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Abstract—Early seizure detection is difficult with epilepsy. 

This use of Electroencephalography (EEG) data has proven 

transformational, however standard centralized machine 

learning algorithms have privacy and generalization issues. A 

decentralized approach to epileptic seizure detection using 

Federated Machine Learning (FML) is presented in this 

research. The concentration of critical EEG data in conventional 

models may compromise patient confidentiality. The proposed 

FML technique trains models using local datasets without 

sharing raw EEG recordings. Hence the data set used for the 

model is devoid of noise thus rendering preprocessing 

unnecessary. Training using decentralized data sources broadens 

the model's seizure pattern repertoire, improving its adaptability 

to case heterogeneity.  The Federated Machine Learning (FML) 

model shows that the suggested method for EEG-based epileptic 

seizure identification is promising for healthcare implementation 

and deployment. The proposed approach obtains sensitivity, 

specificity, and accuracy of 98.24%, 99.23%, 99% respectively. 

The proposed study is validated with the existing literature and 

the developed model outperforms the existing study. 
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I. INTRODUCTION 

A neurological condition that affects a large number of 
people, epilepsy, is inextricably intertwined with the 
complications of seizure detection that are both timely and 
exact. There is little doubt that the paradigm shifts that have 
occurred toward the utilization of electroencephalography 
(EEG) data have been transformational. However, typical 
centralized machine learning models, which are the mainstays 
of analysis, struggle with severe hurdles. These issues 
generally revolve around the delicate balancing act of privacy 
concerns and restricted generalization. The purpose of this 
study is to examine the undiscovered territories of Federated 
Machine Learning (FML) as a potential source of hope in the 
context of epileptic seizure detection. This paper will begin on 
an adventure into new terrain. The most important thing is to 
choose a decentralized strategy, which is a way to gracefully 
avoid the obstacles that are encountered by standard 
techniques. 

To solve these obstacles and enhance the identification and 
monitoring of epilepsy, research has been carried out. A study 
that was conducted by Fisher and colleagues and titled "A 

practical clinical definition of epilepsy" (Epilepsia, 2014) 
highlights the need to have a definition of epilepsy that is both 
patient-oriented and practical to improve diagnosis and make it 
easier to do research in this area. The research covers the 
difficulties associated with identifying epilepsy as well as the 
significance of considering the impact that it has on the lives of 
sufferers. In addition, a review paper titled "Epilepsy: 
Comorbidities and Quality of Life" (Epilepsy Research, 2016) 
was written by Jette and her colleagues. This study investigates 
the many comorbidities that are linked with epilepsy and the 
influence that these comorbidities have on the quality of life of 
those who have the disorder. An emphasis is placed throughout 
the essay on the significance of comprehensive treatment that 
extends beyond the control of seizures. 

As a tool that has shed light on the complex interplay of 
electrical activity in the human brain, electroencephalography 
(EEG) has become an indispensable tool in the field of 
neuroscience. A non-invasive and crucial instrument, it records 
neural signals in real time, allowing for the identification and 
characterization of different brain processes, such as seizures in 
epileptics. 

Central to electroencephalogram (EEG) technology is the 
measurement of electrical potentials caused by the coordinated 
firing of brain cells. Electrodes placed on the scalp measure 
and record voltage changes that are the outcome of 
postsynaptic potential summation, allowing this to be 
accomplished. The unique waveforms captured by these 
recordings represent various brain states. 

Because it can record and describe patterns associated with 
seizures, EEG is very helpful in the setting of epilepsy. 
Electroencephalogram (EEG) characteristics are unique to 
seizures because of the abrupt and aberrant synchronization of 
neuronal firing that occurs during these episodes. Neurologists 
rely on these signatures—which include spikes, sharp waves, 
and rhythmic discharges—to make precise diagnoses and 
formulate effective treatment plans. 

An electroencephalogram (EEG) is a crucial diagnostic and 
monitoring tool for epilepsy. It is a fundamental tool in 
neurology because it can record the ever-changing electrical 
landscape of the brain in real-time, detect patterns associated 
with seizures, and give important information for treatment 
choices. With the integration of EEG and new methods like 
Federated Machine Learning, epileptic seizure detection might 
become much more efficient and accurate, all while protecting 
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the privacy of patient's personal information, thanks to the 
rapid advancements in technology. 

