&P 500 
index. 

For the Holt's LES models, an optimization procedure is 
applied to estimate the smoothing parameters for the level and 
trend components. The models are fitted to the training data of 
both indices. For the SSE index, the estimated smoothing level 
is approximately 0.995, and the smoothing trend is about 
0.0237. For the S&P 500 index, the respective values are 
approximately 0.907 and 0.0212. The initial level and trend for 
both models are estimated based on the training data. 

C. Determination of Optimal Hyperparameters 

In this study, we employ a grid search approach to optimize 
the hyperparameters for the SVR, LSTM, and GRU models 
across different time horizons (H=1/10/30). For the SVR 
model, we consider three hyperparameters: the regularization 
parameter (C), gamma (𝛾), and epsilon (𝜀). For the LSTM and 
GRU models, the hyperparameters assessed include the 
number of units, dropout rate, and batch size. The selection of 
these hyperparameters is crucial as they directly affect the 
models' forecasting performance. We evaluate various 
hyperparameter combinations using a training dataset to 
identify the best-performing models, which are subsequently 
tested on a separate test dataset. We use a radial basis function 
(RBF) kernel for the SVR model. For the LSTM and GRU 
models, we compile them using the Adam optimizer and mean 
squared error (MSE) loss function, which is well-suited for 
regression tasks like stock price prediction. This 
hyperparameter optimization process is conducted across 
different forecasting horizons to evaluate the models' suitability 
for both short-term and long-term forecasting. The 
Hyperparameters are given in Table II. 

TABLE II. HYPERPARAMETER SETTINGS FOR MACHINE LEARNING 

MODELS ACROSS VARIOUS TIME HORIZONS (H=1/10/30) 

Model Name of Parameter S&P 500 SSE 

SVR 
Regularization 
parameter 

10/10/10 10/10/10 

 Gamma 0.1/0.1/0.1 0.1/0.1/0.1 

 Epsilon 0.1/0.1/0.1 0.1/0.1/0.1 

LSTM Units 100/100/50 100/100/100 

 Drop out 0.2/0.2/0.2 0.2/0.5/0.5 

 Batch size 16/16/64 16/32/16 

GRU Units 70/70/30 50/50/50 

 Batch size 16/64/32 16/64/16 

 epochs 30/70/50 50/50/50 

D. Comparison and Analysis 

Table III presents the evaluation results for forecasting the 
S&P 500 index using various models: ARIMA, Holt's LES, 
SVR, LSTM, and GRU. The performance of each model is 
assessed across three-time horizons: 1-day, 10-day, and 30-
day. 

For the 1-day time horizon, the ARIMA model stands out, 
achieving an 𝑅2 of 99.04%, MAPE of 1.06%, RMSE of 53.93, 
and MAE of 38.78. The Holt's LES model closely follows, 
with similar metrics. Both SVR and GRU models exhibit 
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strong performance, with 𝑅2 values exceeding 98%. Notably, 
the LSTM model shows the lowest 𝑅2  of 94.70% and the 
highest MAPE of 2.71%. 

TABLE III. EVALUATION OF S&P 500 INDEX FORECASTING ACROSS 

DIFFERENT TIME HORIZONS 

Models 𝑹𝟐 MAPE RMSE MAE 

Time Horizon =1 

ARIMA 99.04% 1.06% 53.93 38.78 

Holt's LES 99.02% 1.06% 54.48 38.62 

SVR 98.95% 1.18% 56.31 43.16 

LSTM 94.70% 2.71% 126.80 108.05 

GRU 98.16% 1.60% 74.72 61.29 

Time Horizon =10 

ARIMA 95.52% 2.27% 116.65 83.72 

Holt's LES 94.93% 2.34% 124.00 87.07 

SVR 94.18% 2.77% 132.87 103.20 

LSTM 91.89 3.27% 156.82 131.59 

GRU 94.18% 2.73% 132.84 100.79 

Time Horizon = 30 

ARIMA 83.94% 4.35% 220.74 157.45 

Holt's LES 75.48% 5.02% 272.73 181.37 

SVR 81.06% 5.21% 239.69 189.03 

LSTM 85.80% 4.42% 207.60 176.05 

GRU 80.21% 5.34% 245.04 194.03 

In the 10-day horizon, the ARIMA model again leads with 
an 𝑅2 of 95.52% and the lowest MAPE of 2.27%. Holt's LES, 
SVR, and GRU models all report 𝑅2 values above 94% and 
MAPE values under 3%. The LSTM model lags, with the 
lowest 𝑅2 of 91.89% and the highest MAPE of 3.27%. 

For the 30-day horizon, the LSTM model surprisingly 
achieves the highest 𝑅2 of 85.80%, but with a relatively high 
MAPE of 4.42%. The ARIMA model follows with an 𝑅2 of 
83.94% and the lowest MAPE of 4.35%. The Holt's LES 
model's performance diminishes, recording the lowest 𝑅2 of 
75.48% and a higher MAPE of 5.02%. SVR and GRU models 
display similar 𝑅2 values around 80% and MAPE values above 
5%. 

In summary, the ARIMA model consistently performs well 
across all time horizons, exhibiting the highest 𝑅2 and the 
lowest MAPE for the 1-day and 10-day horizons. While the 
LSTM model underperforms in shorter horizons, it surprisingly 
has the highest 𝑅2  for the 30-day horizon. The Holt's LES 
model performs well for shorter horizons but declines for the 
30-day horizon. SVR and GRU models show moderate 
performance across all horizons. 

