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Abstract—This article proposes a novel solution to the long-
standing issue of ripe (or manual) tomato monitoring and
counting, often relying on visual inspection, which is both time-
consuming, requires a lot of labor and prone to inaccuracies.
By leveraging the power of artificial intelligence (AI) and image
analysis techniques, a more efficient and precise method for
automating this process is introduced. This approach promises to
significantly reduce labor requirements while enhancing accuracy,
thus improving overall quality and productivity. In this study, we
explore the application of the latest version of YOLO (You Only
Look Once), specifically YOLOVY, in automating the classification
of tomato ripeness levels and counting tomatoes. To assess the
performance of the proposed model, the study employs standard
evaluation metrics including Precision, Recall, and mAP50. These
metrics provide valuable insights into the model’s ability to
accurately detect and count tomatoes in real-world scenarios.
The results indicate that the YOLOv9-based model achieves
superior performance, as evidenced by the following evaluation
metrics: Precision: 0.856, Recall: 0.832, and mAP50: 0.882.
By leveraging YOLOV9 and comprehensive evaluation metrics,
this research aims to provide a robust solution for automating
tomato monitoring processes. Additionally, by offering the future
integration of robotics, the collection phase can further optimize
efficiency and enable the expansion of cultivation areas.

Keywords—Tomato monitoring; manual counting; Artificial
Intelligence (Al); Image analysis techniques; YOLO; YOLOvY

I. INTRODUCTION

Tomatoes offer not just delightful flavor but also contain
crucial nutrients. They are a great source of vitamin C, which
supports the immune system and promotes healthy skin. Addi-
tionally, tomatoes contain lycopene, a powerful antioxidant that
may help reduce the risk of certain cancers and protect against
heart disease [1], [2]. Tomatoes have an attractive moisture
content of 95%, with a carbohydrate content of 3%, protein at
1.2%, and total lipids making up 1%. Furthermore, they offer
minerals including calcium (Ca), magnesium (Mg), phospho-
rus (P), potassium (K), sodium (Na), zinc (Zn), and manganese
(Mn). In addition to minerals, tomatoes provide essential
vitamins such as vitamins A and C, thiamin, riboflavin, niacin,
pantothenic acid, and pyridoxine. [3]. In 2020, the largest
producers of tomatoes worldwide were as follows: China took
the top spot, producing an impressive 64,866 million tons of
tomatoes in a single year. India came in second, producing
approximately 20,573 million tons of tomatoes, while Turkey
ranked third, with a tomato production of 13,204 million tons

[4].

The current problem of identifying, manually counting, and
classifying the ripeness of tomatoes persists as a significant
challenge in agricultural practices. Traditional methods rely

heavily on manual labor, making the process time-consuming,
labor-intensive, and prone to errors. The current challenges
in tomato handling demand innovative solutions that combine
machine learning, image processing, and automation to en-
hance efficiency, reduce errors, and improve overall produc-
tivity in the tomato industry.

Manual counting, which involves counting tomatoes manu-
ally during harvesting or quality control, is labor-intensive and
inefficient. It leads to inaccuracies due to fatigue, distractions,
and variations in human perception. Automating counting
using image processing, machine learning, or deep learning
could alleviate this issue. A study [5] focused on detecting and
counting tomato fruits in greenhouses utilizing deep learning.

Accurately categorizing tomatoes into ripeness stages (such
as unripe, ripe, and overripe) plays a pivotal role in sorting,
storage, and distribution within the agricultural industry. How-
ever, manual classification suffers from inconsistency due to
human subjectivity. To address this, researchers have proposed
innovative approaches, including Machine Learning (ML),
Convolutional Neural Networks (CNNs) and Deep Learning-
based methods (DL), which demonstrate promising results
in fruit classification and ripeness determination [6], [7]. A
study [8] using the Cascaded Object Detector (COD) and a
composition of traditional custom image processing methods.
The COD method achieved 95% accuracy in detecting ripe
tomatoes, outperforming the traditional Color Segmentation
Method.

This study introduces a more efficient and accurate ap-
proach to automating the monitoring process. The utilization of
the latest version of YOLO, specifically YOLOV9, enables the
classification of tomato ripeness levels and facilitates tomato
counting. The main contribution of the study are:

e Introducing a novel solution to the longstanding prob-
lem of manual tomato monitoring and counting, ad-
dressing issues of time consumption, labor intensity,
and inaccuracies associated with visual inspection
methods.

e Leveraging artificial intelligence (AI) and image anal-
ysis techniques to develop a more efficient and precise
method for automating tomato monitoring processes,
promising to significantly reduce labor requirements
while enhancing accuracy and overall quality and
productivity.

e Exploring the application of the latest version of
YOLO, specifically YOLOVY, in automating the clas-
sification of tomato ripeness levels and counting toma-
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toes, demonstrating the potential of advanced deep
learning techniques in agricultural applications.

e Evaluating the performance of the proposed model
using standard evaluation metrics such as Precision,
Recall, and mAP50, providing valuable insights into
its effectiveness in accurately detecting and counting
tomatoes in real-world scenarios.