Management of sensitive medical data is difficult, 
especially when using machine learning for diagnosis and 
prediction. Traditional methods gather and store data in a 
single repository. These techniques have considerable 
drawbacks, especially in patient privacy and data security. 
Centralized Approach Limitations: 1) Privacy Issues: 
Centralized models aggregate massive volumes of sensitive 
medical data from several sources. 2) Data Security Risks: 
Malicious attackers target centralized repositories. A security 
breach in such a store might jeopardize a massive amount of 
sensitive patient data. 3) Regulatory Compliance Challenges: 
HIPAA and GDPR are strict data protection laws in the 
healthcare business. Centralized methods must traverse 
complicated regulatory frameworks, increasing administrative 
costs and legal penalties for noncompliance. 

Distributed and federated machine learning models address 
centralized method concerns. Distributed machine learning 
models provide advantages over the difficult centralized 
technique. 1) Protecting Patient Privacy: Federated Learning 
(FL) allows model training on dispersed devices without 
exchanging raw data [1]. This keeps critical patient data on 
local servers, lowering the danger of privacy breaches from 
centralized techniques.2) Improving Data Security: FL 
localizes data to reduce large-scale data breaches [2]. Devices 
exchange just model updates, frequently encrypted parameters, 
decreasing the attack surface and improving data security. 
3) Compliance with Regulations: Decentralized models meet 
legal requirements by keeping data safe and making it easier to 
follow data security rules [3]. FL is designed so that groups can 
work together on machine-learning projects while still 
following the complicated rules that govern healthcare. 

Using compression methods for model changes before 
sending them can cut down on communication costs by a large 
amount. Some methods, like quantization (which represents 
model parameters with fewer bits) and scarification (which 
sends only important parameter changes), can help with 
bandwidth problems. New compression methods and 
improvement strategies designed for FML situations are still 
being studied [4]. Techniques that change compression levels 
based on the network and the device's powers help 
communication go more smoothly1. 

Problems caused by different datasets can be fixed by 
making the aggregation process better by adding weighted 
means based on device performance or data quality [5]. Using 
safe multi-party computation and homomorphic encryption, 
along with other advanced aggregation methods, can make 
privacy-preserving aggregation even stronger. Researchers are 
still working on creating pooled optimization methods that can 
handle non-IID (non-identically distributed) data and make 
models more accurate and faster to converge [6]. Federated 
learning works better when customized grouping methods are 
used that take into account the fact that healthcare data is often 
inconsistent. When you combine edge computing features, you 
can train and predict models locally, so you don't have to talk 
to a central computer all the time [7]. Edge devices can train 
the model at first and only send updated versions to the central 

computer after they have been improved. This reduces the 
effect of connection overhead. New developments in edge 
computing technologies, like edge-centric collaborative 
learning frameworks, let more complicated model training 
tasks be done nearby [7]. This method not only cuts down on 
contact needs, but it also makes it easier for edge devices to 
make decisions in real-time. 

Participation mechanisms that change over time let devices 
join or leave the federated learning process based on their 
availability or how well they fit the present learning job [8]. 
The shared learning process is more flexible when the learning 
rate is changed automatically based on the features of each 
device. Researchers are looking into ways to change 
involvement and learning rates based on reinforcement 
learning [9]. The goal of these improvements is to make shared 
learning work better by responding automatically to changing 
network conditions and device capabilities. 

A small number of studies have used both standard 
machine learning and deep learning to find esp seizures. By 
taking out important features from EEG data, SVMs have been 
used to find seizures. But these methods often depend on traits 
that were made by hand, which makes it harder for them to find 
complex trends in the data [10]. 

To sort EEG data into groups, ensemble methods such as 
Random Forests have been used. They are easy to understand, 
but the fact that they depend on specific feature engineering 
could make it harder for them to capture complex time patterns 
[11]. 

CNNs have been used to learn features straight from raw 
EEG data. They are very good at showing how things depend 
on each other in space, but sometimes they may not be able to 
show how things change over time [12]. 

A type of neural network called LSTMs has been used to 
describe sequences in time-series data, such as EEG data. They 
are good at showing time dependencies, but they might have 
trouble with disappearing gradients and long-term 
dependencies [13]. 

