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Abstract—In smart classroom environments, problems such 

as occlusion and overlap make the acquisition of student pose 

information challenging. To address these problems, a 

lightweight human pose estimation model with Adaptive Target 

Region Attention based on Lite-HRNet is proposed for smart 

classroom scenarios. Firstly, the Deformable Convolutional 

Encoding Network (DCEN) module is designed to reconstruct the 

encoding of features through an encoder and then a multi-layer 

deformable convolutional module is used to adaptively focus on 

the image region to obtain a feature representation that focuses 

on the target region of interest of the student subject. Secondly, 

the Channel And Spatial Attention (CASA) module is designed to 

attenuate or enhance the feature attention in different regions of 

the feature map to obtain a more accurate representation of the 

target feature. Finally, extensive experiments were conducted on 

the COCO dataset and the smart classroom dataset (SC-Data) to 

compare the proposed model with the current main popular 

human pose estimation framework. The experimental results 

show that the performance of the model reaches 67.5(mAP) in 

the COCO dataset, which is an improvement of 2.7(mAP) 

compared to the Lite-HRNet model, and 86.6(mAP) in the SC-

Data dataset, which is an improvement of 1.6(mAP) compared to 

the Lite-HRNet model. 

Keywords—Human pose estimation; smart classroom; Lite-

HRNet; deformable convolutional encoding network; target region 

attention 

I. INTRODUCTION 

In recent years, human pose estimation [1,2,3,4] technology 
has been widely used in behaviour recognition, action 
recognition, human-computer interaction and other scenarios 
along with the rapid development of related technologies in the 
field of computer vision. With modern and intelligent 
education being strongly advocated and developed, neural 
network models based on deep learning are heavily used in 
classroom detection tasks. In the task of assessing the quality 
of teaching and learning of student, information about student 
postures [5,6,7] plays a very important role in assessing the 
quality of teaching and in teacher understanding of student 
learning status in the classroom [8]. In the classroom, a student 
state of learning is demonstrated through a variety of classroom 
behaviours. Student who are not interested in the content of the 
classroom will exhibit behaviours such as dawdling, playing 
with mobile phones and sleeping. Student who are interested in 
the content of the class show behaviours such as concentration, 
looking at the board, taking notes, reading, and actively 
interacting with the teacher. Therefore, how to automatically 
and accurately collect student pose information in smart 
classroom [9,10,11] scenarios is an important task that needs to 

be solved urgently. In smart classroom environments, the 
acquisition of student pose information is commonly associated 
with problems such as overlap and occlusion between students, 
as well as the location of the students leading to large 
differences in their body sizes, and the presence of small target 
instances leading to a degradation of the model detection 
performance. At the same time, the problem of large 
computational and parametric quantities of the human pose 
estimation model makes it more difficult to be deployed in 
smart classroom scenarios. These problems make the 
acquisition of pose information in smart classrooms a 
challenging research. 

Aiming at the problems of overlapping and occlusion, as 
well as the large number of model parameters in smart 
classroom scenarios, this paper proposes a lightweight human 
pose estimation model framework based on the Lite-HRNet 
architecture applied to smart classroom scenarios, the Adaptive 
Target Region Attention Network for Human Pose Estimation. 
The model is designed with two main modules: (1) The 
Deformable Convolutional Encoding Network is designed for 
obtaining a target feature region representation. (2) The 
Channel And Spatial Attention module is designed to allow the 
target feature region representation to obtain a more accurate 
representation of the target region. The model in this paper 
achieves relatively good performance on two datasets. 
Extensive ablation experiments are used to validate the 
effectiveness of each module in the proposed method. The 
main contributions of this study are summarised as follows: 

1) Propose a lightweight pose estimation model for smart 

classrooms: the Adaptive Target Region Attention Network 

for Human Pose Estimation. And to construct a student pose 

estimation dataset suitable for smart classroom environment to 

provide a database for pose detection in smart classrooms. 

