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Abstract—Since the datasets of the practical problems are
usually affected by various noises and outliers, the traditional
extreme learning machine (ELM) shows low prediction accuracy
and significant fluctuation of prediction results when learning
such datasets. In order to overcome this shortcoming, the l2 loss
function is replaced by the correntropy loss function induced by
the p-order Laplace kernel in the traditional ELM. Correntropy
is a local similarity measure, which can reduce the impact of
outliers in learning. In addition, introducing the p-order into
the correntropy loss function is rewarding to bring down the
sensitivity of the model to noises and outliers, and selecting
the appropriate p can enhance the robustness of the model. An
iterative reweighted algorithm is selected to obtain the optimal
hidden layer output weight. The outliers are given smaller weights
in each iteration, significantly enhancing the robustness of the
model. To verify the regression prediction of the proposed model,
it is compared with other methods on artificial datasets and
eighteen benchmark datasets. Experimental results demonstrate
that the proposed method outperforms other methods in the
majority of cases.

Keywords—p-order Laplace kernel-induced loss; extreme learn-
ing machine; robustness; iterative reweighted

I. INTRODUCTION

Extreme Learning Machine (ELM), as a generalized single
hidden layer feedforward neural network, was proposed by
Huang et al. [1]. Its random selection of hidden node biases
and input weights, along with the use of the ordinary least
square method for determining the output weight, enables a
simple, fast, and straightforward implementation. It has been
widely used in load forecasting [2], [3], [4], fault detection
[5], [6], image processing [7], image recognition [8] and other
fields.

Although ELM performs well in terms of efficiency, it is
susceptible to noise and outliers due to the use of the l2 loss
function, which can amplify their interference. Therefore, in
recent years, many researchers have devoted themselves to the
robustness of ELM. In regularized ELM [9], the regularization
term of the objective function significantly improved the
learning performance of ELM by minimizing the structural
risk. Deng et al. [10] put forward a weighted least square
regularized ELM (Weighted ELM, WELM) to enhance robust-
ness by iterative weighted method. The above two methods
employed l2 loss function, which was optimal only when the
error of the training datasets followed the normal distribution.
However, many practical applications cannot guarantee the
error followed a normal distribution, which lead to a fact that
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ELM is highly susceptible to noise and outliers. Subsequently,
the researchers proposed several loss function such as Huber
[11], l1 [12] and Pinball [13] and their corresponding ELM
models. However, these loss functions were still less robust
because they had a linear relationship with the training error
and increased linearly with the training error. Incorporating
both regularization term (l1, l2) and various loss functions (l1,
Huber, bisquare and Welsch), Chen et al. [14] put forward an
unified robust regularized ELM, which improved the robust-
ness of ELM.

As the research progressed, the researchers found that
machine learning algorithms based on non-convex loss func-
tions had strong robustness to datasets disturbed by noise and
outliers [15], [16], [17], [18]. The loss functions in classical
machine learning methods, including hinge loss, ε-insensitive
loss, and l2-loss, were replaced by non-convex loss functions
to construct the corresponding robust learning algorithms.
Correntropy [19] is a nonlinear local similarity measure built
on a Gaussian kernel function, which can weaken the role
of noise and outliers in the learning process. The correntropy
loss function has better robustness to noise and outliers than
the convex loss function [20]. On this basis, Xing et al. [21]
developed an ELM model based on the maximum correntropy
criterion to improve robustness. C-loss function [22] and non-
convex smooth loss [23] derived from correntropy and their
corresponding models were proved to be robust to noise and
outliers. Chen et al. [24] presented a maximum correntropy
criterion with variable center (MCC-VC), which is also essen-
tially a loss function derived from the correntropy. The use of
Gaussian kernels in correntropy learning is common, owing to
their smoothness and strict positive definiteness. Nevertheless,
Gaussian kernels may not always be the optimal choice. On
the one hand, this is because that the choice should be based
on specific problem and experimental results to determine the
optimal kernel function and parameters. On the other hand,
the exponential part of the Gaussian kernel function is in the
form of l2, which would overemphasize the role of noise and
outliers, so this could potentially lead to a greater sensitivity to
noise and outliers. Yang [25] introduced a new method based
on the Laplace kernel (LK-loss) and demonstrated that the
LK-loss serves as a reliable approximation of the zero norm.
Dong et al. [26] presented a robust semi-supervised support
vector machines with Laplace kernel-induced correntropy loss
functtion utilizing LaplaceSVM to solve the problem of insuf-
ficient supervisory information and noise effects in practical
applications. Chen et al. [27] pointed out that taking the p-
order function of the error as a loss function was effective to
decrease the sensitivity of the model to the noise and outliers,
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and appropriate p was conducive to improve the robustness of
the model. Chen et al. [28] put forward a robust ELM based
on p-order Welsch loss function, and the experiments revealed
the superiority of method over the Welsch loss.

Inspired by the above studies, this paper offers the p-order
loss function into the correntropy loss function induced by the
Laplace kernel (p-LKI loss function ) and applies it to ELM.
The main contributions of this paper are as follows:

(1) This paper introduces the Laplace kernel function
into the correntropy and incorporates the p-order of the loss
function into it, and proposes an ELM model based on p-LKI
loss function. The robustness of the model can be significantly
improved by choosing a suitable p.

(2) We have proved that the p-LKI loss function is positive-
definite, bounded and non-convex, and can converge to 1 with
increasing error. Additionally, as the parameter p increases, the
p-LKI loss function serves as a favorable approximation of the
zero norm.

(3) The iterative reweighted algorithm efficiently addresses
the optimization problem and converges to the optimal solution
within a few iterations. We investigate that the larger the error
of the sample, the smaller weight assigned to it, thus the
smaller the impact on the model.

The paper is organized as follows: Section II briefly in-
troduces ELM. In Section III, we present an ELM based on
p-order Laplace Kernel-Induced loss function and the iterative
reweighted algorithm is used to address the problem. The
experiments are conducted in different levels of outliers in
artificial dataset and benchmark datasets in Section IV. The
experimental results of the proposed method are discussed and
compared with other methods in Section V. And the conclution
and prospect are summarized in Section VI.