The paper is organized as follows: In Section II, we present
a thorough literature review. Section III outlines the Automated
Tomato Ripeness Classification and Counting Methodology,
including details about the dataset, data preparation, and
evaluation metrics for the model. Moving on to Section 1V,
we delve into the experimental system and present the final
results. Finally, Section V summarizes our study’s findings and
offers concluding remarks. Lastly, Section VI outlines potential
avenues for future study.

II. RELATED WORKS

Computer vision has emerged as a powerful tool in modern
agriculture, revolutionizing the way crops are monitored and
managed [9], [10], [11], [12], [13], [14] from object detection
algorithms based on traditional methods to modern approaches
such as CNN and deep learning.

The authors in the article [15] introduces an auto-
mated multi-class classification method for evaluating tomato
ripeness using color features and employing Principal Com-
ponents Analysis (PCA), Support Vector Machines (SVMs),
and Linear Discriminant Analysis (LDA) algorithms for feature
extraction and classification.

In this study [16], the authors utilize digital image process-
ing techniques to describe and extract color statistics (RGB,
HSI, and Lab* color spaces) from tomato images. They employ
supervised and unsupervised classification algorithms such as
K-NN, MLP neural networks, and K-Means for classifying
Milano and Chonto tomatoes.

Liu et al. in this study [17] propose an algorithm for
automatic tomato detection in regular color images, utilizing
Histograms of Oriented Gradients (HOG) descriptor trained
with a SVM classifier, along with a coarse-to-fine scanning
method and False Color Removal (FCR) technique to enhance
accuracy. The proposed algorithm demonstrates a significant
improvement in tomato detection compared to other methods,
achieving high recall, precision, and F1 score percentages of
90.00%, 94.41%, and 92.15%, respectively, in test images.

This study [18] proposes a Tomato Classification model
utilizing Machine Learning algorithms such as Decision Tree
(DT), Logistic Regression (LR), Gradient Boosting (GB),
Random Forest (RF), SVM, K-NN, and XG Boost to determine
tomato maturity stages, with Random Forest achieving the
highest accuracy of 92.49% among the classifiers tested.

The author in the research [19] aims to apply deep
Transfer Learning (TL) to classify tomatoes into maturity
classes, employing three TL approaches—VGG, Inception, and
ResNet—ultimately revealing VGG 19 as the top performer.

The authors in this work [20] utilize an improved DenseNet
architecture to address the challenges of accurately classifying
tomato ripeness in complex images, incorporating structured
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sparse operations to enhance feature propagation and reduce
data storage, as well as introducing the Focal loss function to
mitigate dataset imbalance and improve classification accuracy
in their tomato detection system.

Utilizing TL with VGG16 for Fruit Ripeness Detection.
This study [21] demonstrates that DL employing TL consis-
tently outperforms traditional ML approaches utilizing tradi-
tional feature extraction for fruit ripeness detection.

The author’s primary objective in this study [22] is to
introduce a new method for sorting and grading tomato quality,
the approach integrates pre-trained CNNs for feature extraction
with conventional ML algorithms (such as SVM, RF, and k-
Nearest Neighbors (KNN)) to enhance classification accuracy.
Among the hybrid models proposed, the CNN-SVM method
demonstrates superior performance, achieving high accuracies
in both binary and multiclass classification tasks, particularly
when utilizing Inceptionv3 as the feature extractor.

The authors in [23] introduce four distinct deep learn-
ing frameworks, Utilizing a combination of Yolov5m and
deep learning models—specifically ResNet50, ResNet-101,
and EfficientNet-BO - the model successfully classified toma-
toes on the vine into three distinct classes: ripe, immature, and
damaged. The evaluation results indicated that the ResNet-50
and EfficientNet-BO achieved impressive overall accuracy of
98%, while the YolovSm and ResNet-101 models demonstrated
accuracy of 97%.

This study [24] explores tomato segmentation and detection
across various maturity stages, utilizing both a mask R-CNN
and a YOLOv8 model. Evaluation metrics show that mask
R-CNN achieved 67.2% average precision with 78.9% recall,
and 92.1% IoU average precision with 91.4% recall, while
YOLOV8 demonstrated superior performance, With coeffi-
cients of determination measuring 0.809 for ripe, 0.897 for
half-ripe, and 0.968 for green categories.