2) The Deformable Convolutional Encoding Network 

(DCEN) is proposed to perform feature extraction on the 

target region of the feature map to obtain a vector 

representation with feature regions of interest. The 

experimental results show that the module designed in this 

paper can efficiently improve the performance of the model. 

3) Proposing an attention mechanism based Channel And 

Spatial Attention (CASA) module to be used to assist in model 

training. The module enables the target feature region 

representation to obtain a better attention effect and fully 

exploits the spatial and channel feature information in the 

target feature region. 
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The rest of the paper is organised as follows. In Section II, 
the elements involved in the related work are presented. In 
Section III, the proposed method is described in detail. In 
Section IV, the experimental results are described and 
analysed. Finally in Section V, the conclusion of the paper is 
drawn. 

II. RELATED WORK 

Traditional methods for human pose estimation are based 
on graphical structure solutions, which rely too much on hand-
crafted feature, are more influenced by algorithms, and have 
limited model representation capabilities. Deep learning human 
pose estimation modelling methods are broadly classified into 
two types: Bottom-Up and Top-Down. Bottom-Up methods 
[12,13] first detect individual body parts and then compose 
these detection gesture points into a whole person. On the other 
hand, the Top-Down approach [14,15,16] first detects the 
human body bounding box and then detects the human body 
pose within each bounding box. 

Among them, a high-resolution network (HRNet) [17] with 
top-down approach, has become a mainstream method for 
human pose estimation due to its efficient detection 
performance. However, as the performance of the human pose 
estimation model improves, it is accompanied by a significant 
increase in the number of parameters. Wang [18] In order to 
address the problem of huge computational effort associated 
with attitude estimation models for high-resolution structures. 
A fused inverse convolution head module is used to eliminate 
redundancy in the high-resolution branch and achieve scale 
feature fusion with low computational effort. As well as the use 
of large convolution kernels to improve the sensory field of the 
model and reduce the computational effort of the model. The 
IGCV3 [19] model decomposes the regular convolution into 
multiple grouped convolutions to reduce the amount of 
computation of the convolution function in the model, thus 
reducing the number of parameters in the model. The 
MobileNet [20] model reduces the model parameters by 
decomposing a normal convolution into a deep convolution 
and a dot convolution, while maintaining the same 
performance as a normal convolution. The Lite-HRNet [21] 
model uses the method of performing information exchange 
across channels to maintain the information exchange between 
channels, in place of the expensive ordinary convolutional 
computation. 

To address the problems that arise in the task of human 
pose estimation, Artacho et al [22] utilised a multi-scale feature 
representation to improve the effectiveness of keypoint feature 
extraction without significantly increasing the model 
parameters. Tang et al [23] proposed a new spatio-temporal 
longitudinal and transversal attention module to reduce the 
computational effort of the model by decomposing the joints 
feature matrix in both spatial and temporal dimensions. Zhao et 
al [24] addressed the problem of increasing the computational 
burden by increasing the size of the input sequences to enhance 
the performance of the model by using a compact 
representation of long skeleton sequences in the frequency 
domain to efficiently expand the receptive field and improve 
the robustness to 2D noisy pose detection. Liu et al [25] 

proposed limb orientation cue-aware networks to prevent 
overfitting of the depth network leading to uncertain keypoint 
locations. Yang et al [26] proposed a two-stage pose distillation 
model for whole-body pose estimation to address the problem 
of varying body part scales in order to improve the validity and 
efficiency of the model. Lee et al [27] designed a pose 
estimation model with self-training loss using pose-aware 
confidence in semi-supervised and unsupervised pose 
estimation tasks. In this paper, the lightweight Lite-HRNet is 
used as the backbone network. Design of deformable 
convolutional encoding networks and attention mechanism 
based channel and spatial attention modules to enhance the 
model ability to extract key point feature. Allow model 
performance to be efficiently improved without significantly 
increasing the computational and parametric count of the 
model. Thereby the model can be more effectively applied to 
detection tasks in different scenarios. 