II. BRIEF REVIEW OF ELM

Given training samples S = {(xi, yi)}Ni=1, xi ∈ Rd, yi ∈
R, the mathematical representation of the output function of a
single hidden layer ELM with L hidden nodes and activation
functions hi(x) is as follows:

f(x) =

L∑
i=1

hi(x)βi = h(x)β (1)

where, β = [β1, β2, · · ·, βL]
T is the output weight vector,

h(x) = [h1(x), h2(x), · · ·, hL(x)] is the hidden layer output
of variable x. Let Y = [y1, y2, · · ·, yN ]T, hidden layer output
matrix H = [h(x1)

T, h(x2)
T, · · ·, h(xN )T]T, the ELM model

can be expressed as the following optimization problem [1].

min
β

1

2
∥β∥2 + C

2
∥Y −Hβ∥2 (2)

where, C is a regularization parameter. The best solution in
Eq. (2) is provided by Huang et al. [1] as,

β =

{
(HTH + I/C)

−1
HTY, N ≥ L

HT(HHT + I/C)
−1

Y, N < L
(3)

where, I denotes the identity matrix.

III. ROBUST ELM BASED ON p-ORDER LAPLACE
KERNEL-INDUCED LOSS FUNCTION

The l2 loss function in ELM gives the same weight to
each training samples, which makes the outliers have a larger
impact on the sum of squared errors than the rest of the
samples, resulting in model that is quite sensitive to outliers.
Inspired by correntropy [19] and p-order loss functions [27],
this paper proposes to use the p-LKI loss function to improve
the robustness of ELM.

A. P -order Laplace Kernel-induced Loss Function

In order to improve the robustness of the model, the
maximum correntropy criterion (MCC) [21] is introduced.
Correntropy [19] describes the measure of similarity between
two samples, the principle is as follows:

Vσ(A,B) = E(kσ(A,B)) (4)

where kσ is the kernel function, σ > 0 is the kernel bandwidth,
and E is the mathematical expectation. In most cases, the
joint probability distribution between variables A and B is
unknown, and the mean can be used to estimate the math-
ematical expectation. For variables A = (a1, a2, · · ·, aN ) ,
B = (b1, b2, · · ·, bN ), and q = (q1, q2, · · ·, qN ), qi = ai − bi.
The correntropy estimation is as follows:

Vσ =
1

N

N∑
i=1

kσ(ai, bi) (5)

where kσ(qi) = exp(− |qi|
σ ) is Laplace kernel function.

MCC [20] can be expressed as,

max
1

N

N∑
i=1

kσ(qi) = max
1

N

N∑
i=1

exp(−|qi|
σ

) (6)

To facilitate the calculation, Eq (6) is equivalent to,

min 1− exp(−|q|
σ
) (7)

Reference [27] pointed out that the loss function employing
second-order statistical measures is susceptible to outliers, and
it is not always a good choice for learning with samples
that is non-Gaussian in nature. To address non-Gaussian data
and noise, various non-second-order (or non-quadratic) loss
functions have been proposed, such as the Huber minimum-
maximum loss [15], Lorentz error loss [16], risk-sensitive loss
[17], and mean p-power error (MPE) loss [27]. The MPE
represents the p-th absolute moment of the error and effectively
manages non-Gaussian datasets with an appropriate choice
of the parameter p. Generally speaking, MPE demonstrates
robustness to significant outliers for 0 < p < 2 [27]. Inspired
by the above studies, this paper proposes the following p-LKI
loss function.
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Fig. 1. Comparison of p-LKI loss functions and their gradient functions
under different p.

l(q) = (1− exp(−|q|
σ
))p (8)

The gradient function of p-LKI loss function is as follows:

∂l(q)

∂q
=

pq

σ
exp(−|q|

σ
)(1− exp(−|q|

σ
))p−1 1

max{|q| , 10−6}
(9)

We can observe from Fig. 1(a), l(q) becomes larger as |q|
increases and will eventually approach 1 for any value of p
when |q| reaches a certain threshold. Even if the |q| increases
again, l(q) will only approach 1 again with little change, thus
reducing the influence of significant errors brought by outliers
on model training. Furthermore, as depicted in Fig. 1(b), as
the value of p decreases, the extreme point of l′(q) will move
forward with the decrease of the value of p which means that
the part of l(q) that is most sensitive to error changes will
move forward relatively. Therefore, when p is too large, the
sensitivity of l(q) to outliers will increase. However, when
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Fig. 2. Comparison of p-LKI loss functions and their gradient functions
under different σ.

p = 0.5, l′(q) is discontinuous at zero which means l(q) is
not differentiable at zero.

Fig. 2 shows p-LKI loss function l(q) and its gradient
function l′(q) under different values of σ. It can be seen that
with the increase of the values of σ, the corresponding |q|
will increase correspondingly when l(q) approaches 1. With
the decrease of the values of σ, the extreme point of l′(q) is
approaching zero, and the smaller the values of σ, the stronger
the robustness of the model to the outliers. Therefore, the
sensitivity of l(q) to outliers can be reduced by adjusting the
values of p and σ. The optimal values of p and σ will be
further determined by grid search.

The p-LKI loss function offers the strengths in these
aspects:

1. The p-LKI loss function l(q), shown in Fig. 2(a), is
a positive, symmetric, and bounded function. It attains its
maximum value only when q = 0. The p-LKI fulfills the
following:
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∂l(q)

∂q
= sgn(q)

p

σ
exp(−|q|

σ
)(1− exp(−|q|

σ
))p−1,q ̸= 0

(10)

We have

lim
q→∞

p

σ
exp(− q

σ
)(1− exp(− q

σ
))p−1 = 0 (11)

As shown in Eq.(11) that when the error approaches
infinity, the gradient function l′(q) of p-LKI approaches 0,
indicating that l(q) does not change for the outliers. Therefore,
the p-LKI loss function is resistant to outliers.