Table IV presents the evaluation results of forecasting the 
SSE index.  For the 1-day horizon, all models display strong 
performance, with 𝑅2 values exceeding 97%. The SVR model 
leads with an 𝑅2 of 97.81% and the lowest MAPE of 0.80%. 
ARIMA and Holt's LES models both achieve 𝑅2 values around 

97.78% and similar MAPE values of 0.81%. LSTM and GRU 
models also perform well, with 𝑅2 values above 97.5% and 
MAPE values under 0.85%. 

TABLE IV. EVALUATION OF SSE INDEX FORECASTING ACROSS 

DIFFERENT TIME HORIZONS 

Models 𝑹𝟐 MAPE RMSE MAE 

Time Horizon =1 

ARIMA 97.78% 0.81% 36.25 26.34 

Holt's LES 97.72% 0.81% 36.31 26.25 

SVR 97.81% 0.80% 35.97 25.98 

LSTM 97.49% 0.85% 38.54 27.72 

GRU 97.65% 0.83% 37.27 27.19 

Time Horizon =10 

ARIMA 90.16% 1.65% 76.34 53.31 

Holt's LES 88.84% 1.78% 81.26 57.34 

SVR 90.48% 1.56% 75.05 50.38 

LSTM 94.74% 1.27% 55.82 40.89 

GRU 92.98% 2.91% 145.90 113.95 

Time Horizon = 30 

ARIMA 77.34% 2.73% 115.69 88.71 

Holt's LES 72.21% 2.95% 128.34 95.70 

SVR 77.27% 2.54% 116.00 82.29 

LSTM 94.78% 1.25% 55.61 40.98 

GRU 58.89% 3.80% 156.00 123.29 

In the 10-day horizon, the LSTM model stands out with the 
highest 𝑅2 of 94.74% and the lowest MAPE of 1.27%. SVR 
closely follows with an 𝑅2 of 90.48% and a low MAPE of 
1.56%. ARIMA and Holt's LES models both report 𝑅2 values 
around 90% and MAPE values under 1.8%. The GRU model 
exhibits a solid 𝑅2 of 92.98% but the highest MAPE of 2.91%. 

For the 30-day horizon, the LSTM model clearly dominates 
with an 𝑅2  of 94.78% and the lowest MAPE of 1.25%. The 
ARIMA and SVR models perform similarly, both achieving 𝑅2  
values around 77% and MAPE values under 2.75%. The Holt's 
LES model lags, with an 𝑅2 of 72.21% and a higher MAPE of 
2.95%. The GRU model shows the lowest performance with an 
𝑅2 of 58.89% and the highest MAPE of 3.80%. 

In summary, the LSTM model consistently performs well 
across all time horizons, especially for the 30-day horizon, 
where it excels. The ARIMA and SVR models display similar 
moderate performance across all horizons. The Holt's LES 
model's performance declines for longer horizons. The GRU 
model exhibits strong performance in the 10-day horizon but 
struggles in the 30-day horizon. 

V. CONCLUSION 

The task of predicting stock market indices is essential for 
risk management, portfolio allocation, and derivative pricing, 
all of which contribute to stabilizing the financial market order. 
In this study, we compared the performance of several 
predictive models—ARIMA, Holt's LES, SVR, LSTM, and 
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GRU—across different time horizons (1-day, 10-day, and 30-
day) for two prominent stock indices: the S&P 500 and the 
SSE. The models were evaluated based on four metrics: R-
squared (𝑅2), Mean Absolute Percentage Error (MAPE), Root 
Mean Squared Error (RMSE), and Mean Absolute Error 
(MAE). 

Our empirical results indicate that: 

 LSTM consistently performs well across all time 
horizons for both indices, especially in the 30-day 
horizon. It outperforms the other models in terms of 
both 𝑅2 and MAPE. This result can be attributed to the 
model's ability to capture long-term dependencies in the 
data and its inherent adaptability in learning complex 
nonlinear relationships. 

 ARIMA and SVR models display moderate 
performance across all time horizons for both indices, 
showcasing their robustness and applicability. The 
ARIMA model benefits from its ability to account for 
time trends, seasonality, and autoregressive behaviors. 
On the other hand, the SVR model leverages its 
capacity to model nonlinear relationships by using 
kernel functions. 

 Holt's LES model performs well for the 1-day and 10-
day horizons but struggles for longer horizons. The 
model’s declining performance is attributed to its 
primary reliance on short-term trends, which may not 
capture more complex behaviors over longer time 
horizons. 

 The GRU model performs well for shorter horizons but 
faces difficulties in the 30-day horizon. This could be 
due to the challenges posed by long-term dependencies 
in the data. GRU, similar to LSTM, is designed to 
address such challenges, but our results suggest that 
LSTM may be better suited for this particular dataset. 

 Through extensive experimentation, we confirmed the 
robustness and applicability of our findings. For both 
indices, the results were consistent across different time 
horizons and evaluation metrics, confirming the validity 
of our conclusions. 

In summary, our study provides valuable insights for 
investors and market analysts. The results can be used to 
enhance trading strategies, optimize portfolio allocations, and 
improve risk management approaches. Regulators may also 
benefit from these insights by identifying market anomalies 
and intervening when necessary to ensure financial market 
stability. 

Despite the contributions of this study, we acknowledge 
that multivariate prediction was not considered. In future 
research, we will incorporate additional factors closely related 
to the stock indices' movements, such as macroeconomic 
indicators and sentiment analysis, to enhance the accuracy of 
our predictions. Incorporating these factors will not only 
improve the forecasting accuracy but also contribute to a 
deeper understanding of the underlying relationships that drive 
stock market dynamics. Besides, the methodologies and 
insights gained from this study hold the potential for broader 

applications beyond the S&P 500 and SSE indices. For 
instance, these models could be adapted to forecast emerging 
market indices, where volatility and data irregularities present 
unique challenges. 
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