III. PROPOSED METHOD 

The Adaptive Target Region Attention Network is designed 
with two main modules: the DCEN module, the CASA 
module, and the overall network framework is shown in Fig. 1. 

Firstly, the visual feature 2 1{ , , }t t tF F F   of the input sequences 

are extracted by the backbone network Lite-HRNet-18 
network, and they are input into the DCEN module to calculate 
the information difference between the background feature and 
the subject feature, and to obtain the target region attention 

feature tM . Then, the target region attention feature tM  are 

mined for channel and spatial information by CASA module to 

get the target region focus attention feature '

tM . Finally, the 

combination of feature '

tM  and visual feature tF  generates 

enhanced visual feature '

tF . The feature '

tF  are input into the 

pose estimation detection head to obtain the keypoint detection 

heatmap tH . In the following, each module will be explained 

in detail. 

A. Deformable Convolutional Encoding Network 

The Deformable Convolutional Encoding Network is 
divided into three main steps: (1) Stage Feature Sequence 

Acquisition, which inputs the image sequence tX  into the 

Lite-HRNet network to obtain visual feature 2 1{ , , }t t tF F F  . (2) 

Feature Sequence Fusion. The global visual feature tS  is 

obtained through a convolutional encoding network on the 
reconstructive encoding of the feature sequence. (3) Adaptive 
Target Region Attention Feature. Input the global visual 

feature tS  into the deformable convolutional network, use the 

deformable convolution to calculate the region information in 
the feature map, capture the visual feature of the target region, 
and reduce the influence of background feature and noise 
feature on the target region feature. The target region attention 

feature tM  is obtained through the DCEN module, which is 

used to pay attention to and capture the feature information of 
the target region in image. The DCEN module is shown in 
Fig. 2. 
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Fig. 1. Overall network framework. 

 
Fig. 2. DCEN module. 

Stage Feature Sequence Acquisition: visual feature is 
extracted by Lite-HRNet network. Lite-HRNet replaces the 
expensive 1 1  convolution in the shuffle block [28] with a 
lightweight conditional channel weighting module, allowing 
the model to maintain efficient performance while reducing the 
computational effort of the network. Since the computational 
complexity is linear, it is lower than the quadratic time 
complexity of point-by-point convolution. Input the image 

sequence tX  into the Lite-HRNet network and acquire the 

visual feature 2 1{ , , }t t tF F F   of the three stages in the Lite-

HRNet network. Where 2tF  , 1tF  , tF  is the output visual 

feature of the second, third, and fourth stages of the Lite-
HRNet network. 

Feature Sequence Fusion: multiple stages of visual feature 
of different coarseness were obtained from the Lite-HRNet 
network. They possess semantic information about visual 
feature in different depths. In order to better utilise the 
semantic information of these visual feature, an up-sampling 
approach is used to reconstruct and encode the different stages 
of the visual feature into a fusion that increases the resolution 
of the feature sequence and enhances the retention of edge 

information. And combining their shallow and deep visual 

feature to generate the global visual feature tS  with global 

visual information and more fine-grained. The operation is 
shown in Eq. (1): 

1 2( )t t t tS Conv F F F                     (1) 

Where is a network of 3 convolutional layers. 

Adaptive Target Region Attention Feature: Input the global 

visual feature tS  into the deformable convolutional network 

[29], and use the deformable convolution to adaptively capture 
the regional information of the feature map to obtain the target 

region attention feature tM . Firstly, the global visual feature

tS  are used to compute a trainable parameter 
offsetW , which is 

used to supervise the adaptive region orientation of the 
deformable convolution. The operations are shown in Eq. (2), 
(3), and (4): 
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1offset t iW M W                               (4) 

Where 
offsetW  is a feature map with directional shifts, which 

serves to compute the shifts in the x and y  directions of the 

input feature, iW convolutional weights, ()Var is the averaging 

function, ()E is the expectation function,   is an offset 

constant. 