2. For ∀q ∈ RN ,

lim
σ→0+

l(q) = ∥q∥0 (12)

Proof: The empirical risk derived from the p-LKI loss
function can be represented as:

Rl(f) =

N∑
i=1

(1− exp(−|qi|
σ

))
p

(13)

By evaluating the limit as σ → 0+, we obtain:

lim
σ→0+

Rl(f) = lim
σ→0+

N∑
i=1

l(qi)

= lim
σ→0+

N∑
i=1

(1− exp(−|qi|
σ

))
p

= ∥q∥0

(14)

where the zero norm ∥q∥0 counts the non-zero elements of q.

3. In comparison to other estimations of the zero norm,
like the p-order Gaussian kernel-induced loss (p-Welsch),

M(q) = (1− exp(− q2

2σ2
))p (15)

Fig. 3 (a) shows the curves of the p-LKI loss function and
p-Welsch loss function with p = 0.8 and σ = 0.1. It can
be inferred that the approximation precision of the p-LKI loss
function is higher than the p-Welsch loss function which means
that it is closer to the zero norm. Some advantages of the zero
norm are as follows:

1) Sparsity: The zero norm loss function encourages the
model to produce sparse weights, i.e. only a small percentage
of the weights are non-zero. This can effectively reduce the
complexity of the model and prevent over-fitting [27].

2) Robustness: By making the weights sparse, the zero
norm loss function can enhance the robustness of the model.
Only those features that are most important to the predictions
of the model are given greater weight, thus reducing over-
reliance on unimportant features.

Fig. 3 shows a comparison of loss functions such as l2
[10], l1 [12], Welsch [22], Laplace [25], p-Welsch [28], p-LKI
loss function and their gradient functions. From the figure, it
is evident that in addition to the l2-loss function and l1-loss
function, the error of each dataset in the other loss functions
is controlled [0, 1]. The gradient function will be small after
the |q| exceeds a certain value and will not increase with the
increase of error like the gradient function of l2-loss and l1-
loss, thereby reducing the influence of the large error term
caused by outliers on parameter estimation. Moreover, we can
observe from Fig. 3 that p-LKI loss function has the closest
distance from the ∥q∥0 (l(q) = 1) , so the accuracy of the
zero norm approximation of the p-LKI loss function is the
highest. In addition, compared with the Welsch and p-Welsch
loss functions induced by the Gaussian kernel function, the
Laplace and p-LKI loss function induced by the Laplace kernel
have higher approximate accuracy for zero norms, where the
approximate accuracy of p-LKI loss function is higher than
that of Laplace loss function.

3) Robust ELM based on p-LKI loss function: By taking
the p-LKI loss function in ELM, the p-LKI-ELM model is
established

min
β,qi

1
2 ∥β∥

2
2 + C

N∑
i=1

(1− exp(− |qi|
σ ))

p

s.t. h(xi)β = yi − qi, i = 1, 2, · · ·, N
(16)

According to the KKT condition, Eq. (16) can be reformu-
lated as solving the following problem:

L(β, qi, α) =
1

2
∥β∥22 + C

N∑
i=1

(1− exp(−|qi|
σ

))
p

−
N∑
i=1

αi(h(xi)β − yi + qi)

(17)

where αi is the Lagrange multiplier corresponding to each
training sample.

Calculate the partial derivative of each parameter variable
in Eq.(17), and let the partial derivative be zero,



∂L

∂β
= 0 ⇒ β =

N∑
i=1

αih(xi)
T
= HTα

∂L

∂qi
= 0 ⇒ αi = Cqiw(qi)

∂L

∂αi
= 0 ⇒ h(xi)β − yi + qi = 0

(18)

where
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Fig. 3. Comparison of (a) Loss functions; (b) Their gradient functions.

w(qi) =
∂l(q)

qi∂qi
=

p

σ
exp(−|qi|

σ
)(1− exp(−|qi|

σ
))p−1

=
1

max{|qi| , 10−6}

In this paper, we employ an iterative reweighted algorithm
to obtain the optimal hidden layer output weight β. The weight
of N samples can be expressed as

W (q) = diag(w(q1), w(q2), · · ·, w(qN )) (19)

Through Eq.(18), the output weight of the hidden layer is

β =

{
HT( I

C +W (q)HHT)
−1

W (q)Y, N < L

( I
C +HTW (q)H)

−1
HTW (q)Y, N ≥ L

(20)

The curve of sample weights with different parameters σ
is shown below.
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Fig. 4. Trend of sample weights with σ at p = 2.

Fig. 4 shows that the larger the error |q| of the sample is,
the smaller the weight of the sample is, then the smaller the
influence on the model. Therefore, the proposed method can
effectively reduce the influence of outliers and enhance the
robustness of the model.

Algorithm 1 p-LKI-ELM

Input: Training dataset S, number of hidden nodes L, regu-
larization parameter C, kernel bandwidth σ, maximum of
iterations tmax, the hidden layer output matrix H .

Output: Output weight β
1: Initialize W (q)(0) = I, t = 1;
2: Calculate the optimal output weight β(t) by

β(t) =

{
HT( I

C +W (q)(t−1)HHT)
−1

W (q)(t−1)Y, N < L

( I
C +HTW (q)(t−1)H)

−1
HTW (q)(t−1)Y, N ≥ L.

(21)
3: Obtain q

(t)
i = yi − h(xi)β

(t), and assign diagonal matrix
W (q)(t) by (19).

4: Update β(t+1) from (21);
5: if t > tmax or

∥∥β(t+1) − β(t)
∥∥ ≤ 10−3 stop , else go to

step 6.
6: Derive output value h(xi)β

(t+1). Set t = t+1, and go to
step 3.

IV. EXPERIMENTS

We compare the proposed method with ELM [1], WELM
[11], IRWELM [12], Welsch-ELM [22], Laplace-ELM [25],
p-Welsch-ELM [28] on the artificial datasets and benchmark
datasets. The root mean square error (RMSE) is chosen as the
evaluation metric:

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ti)
2 (22)

where yi and ti represent the actual target of the sample and
the corresponding prediction, respectively; m is the number
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of test samples.The experiments are tested in Matlab2021 a
Win10 environment with 3.0 GHz CPU, 8 GB RAM and 64
bit host.