Liu, Guoxu, et al. in this study [25] introduces an en-
hanced fruit detection model named YOLO-Tomato, derived
from YOLOv3. YOLO-Tomato integrates a dense architecture
into YOLOV3, enabling feature reuse and enhancing model
accuracy, while also employing circular bounding boxes for
more accurate localization of tomatoes.

The authors in this research [26] enhanced YOLOVS to
identify four distinct stages of tomato ripeness: mature green,
breaker, pink, and red. [27] introduces a novel lightweight
enhanced algorithm based on YOLOVS to achieve real-time
tracking and identify the ripeness of tomato fruits, achieved
by reconstructing YOLOvV5’s backbone network utilizing the
bneck module of MobileNetV3.

This study presents a more efficient and accurate method
to automate the monitoring process. By taking advantage of
the latest version of YOLO, specifically YOLOVY, it allows
classification of tomato ripeness levels and simplifies tomato
counting.

III. METHODOLOGY

A. The Process of Gathering and Preparing Data

This research utilizes the FruitDetectionv3 Image Dataset,
accessible at [28], which consists of three classes (Tomato
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Fig. 1. Sample images of tomatoes at different maturity levels from this dataset.

Tomato Fully-ripe Tomato Semi-ripe Tomato Unripe

Fig. 2. Tomato ripening level.
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Fully-ripe, Tomato Semi-ripe, and Tomato Unripe) and the
total number of images in this dataset is 2610. The dataset
is divided into three sets: the training set comprises 2283
pictures (87%), The validation set includes 217 pictures (8%),
and the testing set contains 110 pictures (4%). Each image
in the dataset has a size of 640x640 pixels. Augmentations
are applied to enhance the dataset, including Horizontal Flip,
Rotation between -15° and +15°, and Shear of +15° horizon-
tally and vertically. These augmentations aim to increase the
variability of the dataset and improve the robustness of the
model in real-world scenarios. Sample images of tomatoes at
different maturity levels from this dataset are shown in Fig. 1
and samples of Tomato Ripening Level are shown in Fig. 2.

B. Overall Methodology

Object detection techniques are frequently classified into
one-stage and two-stage approaches. YOLO (You Only Look
Once) [29] and SSD (Single Shot MultiBox Detector) [30]
are prominent examples of one-stage methods. These meth-
ods directly predict bounding boxes and class labels in a
single forward pass through the neural network. They are
faster in terms of inference time since they avoid the region
proposal step. Faster R-CNN (Region-based Convolutional
Neural Network) [31] exemplifies the two-stage approach.
In the first stage, Faster R-CNN proposes region proposals
using a Region Proposal Network (RPN). In the second stage,
these proposals are refined to obtain accurate bounding boxes
and class predictions. One-stage methods prioritize speed and
simplicity, while two-stage methods focus on accuracy at the
cost of increased complexity and computation time. In real-
time applications where speed is essential, such as autonomous
vehicles and surveillance, one-stage methods like YOLO or
SSD should be considered.

If achieving high accuracy is crucial and computational
resources are available, consider using two-stage methods such
as Faster R-CNN. Hence, in this study, we utilize the state-
of-the-art one-stage object detection method, YOLOV9, to
automate the classification and counting of tomato maturity.

YOLOVY is a remarkable advancement in real-time ob-
ject detection technology [32]. YOLOVY is the latest version
of YOLO, released in February 2024, YOLOV9 introduces
groundbreaking techniques such as Programmable Gradient
Information -PGI and the Generalized Efficient Layer Aggre-
gation Network - GELAN.

1) Programmable Gradient Information - PGI: During the
forward pass in neural networks, information can get diluted or
lost due to transformations within the layers. This phenomenon
is known as the information bottleneck. Gradients provide
essential information for updating network weights during
training. Accurate gradients are crucial for effective learning.
PGI ensures that gradient information is preserved throughout
the network. It prevents the loss of critical input information
during backpropagation. By maintaining reliable gradient in-
formation, PGI helps the model learn more effectively and
improves its ability to recognize objects. The YOLOV9 Pro-
grammable Gradient Information (PGI) Architecture is shown
in Fig. 3. The PGI primarily comprises three components: The
main branch, An auxiliary reversible branch, and Multi-level
auxiliary information.
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Fig. 3. YOLOV9 PGI Architecture [32].