The current models have some problems with how accurate 
they are and how well they can be used in other situations. 

A lot of statistics about epilepsy are not balanced, with only 
a few cases showing real seizures. When datasets aren't fair, 
models can be skewed toward the majority class, which makes 
them less sensitive and more likely to give false positives [14]. 

It is possible for EEG readings to be very different between 
people. Models learned on data from one person might not 
work well on other people because their brains are built 
differently, their electrodes may not be placed correctly, or 
their seizures may be different [15]. 

Some machine learning models might have trouble figuring 
out the long-term time frame that is important for epileptic 
seizures. It might be possible to deal with short-term 
dependence, but it's still hard to fully capture the pre- and post-
ictal phases [16]. 

Artifacts can show up in EEG records like eye blinks, 
muscle movements, or electrical interference. Models might 
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mistake these effects for seizure patterns, which would make 
them less specific and raise the risk of false positives [17]. 

Federated Machine Learning was the subject of a thorough 
review piece that focused on its ideas and uses [9]. The paper 
doesn't talk about EEG data in particular, but the ideas it does 
talk about are a good starting point for understanding how 
FML deals with privacy issues when dealing with private data. 
The paper talks about different ways to protect privacy, such as 
differential privacy, and stresses how important it is to train 
models without a central server. 

A standard federated learning framework for epileptic 
seizure detection utilizing deep learning on a cluster of 
computers is proposed [18]. The technique was tested on the 
NVIDIA Jetson Nano Developer Kit using the EPILEPSIAE 
database, one of the largest public epilepsy datasets for seizure 
detection. The framework has 81.25% sensitivity, 82.00% 
specificity, and 81.62% geometric mean. A customized 
variation of federated learning was also examined, where each 
computer trained a deep neural network (DNN) to learn the 
discriminative electrocardiography (ECG) properties of the 
observed person's epileptic seizures based on its local data. The 
results show that tailored federated learning improves all 
performance metrics with a sensitivity of 90.24%, specificity 
of 91.58%, and geometric mean of 90.90%. 

Research proposed based on a three-tier approach for 
epileptic seizure prediction using the Federated Learning (FL) 
model [19] to use a large number of seizure patterns from 
globally distributed patients while protecting data. A bi-
timescale local model is developed using the Spiking Encoder 
(SE) and Graph Convolutional Neural Network (Spiking-
GCNN). Each local model uses FL-aggregated seizure 
knowledge from medical centres to calculate the coarse-
grained personalized preictal likelihood. Bi-timescale 
modelling and Spiking-GCNN-based epileptic pattern learning 
yielded 96.33% sensitivity and 96.14% specificity on the CHB-
MIT EEG dataset. The federated learning improves the 
suggested system by 96.28% for accuracy. 

The challenges of centralized machine learning in epileptic 
seizure detection is addressed and Federated Machine Learning 
(FML) model has been proposed as a decentralized solution to 
address privacy, security, and data handling issues while 
improving accuracy and patient privacy. It underscores the 
importance of EEG data and the potential of FML to 
revolutionize healthcare data analysis. 

In conclusion, the inability of centralized methods to handle 
private medical data, along with the need to protect patient 
privacy and improve data security, makes the use of 
autonomous models like Federated Learning in healthcare 
settings very appealing. FL is a big step toward a more ethical 
and safe way to handle healthcare data because it reduces 
privacy issues and makes sure that rules are followed. 

II. MATERIAL AND METHOD: FEDERATED MACHINE 

LEARNING 

The healthcare business is facing several pressing 
problems, and federated machine learning (FML) could solve 
many of them. The capacity to enable cross-decentralized 
healthcare system collaborative learning without jeopardizing 

the protection of sensitive patient data is one of its notable 
benefits. 

The goal of the machine learning paradigm known as 
Federated Machine Learning (FML) is to protect the 
confidentiality of local datasets while training models on 
distributed servers or devices. With FML, the learning process 
is decentralized, so each device may train its model locally, as 
opposed to the standard centralized machine learning strategy, 
which aggregates and stores data in a central server. Sharing 
just the model updates—as aggregated parameters or 
gradients—reduces the need to transmit raw data. When data 
security and privacy are of the utmost importance, FML's 
decentralized nature shines. 

 

Fig. 1. Federated machine learning model. 