A. Experimental Settings

(1) The input weight matrix WN×L and the hidden layer
bias bL×1 are randomly selected in [-1,1]. The hidden layer
activation function is sigmoid function.

g(z) =
1

1 + e−z
(23)

(2) Regularization parameter C is optimized by cross
validation from the set {2−19, 2−18, · · ·, 220} and the number
of hidden nodes L is fixed as 1000.

(3) Number of algorithm iterations tmax = 20.

(4) Parameters σ and order p are also optimized by grid
search, where σ : {0.1, 0.2, · · ·, 1} ; p : {0.6, 0.7, · · ·, 5}.

B. Experimental on Artificial Datasets

1) Experimental preparation: The artificial dataset is gen-
erated by function y = sin c(x), where,

sin c(x) =
sinx

x
, x ∈ [−4, 4]. (24)

The preprocessing of artificial datasets is divided into
three steps. First, 300 samples are generated from Eq.(24)
and randomly divided into 200 training samples and 100
test samples. Secondly, the target of the training sample is
disturbed by the uniform distribution of noise [−0.15, 0.15].
Finally, random values of different proportions in [ymin, ymax]
are added as outliers to the targets of some training samples
generated in the second step. Outliers include 0%, 10%, 20%,
30%, and 40%. The samples used for testing are from Eq.(24)
without any added outliers. To ensure fairness, 10 independent
experiments are conducted for each outliers distribution.

2) Experimental results and analysis: To further confirm
the robustness of the proposed algorithm, the different levels
of outliers are compared. Fig. 5 illustrates the regression
prediction results of these seven algorithms with different
outliers levels. When the outliers level is 0%, all seven methods
roughly coincide with the original position. When the outliers
levels are 10% and 20%, only ELM deviates slightly from the
original position and begins to shift toward the outliers, while
the other six methods remain unchanged. When the outliers
levels are 30% and 40%, ELM, WELM, IRWELM, Laplace-
ELM and Welsch-ELM deviate from the original position and
turn toward the outliers, and only p-LKI-ELM and p-Welsch-
ELM are relatively close to the original position and do not
have a tendency to turn towards the outliers. It can be seen that
as the outliers level increases, all five methods except p-LKI-
ELM and p-Welsch-ELM deviate from the original position
and shift towards outliers, and the trend turn toward the
outliers of p-LKI-ELM is smaller compared to p-Welsch-ELM.
Therefore, it indicates that p-LKI-ELM has better stability.

Fig. 6 reflects the variation of the RMSE of the seven
methods for different outliers levels on the artificial dataset.
When there are no outliers, the RMSE of p-LKI-ELM is
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slightly higher than that of p-Welsch-ELM, which ranks second
among the seven methods. When the outliers level is 10%, the
RMSE of ELM increases more, while the increases of p-LKI-
ELM and p-Welsch-ELM are smaller compared to the other
four methods and p-LKI-ELM is still ranked second among the
seven methods. When the outliers level is 20%, p-LKI-ELM
has the smallest RMSE among the seven methods and ranks
first among the seven methods. It can be seen that the increase
in RMSE of p-LKI-ELM becomes smaller and smaller as the
outliers level increases. When the outliers levels are 30% and
40%, the RMSE of p-LKI-ELM is still the smallest among the
seven methods and ranks first among the seven methods, and
it can be concluded that the robustness of p-LKI-ELM is the
best. From the aspect of the increase of RMSE, the increase
of RMSE of ELM during the increase of outliers levels from
0% to 40% is the largest, while the increase of RMSE of p-
LKI-ELM is the smallest, which indicates that the stability of
p-LKI-ELM is the best among the seven methods.

C. Experiments on Benchmark Datasets

1) Datasets description: To further test the performance of
p-LKI-ELM, the seven methods are experimented on eighteen

datasets and the results are analyzed. The information on the
selected dataset is shown in Table I. A portion of the datasets
is randomly chosen as the training samples, while the rest is
used as the test samples. To test the robustness of the model
with outliers, we set 10%, 20%, 30% and 40% outliers levels,
respectively.

TABLE I. BENCHMARK REGRESSION DATASETS

Dataset Feature Training Samples Test Samples
Yacht 6 200 108
Servo 4 120 47
Pyrim 27 40 34
Heart 12 200 99
Fish 6 500 408

Diabetes 2 20 23
Daily 12 40 20

Concrete 8 600 430
Autompg 7 200 192
Aquatic 8 300 246
Bodyfat 14 160 92
Pollution 15 60 40
Housing 13 300 206

MG 6 700 685
Abalone 7 2000 2177

Air 6 740 313
Wine 12 1000 599
ALE 5 80 27

2) Experimental results and analysis: The RMSE values
and standard deviations of the seven algorithms across various
outliers levels on the nine and nine benchmark datasets are
given in Tables II and III, respectively. When the outliers level
is 0%, p-LKI-ELM has the lowest RMSE on four datasets in
Table II and ranks first together with p-Welsch-ELM, and it has
the lowest RMSE values on three datasets in Table III, ranking
second among the seven methods. Overall, p-LKI-ELM ranks
second among these seven methods on fifteen datasets. When
the outliers level is 10%, p-LKI-ELM achieves the smallest
RMSE values on seven datasets in Table II and ranks first;
seven of the datasets in Table III reaches the smallest RMSE
values and ranks first. In total, p-LKI-ELM ranks first among
these seven methods on eighteen datasets. This shows that the
rank of p-LKI-ELM increases with the addition of outliers, and
p-LKI-ELM is least affected by outliers compared to the other
methods. When the outliers level is 20%, p-LKI-ELM obtains
the smallest RMSE value on eight datasets in Table II, the
number of datasets that achieve the minimum RMSE value
increases by one, and eight of the datasets in Table III win
the smallest RMSE value and ranks first. With outliers levels
of 30% and 40%, p-LKI-ELM achieves the smallest RMSE
values on eight and seven datasets in Table II, and eight and
nine datasets in Table III, respectively, and is ranked first on
eighteen datasets. It can be seen that as the level of outliers
increases, the number of minimum RMSE values achieved by
p-LKI-ELM is increasing, which indicates that p-LKI-ELM
has the best robustness compared to the other six methods.
In terms of the increase of RMSE values, from outliers level
of 0% to 40%, p-LKI-ELM has the lowest increase of RMSE
values on all eighteen datasets among the seven methods. From
the point of view of the loss function, the p-LKI loss function
adopted by the p-LKI-ELM is a bounded loss function that
can limit the error to a certain range and will not increase.
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TABLE II. COMPARISONS OF SEVEN ALGORITHMS ON NINE BENCHMARK DATASETS