2) Generalized Efficient Layer Aggregation Network -
GELAN: GELAN is a novel architectural advancement, it
combines principles from two existing techniques: CSPNet
(Cross Stage Partial Network) and ELAN (Efficient Layer
Aggregation Network). GELAN is a lightweight network
architecture designed based on gradient path planning. It
efficiently aggregates information across layers. It prioritizes
lightweight design, fast inference, and accuracy. GELAN di-
rectly tackles the information bottleneck problem, leading to
improved efficiency and accuracy in real-time object detection.
The architecture of GELAN within YOLOV9 is shown in Fig.
4.
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Fig. 4. The architecture of GELAN within YOLOV9 [32].

Information of randomly initialized weight output feature
maps across various deep learning network architectures are
shown in Fig. 5. From Fig. 5, it’s observable that the GELAN
architecture retains a significant amount of information from
the input data after going through the feed-forward process

(a) Input Image

(b) PlainNet (¢) ResNet (d) CSPNet (¢) GELAN

Fig. 5. Information of randomly initialized weight output feature maps
across various deep learning network architectures [32].

The analysis of YOLOVY in comparison to state-of-the-
art (SOTA) models demonstrates notable enhancements across
diverse metrics. YOLOV9 surpasses current methodologies
in parameter efficiency, demanding fewer parameters while
either maintaining or enhancing accuracy levels. Comparison
of cutting-edge real-time object detectors with YOLOVO is
shown in Fig. 6. YOLOV9 stands out as an innovative model,
combining PGI and GELAN to redefine the boundaries of
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efficiency and accuracy in object detection. Therefore, in this
study we use YOLOV9 to count and classify the ripeness level
of tomatoes.

Performance on MS COCO Object Detection Dataset
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Fig. 6. Comparison of cutting-edge real-time object detectors with YOLOV9
[32].

C. Performance Evaluation Measures

Assessing classification models entails a thorough exami-
nation using several essential metrics. Precision, which gauges
the correctness of positive predictions among all predicted pos-
itives, and recall, which highlights the proportion of accurately
predicted positives among all actual positives, play crucial
roles. Lastly, The mean average precision (mAP) metric is
utilized. It evaluates the detected bounding box by comparing
it with the ground-truth box and assigns a corresponding score.

TP
Precision = ————— 1
recision TP+ FP (1)
TP
Recall = TPTFN 2)
1
mAP = ; APi 3)

In which, FP represent False Positive, TN denote True
Negative, TP signify True Positive, and FN indicate False
Negative. AP is Average Precision, APi denotes the average
precision value for the i-th category, N is number of classes.

IV. RESULTS
A. Environmental Settings

Our experimental procedures were conducted on the Kag-
gle platform to acquire the experimental outcomes. The re-
search employed a Tesla T4x2 GPU with 30GB of memory,
while the system itself possessed 29GB of RAM. GPU infor-
mation is presented in Fig. 7.
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Fig. 7. GPU information used in training models.

B. Experiment

The hyperparameters of the model for automating tomato
maturity classification and counting using YOLOV9 are shown
in the Table L.

TABLE I. CONFIGURATION PARAMETERS FOR MODEL TRAINING

Parameters Value

Batch-size 16

Epochs 100

Image-size 640 x 640

Learning rate (LR) 0.01

Momentum 0.937

Warmup epochs 3

Weight decay 0.0005

Optimizer Stochastic Gradient Descent (SGD)

1) Comparative Analysis of YOLOvS and YOLOvVY for
tomato counting and ripeness classification in image process-
ing: In this research, the goal was to develop an efficient and
accurate model for counting and classifying the ripeness level
of tomatoes in images. In this experiment, we utilized two
popular object detection frameworks: YOLOvS and YOLOV9.
Both models were trained on a dataset of tomato images. The
training process involved fine-tuning the pre-trained YOLOVS
and YOLOVY architectures on the tomato dataset. The models
were optimized for counting and classifying the ripeness level
of tomatoes. After training, we evaluated the performance of
both models on a separate testing set. The table presents the
results of the comparison between YOLOvVS and YOLOvV9
methods on the testing set, shown in Table II. The results pre-
sented in Table II show that YOLOV9 outperformed YOLOv8
in terms of tomato accuracy classification. it’s evident that the
YOLOV9 model generally outperforms the YOLOv8 model in
terms of class precision, recall, and mAP50 across all tomato
ripeness categories. Additionally, the YOLOvV9 model achieves
comparable or better performance with a slightly smaller
model size, indicating potential efficiency improvements.