The federated ML model is seen in Fig. 1. A global model 
is the result of combining model modifications made during 
local training. The model parameters might be averaged or 
gradients combined to achieve this aggregate. An all-
encompassing and broadly applicable comprehension of the 
data is provided by the aggregated model, which is a 
representation of the collective knowledge acquired from all 
participating devices. To keep data transfers between devices 
to a minimum, FML places an emphasis on efficient 
communication. No raw data is sent; only model changes are 
communicated by devices. Because less data needs to be 
transferred, the communication overhead is reduced, making 
FML a good fit for situations where network capacity is 
restricted or when data privacy is a top priority. 

Model training over distributed devices is based on the 
following principles. 

1) Training for local models: Model training on each 

device's local dataset is done individually. Because 

decentralized data sources are diverse, this first training takes 

into account information unique to the local setting. 

2) Revised model: Model updates, such as parameter 

updates or gradients, are generally generated by each device 

after local training. This update incorporates the insights, 

patterns, and characteristics related to that device, as well as 

the information obtained from the local dataset. 

3) The world model as a whole: A global model is 

generated by aggregating the model updates from all devices. 

This worldwide model is an example of a collaborative 

learning product that draws on information from all around the 

world. By distributing the contributions from different types 
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of data evenly, the aggregation process hopes to keep the 

model accurate. 

For the most part, iterative processes are used for local 
training, model updates, and global model aggregation. In 
order to promote continuous learning throughout the 
decentralized network, devices keep improving their models 
using new global information. 

Here is the method for the federated machine learning 
model, broken down into its parts. 

III. EXPERIMENTAL RESULTS 

 The Dataset collect from UCI Machine Learning 
Repository is used for the research study. The original dataset 
from the reference consists of five different folders, each with 
100 files, with each file representing a single subject/person. 
Each file is a recording of brain activity for 23.6 seconds. The 
corresponding time-series is sampled into 4097 data points. 
Each data point is the value of the EEG recording at a different 
point in time. So, we have total 500 individuals with each has 
4097 data points for 23.5 seconds. 

The proposed federated machine learning uses five client 
nodes for implementing the system. Three machine learning 
algorithms are deployed to test the performance of the 
proposed system, namely decision tree classifier, multilayer 
perceptron classifier, and logistic regression. 

Algorithm of FL 

1. intialize :The Central Server: A global model  is initialized and  a 

group of clients (C) is chosen and given global model 

Every client i has their own local dataset (Di) and model (wi). 

2. Training of Local Models: 

Client i:  Gets the glbal model wt from the main server. 

Updates the local model wi with its most recent state by training it 

with its most recent dataset, Di. 

 Determines the loss function's gradients using its local data: 

Calculates the change in weight w i  as a function of time L(wt; Di) 

3. Aggregation of Models: • Client i: Transfers data pertaining to 

local model modifications Δwi to the main server. 

• Central Server: Combines all the model changes that have been 

received: 

The weight allocated to client i (e.g., depending on data size) is 

denoted by αi, and  cahnge in Δw = ∑(i ∈ C) αi * Δwi  

Update  the global  model: 

w(t+1)= wt + Δw. 

4.repaeat step 2 to 3  number of rounds have passed.. 

 

Combining Models: 

• Update of the global model by avearge of all local model  

The experimental setup parameters used for the 
experimental study are presented in Table I. 

The research work uses a flower framework for deploying 
federated machine learning with 5 no of participating nodes, 3 
Machine learning models like random forest, Multilayer 

perceptron, and logistic regression are trained with the 
simulation setup given in Table I. 

TABLE I. EXPERIMENTAL SETUP 

Model Parameter value 

Federated machine learning 

frame work 
Flower framework 

Number of nodes 5 

Multilayer Perceptron Classifier 
solver='lbfgs', alpha=1e-5, 
hidden_layer_sizes=(5, 2), 

Logistic Regression 
Tolerance for stopping criteria= 1e-4, 

max_iterint=100, solver=‘lbfgs’ 

Decision tree  

Model aggregation method Average 

Batch size sd 
 

64 

No of batches 

 
50 

No of epochs 
 

100 

As a first step of analysing the proposed method, 
exploratory data analysis is carried out and shown in Fig. 2. 
The Fig. 2 shows the raw data of ECG signal of seizure-
affected people data and non-epics seizure data. 