Dataset algorithm 0% 10% 20% 30% 40%

Yacht

ELM 2.2141± 0.2392 6.8297± 0.5524 8.2801± 0.8043 12.5289± 1.2580 13.8917± 1.1349
WELM 2.3363± 0.2924 3.3202± 0.8706 5.8744± 0.6280 9.6205± 1.5650 12.9183± 1.0998

IRWELM 3.9779± 1.9951 2.8292± 0.3470 4.1704± 1.3173 6.7085± 1.0380 11.9374± 1.6171
Welsch-ELM 1.0205± 0.1877 2.2840± 0.3704 3.3771± 1.2074 5.4644± 0.3629 6.3030± 1.4922
Laplace-ELM 0.9999± 0.2344 2.0123± 0.5708 3.5665± 0.7810 6.4055± 1.7824 7.4523± 1.2537
p-Welsch-ELM 0.9049± 0.2073 2.0516± 1.5746 3.2096± 0.7216 5.4282± 0.9047 6.3030± 1.4922
p-LKI-ELM 0.9006± 0.2069 1.8326± 0.5807 2.6563± 0.5513 5.3287± 0.3406 6.1246± 1.5251

Daily

ELM 11.6573± 5.4691 51.8964± 10.1203 76.6575± 13.6884 77.7380± 15.7061 78.8797± 13.6214
WELM 13.8204± 7.0593 35.5050± 8.3419 49.1082± 14.6976 75.8675± 14.8694 80.6479± 10.6494

IRWELM 14.7650± 7.9147 27.2927± 17.5360 34.9433± 12.7568 75.8575± 14.8827 80.6479± 10.6494
Welsch-ELM 11.6572± 5.4708 20.2666± 10.7994 26.9522± 15.8516 30.0938± 7.7563 34.4336± 9.9401
Laplace-ELM 11.6621± 5.4612 17.6412± 9.8118 21.1682± 11.2175 30.6572± 15.2610 44.5214± 26.7513
p-Welsch-ELM 11.6526± 5.4708 19.1776± 10.0054 25.5457± 17.0197 26.8373± 10.8504 30.9964± 8.9880
p-LKI-ELM 11.6527± 5.4763 16.9423± 8.4695 19.5609± 10.7949 25.6105± 11.4699 30.0912± 9.7413

Autompg

ELM 2.8782± 0.1462 4.1298± 0.2136 5.9220± 0.3457 7.9565± 0.2425 7.9213± 0.2472
WELM 2.8711± 0.1987 2.9047± 0.1526 3.3047± 0.3495 7.6725± 0.8660 7.9822± 0.2633

IRWELM 2.9500± 0.1882 2.8651± 0.0991 2.8698± 0.1202 7.0622± 0.5588 7.9822± 0.2633
Welsch-ELM 2.8680± 0.1748 2.8761± 0.1119 2.8890± 0.1309 2.9591± 0.2347 3.0852± 0.1235
Laplace-ELM 2.9393± 0.2624 2.9237± 0.1281 2.9375± 0.1443 2.9645± 0.1629 3.1562± 0.2442
p-Welsch-ELM 2.8664± 0.1796 2.8696± 0.0961 2.8780± 0.1275 2.9503± 0.2406 3.0112± 0.1286
p-LKI-ELM 2.8658± 0.1870 2.8653± 0.1020 2.8739± 0.1251 2.9390± 0.2123 2.9928± 0.1513

Heart

ELM 0.3850± 0.0211 0.3871± 0.0236 0.3957± 0.0222 0.4088± 0.0286 0.4307± 0.0258
WELM 0.3855± 0.0206 0.3862± 0.0218 0.3932± 0.0225 0.4061± 0.0262 0.4290± 0.0261

IRWELM 0.3862± 0.0188 0.3865± 0.0215 0.3929± 0.0220 0.4049± 0.0252 0.4288± 0.0270
Welsch-ELM 0.3856± 0.0207 0.3847± 0.0206 0.3879± 0.0188 0.3940± 0.0221 0.4105± 0.0261
Laplace-ELM 0.4255± 0.0309 0.4032± 0.0306 0.3972± 0.0197 0.3988± 0.0242 0.4183± 0.0340
p-Welsch-ELM 0.3852± 0.0201 0.3845± 0.0215 0.3876± 0.0207 0.3937± 0.0235 0.4062± 0.0244
p-LKI-ELM 0.3854± 0.0202 0.3845± 0.0219 0.3874± 0.0200 0.3930± 0.0235 0.4056± 0.0256

Bodyfat

ELM 0.0043± 0.0019 0.0210± 0.0018 0.0214± 0.0022 0.0337± 0.0062 0.0542± 0.0081
WELM 0.0031± 0.0015 0.0071± 0.0017 0.0093± 0.0032 0.0337± 0.0062 0.0542± 0.0081

IRWELM 0.0030± 0.0017 0.0038± 0.0021 0.0043± 0.0015 0.0337± 0.0062 0.0542± 0.0081
Welsch-ELM 0.0033± 0.0017 0.0040± 0.0018 0.0040± 0.0016 0.0046± 0.0016 0.0065± 0.0020
Laplace-ELM 0.0029± 0.0018 0.0032± 0.0017 0.0034± 0.0017 0.0038± 0.0024 0.0042± 0.0022
p-Welsch-ELM 0.0029± 0.0018 0.0037± 0.0020 0.0038± 0.0019 0.0038± 0.0021 0.0046± 0.0016
p-LKI-ELM 0.0028± 0.0017 0.0029± 0.0016 0.0032± 0.0015 0.0035± 0.0017 0.0038± 0.0016

Pyrim

ELM 0.1111± 0.0199 0.1362± 0.0204 0.1425± 0.0188 0.1553± 0.0145 0.1569± 0.0274
WELM 0.1061± 0.0295 0.1102± 0.0326 0.1227± 0.0303 0.1411± 0.0264 0.1551± 0.0237