2) Plots describe the training and validation performance
of the YOLOvVY model for counting and classifying tomato
ripeness levels: Fig. 8 displays instances of class distribution
and visualizations related to object detection.
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TABLE II. THE TABLE PRESENTS THE RESULTS OF THE COMPARISON
BETWEEN YOLOVS8 AND YOLOV9 METHODS ON THE TESTING SET

Models Class Precision | Recall | mAP50 | Model-Size
YOLOvV8 | All 0.837 0.771 0.825 52Mb
Tomato Fully-ripe | 0.856 0.822 0.859
Tomato Semi-ripe 0.773 0.710 0.772
Tomato Unripe 0.881 0.781 0.844
YOLOV9 | All 0.856 0.832 0.882 51.5Mb
Tomato Fully-ripe | 0.860 0.840 0.894
Tomato Semi-ripe | 0.815 0.785 0.829
Tomato Unripe 0.894 0.870 0.925
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Fig. 9. Visualizations of mean Average Precision (mAP) and loss trends
post-training the YOLOV9 model for counting and classifying tomato
ripeness levels.

Fig. 9 depicts a series of eight graphs representing different

metrics during the training and validation phase of the model
to count and classify tomato ripeness.The metrics include:
Box Loss, Classification Loss, Distribution Focal Loss, Pre-
cision, Recall, Mean Average Precision (mAP). Overall, the
graphs show a positive trend over epochs. Decreasing values
for loss metrics (Box Loss, Classification Loss, Distribution
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Focal Loss) indicate model improvement. Increasing precision,
recall, and mAP values suggest better performance.

Confusion Matrix

Tomato Fully-ripe

Predicted
Tomato Semi-ripe

Tomato Unripe

background

background

Tomato Unripe

Tomato Fully-ripe Tomato Semi-ripe

Fig. 10. Confusion matrix of model for counting and classifying tomato
ripeness levels.

As we can see from the Confusion matrix in Fig. 10, the
tomato ripeness counting and classification model gives the
best results in the “Tomato Unripe” class, followed by the
“Tomato Fully-ripe” class, and finally, the “Tomato Semi-ripe”
class. Precision-Recall Curve is presented in Fig. 11.

Precision-Recall Curve
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Fig. 11. Precision-Recall curve.

3) The practical effectiveness of detecting and counting
tomato ripeness: To validate the practical performance of
the built model, six pictures were randomly chosen for this
study. These images were sourced from the internet to test
the detection and counting of tomato ripeness. The results are
depicted in Fig. 12.

V. CONCLUSION

In conclusion, this article presents a groundbreaking so-
Iution to the longstanding challenges associated with manual
tomato monitoring and counting. Traditionally, these tasks
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have been labor-intensive, time-consuming, and prone to in-
accuracies due to their reliance on visual inspection. However,
by harnessing the capabilities of artificial intelligence (AI) and
image analysis techniques, a more efficient and precise method
for automating this process is introduced.

The proposed approach, which leverages the latest version
of YOLO, specifically YOLOvVY, demonstrates promising re-
sults in automating the classification of tomato maturity levels
and accurately counting tomatoes. Through the utilization of
standard evaluation metrics such as Precision, Recall, and
mAP50, the study provides valuable insights into the model’s
performance in real-world scenarios.

The integration of YOLOV9 and comprehensive evaluation
metrics aims to offer a robust solution for automating tomato
monitoring processes, thereby significantly reducing labor re-
quirements and enhancing accuracy. Furthermore, the potential
future integration of robotics in the collection phase presents
an opportunity to further optimize efficiency and enable the
expansion of cultivation areas.

In essence, this research not only addresses the immediate
need for more efficient tomato monitoring methods but also
lays the foundation for advancements in agricultural automa-
tion, ultimately contributing to improved quality, productivity,
and sustainability in tomato cultivation.

Besides, the study also evaluates the use of the latest
version of the YOLO (version 9) model on this task to compare
the results with the previous version.

VI. FUTURE WORKS

While the current study demonstrates the effectiveness of
the YOLOv9-based model in automating tomato monitoring
and counting tasks, several avenues for future research ex-
ist to further enhance the proposed solution and extend its
applicability. Future research could focus on refining the Al
algorithms used for tomato classification and counting. Ex-
ploring alternative deep learning architectures or incorporating
ensemble techniques may improve the model’s performance,
particularly in challenging environments with varying lighting
conditions or occlusions. Expanding the scope of automation
by integrating robotic systems for tomato harvesting and data
collection represents a promising direction for future research.
By developing autonomous robotic platforms equipped with
Al-enabled vision systems, the efficiency and accuracy of
tomato cultivation and monitoring processes can be further
enhanced.
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