Then, the penalty weight parameter maskW  is added for 

guiding the training of the network and speeding up the 
convergence of the deformable convolutional network. As 
shown in Eq. (5): 

1 1(1 )i tW M

maskW e                             (5) 

Finally, the input feature vector 1tM   with an offset 

parameter 
offsetW  with a penalty weight maskW  is input into the 

deformable convolution function for deformable convolution 

operation to compute the target region attention feature tM . 

The operation is shown in Eq. (6), (7), and (8): 

1 1( , , )t mask t offsetM f W M W                       (6) 
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2 1(1 )tM

tM e                                  (8) 

Where ()f  is a deformable convolution function, maskW  is 

a penalty weight parameter, 
offsetW  is an offset parameter. 

()Var  is the averaging function, ()E  is the desired function, 

 is an offset constant. 

B. Channel And Spatial Attention  Module 

The target region attention feature tM  obtained through 

the DCEN module is still susceptible to mission-independent 
noise signals such as background, occlusion, and overlap. By 
using the CASA module based on the attention mechanism 
[30] to mine the feature information of the channel and space 

of the target region attention feature tM . Allow the feature to 

gain supervision and attention in channel and space. The 
designed CASA module has two sub-modules which are used 
to focus on the valid information of the feature vectors in 
channel and space respectively and to enhance the 
characteristics of the valid information as well as to suppress 
the noisy information. The architecture of the CASA module is 
shown in Fig. 3. 

 
Fig. 3. CASA module. 

Feature Sequence Channel Attention: Firstly, the 
information of each channel of target region attention feature

tM  is aggregated by global maximum pooling and global 

average pooling. They are used to preserve the most significant 
feature in each channel and the overall average feature. The 
two feature information is then optimised using an MLP fully 

connected network trained to obtain parameter cM  with 

feature information for each channel, Finally, the 

multiplication operation of cM with tM  makes the feature tM  

aggregate the useful feature information of each channel. The 
implementation of the channel attention module is shown in 
Eq. (9) and (10): 

( ( ( )) ( ( )))c t tM F Avg M F Max M               (9) 

t

c t cM M M                                   (10) 

Where   is the sigmoid  activation function. ()Avg ,

()Max  are the global average pooling and global maximum 

pooling functions, ()F  is a three-layer fully connected 

network. 

Feature Sequences Spatial Attention: The approach to 
spatial attention is similar to that of channel attention, where 
global maximum pooling and global average pooling are used 
for different dimensions to aggregate the feature information of 

feature c

tM Firstly, instead of aggregating the feature 

information of each channel, spatial attention aggregates the 
feature information of all channels together, making each 
channel spatially connected to each other. The two features 
information is then optimised using a convolutional network 

trained to obtain parameter sM  with spatial correlation 

information for each channel feature. Finally, the 
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multiplication operation of sM and c

tM  is performed to obtain 

the target region focus attention feature '

tM  with channel and 

spatial attention information. The spatial attention module is 
implemented as in Eq. (11) and (12): 

( ( ( ), ( )))c c

s i t tM W Avg M Max M                    (11) 

' c

t s tM M M                                       (12) 

Where   is the sigmoid  activation function, iW  is the 

convolution weight, and the convolution kernel size is 3 3 . 

C. Loss Function 

Combine the target region focus attention feature '

tM  with 

the visual feature tF  to obtain the enhanced visual feature '

tF . 

Input to the detection head generates a pose point heatmap tH . 

The detection head module is implemented by a convolutional 

network. The loss function uses the HL  loss of the heat map of 

standard attitude estimation to supervise the attitude estimation 
model. The operation is shown in Eq. (13), (14), and (15): 

' '

t t tF F M                                       (13) 

'

t i tH W F                                        (14) 

2|| ||H t tL H G                                    (15) 

Where tH and tG  denote the predicted and real attitude 

thermograms, iW  is the convolution weight. 

IV. EXPERIMENTS 

Two pose estimation datasets: the COCO dataset and the 
Self-Constructed Smart Classroom dataset (SC-Data) are used 
in the experiments to evaluate the effectiveness of the models, 
and the results of comparisons with other mainstream human 
pose estimation models in both datasets are reported. Also, 
extensive ablation experiments are conducted to validate the 
effectiveness of the module proposed in this paper. 