IRWELM 0.1065± 0.0293 0.1071± 0.0332 0.1143± 0.0389 0.1384± 0.0185 0.1553± 0.0241
Welsch-ELM 0.1035± 0.0285 0.1054± 0.0315 0.1115± 0.0344 0.1112± 0.0348 0.1198± 0.0342
Laplace-ELM 0.1044± 0.0245 0.1063± 0.0298 0.1127± 0.0318 0.1139± 0.0324 0.1283± 0.0471
p-Welsch-ELM 0.1021± 0.0275 0.1053± 0.0308 0.1096± 0.0341 0.1111± 0.0346 0.1150± 0.0342
p-LKI-ELM 0.1024± 0.0280 0.1043± 0.0314 0.1091± 0.0334 0.1104± 0.0361 0.1144± 0.0363

Diabetes

ELM 0.5838± 0.0937 0.6523± 0.1043 0.6907± 0.1219 0.6646± 0.1239 0.6812± 0.1315
WELM 0.5821± 0.0906 0.5889± 0.1088 0.6341± 0.1039 0.7033± 0.1333 0.6974± 0.1316

IRWELM 0.5820± 0.0905 0.5745± 0.0953 0.5945± 0.0970 0.7262± 0.1364 0.6974± 0.1316
Welsch-ELM 0.5809± 0.0921 0.5752± 0.0927 0.5774± 0.0964 0.5870± 0.0988 0.5881± 0.1032
Laplace-ELM 0.6022± 0.1005 0.5995± 0.0774 0.6303± 0.1037 0.6373± 0.1172 0.6740± 0.1041
p-Welsch-ELM 0.5748± 0.0804 0.5746± 0.0886 0.5742± 0.0942 0.5852± 0.0966 0.5857± 0.0765
p-LKI-ELM 0.5793± 0.0941 0.5746± 0.0971 0.5742± 0.0933 0.5844± 0.0993 0.5826± 0.0831

Servo

ELM 0.6000± 0.0944 1.0198± 0.1596 1.1133± 0.1797 1.3316± 0.1572 1.4877± 0.1583
WELM 0.5595± 0.1574 0.7789± 0.1833 0.8731± 0.1778 1.0145± 0.1605 1.4920± 0.1660

IRWELM 0.5920± 0.1602 0.7537± 0.2060 0.7348± 0.2559 0.8599± 0.2012 1.4920± 0.1660
Welsch-ELM 0.5547± 0.2082 0.6610± 0.1921 0.7112± 0.2313 0.7123± 0.2084 0.7944± 0.1993
Laplace-ELM 0.5720± 0.1905 0.6683± 0.1786 0.7086± 0.1834 0.7062± 0.2063 0.9396± 0.1930
p-Welsch-ELM 0.5514± 0.2116 0.6464± 0.1882 0.6863± 0.2364 0.6959± 0.2038 0.7686± 0.2307
p-LKI-ELM 0.5523± 0.2092 0.6446± 0.1886 0.6838± 0.1901 0.6890± 0.2274 0.7619± 0.2352

Pollution

ELM 35.4759± 6.8079 59.5479± 7.5005 63.7456± 8.5865 58.4852± 8.5803 66.3481± 10.7665
WELM 36.8257± 4.8361 40.6244± 6.5749 48.3622± 8.1037 58.4852± 8.5803 66.3481± 10.7665

IRWELM 36.8908± 5.6836 37.5958± 4.9581 39.4799± 5.9682 58.4852± 8.5803 66.3481± 10.7665
Welsch-ELM 35.4153± 6.5356 36.2262± 5.9163 36.5977± 5.8775 38.1440± 5.8735 37.6558± 5.9691
Laplace-ELM 35.8060± 6.3745 35.8537± 5.6511 36.7654± 10.1868 37.9770± 7.3431 38.3577± 9.0325
p-Welsch-ELM 35.0482± 4.5809 35.8739± 6.2515 36.4647± 6.3492 37.7237± 5.9320 37.0502± 6.6151
p-LKI-ELM 34.2035± 6.1478 35.8537± 5.6511 36.2593± 9.4523 37.6604± 6.6825 37.3199± 6.7331
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TABLE III. COMPARISONS OF SEVEN ALGORITHMS ON NINE BENCHMARK DATASETS

Dataset algorithm 0% 10% 20% 30% 40%

Fish

ELM 0.9587± 0.1258 1.0734± 0.2356 1.3763± 0.1348 1.4139± 0.2314 1.4093± 0.2659
WELM 0.9653± 0.2691 0.9737± 0.1645 0.9986± 0.3145 1.3462± 0.5896 1.4150± 0.3145

IRWELM 0.9678± 0.2154 0.9757± 0.3245 0.9798± 0.1246 1.2366± 0.1235 1.4216± 0.2369
Welsch-ELM 0.9578± 0.3145 0.9704± 0.3214 0.9685± 0.4563 0.9757± 0.3145 0.9862± 0.3156
Laplace-ELM 0.9625± 0.2145 0.9652± 0.2312 0.9657± 0.3112 0.9898± 0.3145 1.0323± 0.2136
p-Welsch-ELM 0.9563± 0.2365 0.9687± 0.1345 0.9654± 0.3145 0.9736± 0.3302 0.9857± 0.2230
p-LKI-ELM 0.9567± 0.2563 0.9638± 0.3145 0.9623± 0.1146 0.9734± 0.2698 0.9850± 0.2423

Aquatic

ELM 1.1874± 0.0688 1.3137± 0.0589 1.6137± 0.0914 1.6683± 0.0636 1.7233± 0.0962
WELM 1.1942± 0.0658 1.2053± 0.0455 1.2843± 0.0648 1.5869± 0.0813 1.6735± 0.0591