 
Fig. 2. EEG signal of epileptic seizure and non-epileptic seizure case. 

From Fig. 2, it is evident that Epileptic Seizure data and 
non-Epileptic Seizure data are sitting in different amplitude 
domains so it is possible to classify them effectively. 

Fig. 3 shows the box plot of EEG signal of epileptic seizure 
and non-epileptic seizure data. From the diagram it is evident 
the epileptic seizure data and non-epileptic data both has 
average values of zero but the median value of both is different 
and also the range of values taken by the both data are different 
which again prove that both data distributions are in different 
amplitude domain which can be effectively classified by a 
classifier. 
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Fig. 3.  Box plot of EEG signal of epileptic seizure and non-epileptic seizure 

case. 

 
Fig. 4. Accuracy of various machine learning models in federated machine 

learning. 

 Federated machine learning of three algorithms is 
evaluated and plotted in Fig. 4. Figure shows that among the 
three algorithms, the neural network model achieves the 
highest accuracy with 99% and decision tree is the second 
highest accuracy with 94% and the regression model achieves 
89%. Those performances are evaluated with the aggregated 
model after Federated machine learning. 

The time complexity of federated machine learning (FL) 
depends on several factors in the specific FL setup and 
algorithm used. 

1) Number of communication rounds: This refers to the 

number of times local models are uploaded from devices to 

the central server, aggregated, and redistributed. Each round 

involves communication overhead and potential computation 

on the server. In general, the complexity is linear in the 

number of rounds (O(R)). 

2) Local data size: The amount of data each device uses to 

train its local model impacts the local computation cost. 

Typically, the complexity is linear in the local data size 

(O(n)). 

3) Model size: The complexity of aggregating and 

updating the global model scales with its size. This can be 

linear (O(m)) or quadratic (O(m^2)) depending on the 

aggregation method and model architecture. 

The time complexity of the federated machine learning for 
training the three machine learning models is also evaluated 
which is given in Fig. 4. 

From Fig. 4, it is evident that the decision tree model takes 
a long training time and neural letter model takes the second 
highest training time and regression takes the least time. The 
training time complexity shows that the proposed model can be 
deployed easily in a practical system. 

 
Fig. 5. Training time of Federated machine learning algorithms. 

From Fig. 5, it is evident that the decision tree model takes 
a long training time and neural letter model takes the second 
highest training time and regression takes the least time. The 
training time complexity shows that the proposed model can be 
deployed easily in a practical system. 

TABLE II. PERFORMANCE COMPARISON 

Method Technique employed Accuracy achieved 

Baghersalimi[18] 
Federated Deep neural 
network 

Sensitivity of 90.24%, 
Specificity of 91.58% 

Saemaldahr, R.[19] 

Federated Spiking 

Encoder (SE) and 

Graph Convolutional 
Neural Network 

(Spiking-GCNN). 

96.33% Sensitivity, 

96.14% Specificity. 
96.28% accuracy 

Proposed 
Federated Neural 

network 

sensitivity of 98.24%, 
specificity of 99.23% 

99%  accuracy 

Table II shows the performance analysis comparison with 
the literature work. From Table II, it is evident that the 
proposed work outperformed compared to the literature work.  
Literature work can achieve 96.33% of sensitivity but the 
proposed work can achieve 98.24%. similarly, the proposed 
work achieves 99.23% specificity whereas the literature 
maximum of 96.14% was only achieved. The proposed work 
achieves 99 % accuracy whereas literature could even touch 
only 96%. 
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IV. CONCLUSION 

EEG signal-based epileptic seizure detection framework is 
presented with a Federated machine learning mechanism. The 
proposed mechanism ensures the security and privacy of the 
data while applying data analytics of data to predict the 
presence and absence of seizure. Maximum accuracy of 99% is 
achieved by using a neural network model under federation 
machine learning. The time complexity of the proposed 
framework was analysed and it shows for the neural network 
model it takes 800 milliseconds to train the model to predict or 
classify the seizure. This time complexity proves that the 
proposed model or framework can be deployed practically to 
train using federated machine learning. The future work of the 
proposed framework will be analysing the communication 
overhead and providing some security measures while sharing 
the locally trained model with the aggregating server. 
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