A. Introduction to the Dataset 

SC-Data dataset: SC-Data dataset is a dataset made based 
on real classroom teaching data, which has 6,000 images and 
16,800 instances of student pose data. There are 14000 

instances in the training set and 2800 instances in the test set. 
The SC-Data dataset is made from one semester's worth of 
student classroom data and contains information about the 
student's classroom postures over the course of a semester. 
This will provide data to understand the complete pose 
information of students in a particular subject and provide a 
more accurate source of dataset for obtaining student pose 
information on teaching. 

COCO 2017 dataset: COCO has over 200000 images and 
250000 person instances with 17 keypoints, train2017 dataset 
(includes 57000 images 150000 person instances), val2017 
(includes 5000 images). 

B. Experimental Setup 

In this paper, the network is trained using 1 NVIDIA A100 
GPU, the optimisation algorithm is Adam with an initial 
learning rate of 0.0002 and a batch size of 64, the input to the 
network is an image with a fixed 4:3 aspect ratio, cropped from 
the original and resized to 256×192, the model is implemented 
in the PyTorch framework. In the pose evaluation metrics, the 
model evaluated using mean accuracy (mAP), the AP is first 
calculated for each joint and then the final performance (mAP) 
is obtained by averaging over all joints. The criterion is based 
on the metrics of the COCO dataset pose estimation. 

C. Experiment Results and Analyses on the COCO Dataset 

The models in this paper were evaluated on the COCO 
dataset and the performance of the comparison models on the 
COCO test set is shown in Table I. The human pose estimation 
performance of this paper model reaches 67.5(mAP). 
Compared to Small HRNet-W16 and Lite-HRNet-18 the gain 
is improved by 12.3(mAP) and 2.7(mAP). Compared to Lite-
HRNet-30 the performance is improved by 0.3(mAP), but the 
model parameters decreases by 0.3(M). Compared to Integral 
Pose Regression [31] and G-RMI [32], which are 
computationally and parameter intensive, the model in this 
paper achieves quite good performance, but there is a 
substantial reduction in model complexity and number of 
parameters. The results of comparing the computational 
complexity of this paper model with other models are shown in 
Fig. 4, where the GFLOPs decrease by 0.41(GFLOPs) 
compared to ShuffleNetV2, while at the same time, the 
performance has a 7.6(mAP) improvement. Compared to Lite-
HRNet-18 the GFLOPs increase by 0.52(GFLOPs), but have a 
2.7(mAP) performance improvement. 

TABLE I.   COMPARISON MODELS ON THE COCO TEST SET 

Model AP(mAP) AP50 AR Params 

Our 67.5 88.2 67.0 1.4M 

Lite-HRNet-18[21] 64.8 87.3 65.6 1.1M 

Lite-HRNet-30 67.2 88.0 73.3 1.8M 

Small HRNet-W16 55.2 83.7 62.1 1.3M 

G-RMI[32] 64.9 85.5 69.7 57M 

MobileNetV2[20] 64.6 87.4 70.7 9.6M 

ShuffleNetV2[28] 59.9 85.4 66.4 7.6M 

Integral Pose Regression[31] 67.8 88.2 - 45.0M 

DY-MobileNetV2[33] 68.2 88.4 74.7 16.1M 

DY-ReLU[34] 68.1 88.5 - 9.0M 

LitePose-XS[18] 49.5 74.5 - 1.7M 
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TABLE II.  COMPARISON OF SC-DATA DATASET 

Model AP(mAP) AP50 AR Params 

Our 86.6 98.9 89.9 1.4M 

Lite-HRNet-18 85.0 96.6 88.7 1.1M 

Naive Lite-HRNet-18 85.3 96.7 88.9 1.4M 

Lite-HRNet-30 85.4 98.5 88.9 1.8M 

 
Fig. 4. Comparison of computational complexity and accuracy of the COCO 

dataset. 