IRWELM 1.2025± 0.0621 1.2046± 0.0540 1.2489± 0.0607 1.4864± 0.0901 1.6735± 0.0591
Welsch-ELM 1.1871± 0.0731 1.1972± 0.0497 1.2060± 0.0566 1.2160± 0.0518 1.2347± 0.0436
Laplace-ELM 1.2011± 0.0590 1.1966± 0.0539 1.2141± 0.0544 1.2432± 0.0522 1.3141± 0.1120
p-Welsch-ELM 1.1871± 0.0731 1.1958± 0.0514 1.2051± 0.0510 1.2154± 0.0544 1.2277± 0.0596
p-LKI-ELM 1.1871± 0.0729 1.1954± 0.0520 1.2051± 0.0509 1.2146± 0.0531 1.2250± 0.0446

Housing

ELM 3.2563± 0.2501 5.3252± 0.4442 7.3845± 0.3468 8.9692± 0.9645 9.1478± 0.4115
WELM 3.3422± 0.4405 3.7507± 0.6523 4.7048± 0.5636 8.3753± 0.6235 9.0570± 0.4625

IRWELM 3.4454± 0.4456 3.6482± 0.6741 4.1057± 0.5963 7.3460± 0.6623 9.0570± 0.5624
Welsch-ELM 3.2489± 0.3112 3.5236± 0.3326 3.8161± 0.3417 4.1932± 0.3918 4.7868± 0.3721
Laplace-ELM 3.4086± 0.3056 3.6160± 0.3102 3.8380± 0.3623 4.4099± 0.3515 5.0003± 0.3120
p-Welsch-ELM 3.2404± 0.3215 3.5088± 0.3625 3.7979± 0.3775 4.1684± 0.3023 4.1691± 0.3402
p-LKI-ELM 3.2416± 0.3003 3.5088± 0.3625 3.7709± 0.3569 4.1486± 0.4021 4.1506± 0.3654

Concrete

ELM 6.1381± 0.2968 9.7657± 0.5098 11.7639± 0.5329 16.4077± 0.6302 16.8087± 0.2882
WELM 6.2327± 0.3840 7.7370± 0.9532 8.4606± 0.2148 12.2520± 0.8875 16.9696± 0.3332

IRWELM 6.4228± 0.3245 7.5245± 0.3625 7.9860± 0.4632 10.3756± 0.2564 16.9696± 0.4463
Welsch-ELM 6.1330± 0.3456 6.6900± 0.5120 7.6898± 0.4326 8.2634± 0.3694 8.8897± 0.5213
Laplace-ELM 6.6114± 0.3412 7.5818± 0.4362 8.1849± 0.4423 8.9050± 0.2631 10.0165± 0.2543
p-Welsch-ELM 6.1241± 0.5023 6.6893± 0.4312 7.5801± 0.4412 7.9668± 0.4063 8.1160± 0.3316
p-LKI-ELM 6.1177± 0.3321 6.6817± 0.4120 7.4485± 0.3216 7.9980± 0.4521 8.1131± 0.5623

MG

ELM 0.2267± 0.0031 0.2277± 0.0039 0.2291± 0.0043 0.2267± 0.0033 0.2362± 0.0054
WELM 0.2267± 0.0031 0.2268± 0.0030 0.2267± 0.0031 0.2312± 0.0047 0.2358± 0.0053

IRWELM 0.2267± 0.0031 0.2267± 0.0032 0.2268± 0.0031 0.2335± 0.0068 0.2358± 0.0053
Welsch-ELM 0.2267± 0.0031 0.2267± 0.0031 0.2266± 0.0030 0.2266± 0.0032 0.2265± 0.0032
Laplace-ELM 0.2266± 0.0032 0.2273± 0.0028 0.2293± 0.0044 0.2268± 0.0034 0.2341± 0.0032
p-Welsch-ELM 0.2264± 0.0031 0.2265± 0.0033 0.2264± 0.0031 0.2265± 0.0032 0.2265± 0.0032
p-LKI-ELM 0.2266± 0.0032 0.2265± 0.0032 0.2264± 0.0031 0.2265± 0.0032 0.2265± 0.0032

Abalone

ELM 2.1698± 0.0371 2.6821± 0.0588 3.1988± 0.0538 3.2092± 0.0408 3.2703± 0.0709
WELM 2.1869± 0.0359 2.1707± 0.0335 2.2428± 0.0449 3.2110± 0.0423 3.1981± 0.0340

IRWELM 2.2253± 0.0456 2.1831± 0.0412 2.1948± 0.0563 2.8742± 0.0321 3.2033± 0.0364
Welsch-ELM 2.1689± 0.0456 2.1769± 0.0356 2.1812± 0.0349 2.1978± 0.0502 2.1988± 0.0356
Laplace-ELM 2.1752± 0.0563 2.1802± 0.0421 2.1901± 0.0314 2.1893± 0.0513 2.1864± 0.0419
p-Welsch-ELM 2.1688± 0.0318 2.1691± 0.0526 2.1724± 0.0536 2.1758± 0.0543 2.1781± 0.0697
p-LKI-ELM 2.1692± 0.0412 2.1696± 0.0316 2.1710± 0.0412 2.1757± 0.0346 2.1777± 0.0327

Air

ELM 2.6473± 0.0001 7.8888± 0.0102 7.9453± 0.0012 10.6465± 0.0301 15.0824± 0.0014
WELM 2.6352± 0.0000 2.8410± 0.0002 3.0812± 0.0001 10.6465± 0.0023 15.0824± 0.0003

IRWELM 2.6212± 0.0001 2.7396± 0.0016 2.7198± 0.0001 10.6465± 0.0012 15.0824± 0.0004
Welsch-ELM 2.6210± 0.0203 2.7394± 0.0005 2.6902± 0.0101 2.6768± 0.0000 2.9801± 0.0301
Laplace-ELM 2.6913± 0.0012 2.6771± 0.0013 2.7111± 0.0502 2.6769± 0.0107 2.9761± 0.0005
p-Welsch-ELM 2.6208± 0.0000 2.6523± 0.0001 2.6874± 0.0031 2.6615± 0.0004 2.9798± 0.0015
p-LKI-ELM 2.6213± 0.0013 2.6516± 0.0000 2.6742± 0.0001 2.6569± 0.0015 2.9653± 0.0205

Wine

ELM 0.6482± 0.0226 0.8226± 0.0202 0.8243± 0.0205 0.8263± 0.0175 0.8686± 0.0711
WELM 0.6506± 0.0230 0.6565± 0.0230 0.6852± 0.0223 0.8349± 0.0170 0.8686± 0.0711

IRWELM 0.6515± 0.0234 0.6525± 0.0211 0.6549± 0.0217 0.8349± 0.0170 0.8686± 0.0711
Welsch-ELM 0.6423± 0.0031 0.6429± 0.0031 0.6512± 0.0030 0.7698± 0.0032 0.8027± 0.0032
Laplace-ELM 0.6504± 0.0055 0.6513± 0.0029 0.6516± 0.0034 0.7742± 0.0034 0.8014± 0.0035
p-Welsch-ELM 0.6412± 0.0031 0.6416± 0.0013 0.6489± 0.0038 0.7685± 0.0032 0.7746± 0.0006
p-LKI-ELM 0.6414± 0.0056 0.6420± 0.0030 0.6500± 0.0031 0.7644± 0.0032 0.7695± 0.0012

ALE

ELM 0.1325± 0.0001 0.2511± 0.0008 0.3261± 0.0102 0.3467± 0.0408 0.3464± 0.0709
WELM 0.1427± 0.0009 0.1532± 0.0005 0.1715± 0.0001 0.3474± 0.0003 0.3456± 0.0000

IRWELM 0.1342± 0.0006 0.1430± 0.0002 0.1653± 0.0003 0.3464± 0.0001 0.3456± 0.0004
Welsch-ELM 0.1281± 0.0000 0.1371± 0.0001 0.1371± 0.0009 0.1438± 0.0002 0.1538± 0.0001
Laplace-ELM 0.1357± 0.0000 0.1410± 0.0001 0.1549± 0.0004 0.1450± 0.0003 0.1754± 0.0001
p-Welsch-ELM 0.1279± 0.0008 0.1366± 0.0000 0.1329± 0.0000 0.1339± 0.0003 0.1503± 0.0007
p-LKI-ELM 0.1289± 0.0002 0.1356± 0.0006 0.1323± 0.0002 0.1303± 0.0006 0.1467± 0.0001
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Fig. 7. (a) The reduction of RMSE for p-Welsch-ELM and p-LKI-ELM; (b)
The RMSE reduction of p-LKI-ELM relative to p-Welsch-ELM.

Infinitely with the increase of outliers levels. However the l2 loss
function employed by ELM, WELM and IRWELM is an unbounded
loss function that increases the error of the model as the levels of out-
liers increases. Compared with the loss function induced by Gaussian
kernel, p-LKI is induced by Laplace kernel and the exponential part is
still bounded, which makes the p-LKI-ELM the most optimal among
these seven methods by choosing a suitable p.

In order to observe more intuitively the improvement effect of
the loss function after the introduction of p-order and compare the
effect of the two kernel functions after the introduction of p-order,
we graph the experimental data.

Fig. 7 shows the reduction of p-Welsch-ELM relative to Welsch-
ELM and p-LKI-ELM relative to the RMSE of Laplace-ELM on
five benchmark datasets as illustrated in (a), the x-axis A, B, C, D
and E represent the five datasets (Autompg, Heart, Bodyfat, Pyrim
and Diabetes), respectively. The y-axis represents the reduction in
RMSE (%), and Fig. 7 indicates that the RMSE reduction of p-
LKI loss function relative to Laplace loss function is higher than the
reduction of p-Welsch loss function relative to the RMSE of Welsch
loss function. It shows that the loss function induced by the Laplace
kernel is more effective for the p-order than Gaussian kernel, which
indicates that the former is more suitable for the p-order.

Fig. 7(b) suggests the reduction of RMSE of the proposed model
relative to the p-Welsch-ELM model on five benchmark datasets. It
can be seen from (b) that the y-axis is always more significant than
0, which means that the reduction (%) of the RMSE of p-LKI-ELM
relative to p-Welsch-ELM is greater than 0, which indicates that the
prediction accuracy of the loss function induced by the Laplace kernel
is higher than that of the Gaussian kernel.

V. DISCUSSION

The proposed model is compared with six other models on
both artificial datasets and eighteen benchmark datasets. Experimental

results demonstrate that p-LKI-ELM achieves superior performance
on the majority of datasets. Moreover, as the proportion of outliers
increases, p-LKI-ELM is less affected compared to the other models,
confirming its stronger robustness. In the future, research could be
conducted from the perspective of sparsity.

VI. CONCLUSION

Influenced by kernel learning and correntropy learning, we pro-
pose a new loss function (p-LKI) to solve the regression problem. The
proposed method is experimented on artificial datasets and benchmark
datasets. In addition, the performance of the proposed method is
evaluated with different outliers levels. The main work is summarized
as follows:

(1) We propose a new robust loss function (p-LKI loss), which
combines the advantages of the p-order loss function and the cor-
rentropy loss function. Therefore, it is insensitivity to noise and
outliers. (2) The proposed method is compared against ELM, WELM,
IRWELM, Welsch-ELM, Laplace-ELM, and p-Welsch-ELM on ar-
tificial datasets and eighteen benchmark datasets. The experimental
results indicate that the proposed method consistently outperforms the
other six models in both cases. Furthermore, the results demonstrate
the superior robustness of the proposed method. (3) By comparing the
reduction of p-LKI loss function induced by Laplace kernel compared
with the RMSE of Laplace loss, and the reduction of RMSE induced
by Gaussian kernel compared with Welsch loss, the results show that
the reduction of p-LKI loss function relative to Laplace loss function
is higher than the latter, which indicates that the loss function induced
by Laplace kernel at order p is better than the loss function induced by
Gaussian kernel at order p. By comparing the reduction in RMSE of
p-LKI loss function relative to p-Welsch loss, the results demonstrate
that the robustness of the p-LKI loss function is higher than that of
the p-Welsch loss.

In addition, on the one hand, the number of hidden layer nodes
and the activation function used in this paper are fixed, we can set a
different number of hidden layer nodes and other activation function
to observe the effect on the performance of the model later; on the
other hand, this paper uses an iterative reweighting algorithm to solve
the model, and a new algorithm can be designed to improve the
training speed of the model in the future.
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