D. Experimental Results and Analyses on the SC-Data 

Dataset 

Evaluating the method of this paper on the SC-Data dataset 
of this paper and comparing the performance of the model 
algorithm on the validation set is shown in Table II, and the 
experimental inference results of the model of this paper are 
shown in Fig. 5. The performance of the model in this paper on 

the SC-Data dataset, reaches 86.6(mAP). Compared to Lite-
HRNet-18 and Lite-HRNet-30 with a gain of 1.6(mAP) and 
1.2(mAP) points respectively. The model in this paper 
maintains the efficient performance while the model 
complexity is also reduced by 0.3(M) relative to Lite-HRNet-
30. By comparing the experiments on the two datasets, this 
makes the model application scenarios of this paper richer, and 
at the same time, the lightweight human pose estimation model 
in this paper is easy to deploy to smart classroom scenarios. 

In the scenario of occlusion and overlap in the smart 
classroom, the inference performance comparison is carried out 
by comparing with other models, and the comparison results 
are shown in Fig. 6, Fig. 6(1) shows the model of this paper, 
and Fig. 6(2) shows the Lite-HRNet18. By comparing with 
other models, it can be concluded that in the estimation of the 
gesture of the students of the target, the model of this paper can 
reduce the problems caused by problems such as the occlusion 
or overlap between the student The detection errors of the pose 
points are shown in the red circles marked in Fig. 6(2). The 
experimental results show that the model in this paper can 
effectively reduce the error detection of not the same target in 
smart classroom scenarios, and has better performance for 
scenarios with occlusion and overlap. 

 

Fig. 5. Smart classroom pose estimation results. 
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Fig. 6. Estimation results of student pose for occluded scenes in smart classroom. 

TABLE III.  ABLATION EXPERIMENTS WITH ADDED MODULES 

Lite-HRNet DCEN CASA COCO(mAP) SC-Data (mAP) 

√  √ 65.7 85.6 

√ √  66.6 85.7 

√ √ √ 67.5 86.6 

E. Ablation Study 

An ablation experiment was designed to add the DCEN 
module and the CASA module so as to verify the contribution 
of each module in the network, as shown in Table III, where "

√" represents the addition of this module in the network. In 

the SC-Data dataset, the DCEN module provided a 
performance gain of 0.7(mAP)(85.085.7) compared to the 

Lite-HRNet network. The CASA module provided a 
performance gain of 0.6(mAP)(85.085.6). The performance 

enhancement of the model in the network where the DCEN 
module is added together with the CASA module is better 
compared to one added module alone, which improves the 
model with a performance gain of 1.6(mAP)(85.0  86.6). 

The significant performance gain indicates that the modules 
proposed in this paper play an important role in extracting 
feature information from the target region. In the COCO 
dataset, the DCEN module can improve the performance gain 
of the model by 1.8(mAP)(64.8  66.6), and the CASA 

module can improve the performance gain of the model by 
0.9(mAP)(64.865.7). The ablation experiments verify that 

the modules in this paper can be applied to different scenarios 
and effectiveness. 

V. CONCLUSION 

This paper addresses the task of student pose estimation in 
smart classrooms by proposing a lightweight human pose 
estimation model with Adaptive Target Region Attention 
Network. Firstly, this paper proposes the deformable 
convolution-based target region attention module (DCEN) to 
capture student subject region representations. Secondly, in 
order to further obtain more precise attention to the target 
region, the channel and spatial attention module (CASA) is 

proposed to attend to the information about the relevant tasks 
on the space and channels of the feature map. Finally, a large 
number of experiments show that the model has excellent 
performance on both the COCO dataset and the homemade 
smart classroom dataset (SC-Data), while the number of 
parameters in this paper model has been greatly reduced and 
the detection speed has been greatly improved compared to the 
human pose estimation model with a large amount of 
computation and parameters. In future work, the paper will 
focus on deploying the pose estimation model to the classroom 
and applying the acquired student pose information to the task 
of assessing teaching quality. 
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