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Abstract—Currently, lung cancer poses a significant global 

threat, ranking among the most perilous and lethal ailments. 

Accurate early detection and effective treatments play pivotal 

roles in mitigating its mortality rates. Utilizing deep learning 

techniques, CT scans offer a highly advantageous imaging 

modality for diagnosing lung cancer. In this study, we introduce 

an innovative approach employing a hybrid Deep Convolutional 

Neural Network (DCNN), trained on both CT scan images and 

medical data retrieved from IoT wearable sensors. Our method 

encompasses a CNN comprising 22 layers, amalgamating latent 

features extracted from CT scan images and IoT sensor data to 

enhance the detection accuracy of our model. Training our model 

on a balanced dataset, we evaluate its performance based on 

metrics including accuracy, Area under the Curve (AUC) score, 

loss, and recall. Upon assessment, our method surpasses 

comparable approaches, exhibiting promising prospects for lung 

cancer diagnosis compared to alternative models. 
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I. INTRODUCTION 

The rising incidence of pulmonary ailments in 
contemporary industrialized societies underscores the urgent 
requirement for innovative models facilitating early and precise 
detection. Lung cancer, among these maladies, stands out as 
one of the most formidable cancers, contributing to a third of 
all cancer-related fatalities [1]. Consequently, it holds the grim 
distinction of being the deadliest and most hazardous cancer. 
Following diagnosis, approximately 80% of patients face a 
five-year survival prognosis, highlighting the severity of this 
disease. Air pollution ranks among the primary catalysts for 
lung cancer development [2]. Early detection of lung diseases 
significantly impacts the likelihood of successful treatment. 
Diagnosis typically involves a range of methods, including 
imaging modalities such as radiography, CT scans, biopsy, 
chest mucosa tests, and bronchoscopy. Lung nodules, 
characterized as small, round, and hazy masses within lung 
tissue, are radiographic opacities with diameters less than 30 
millimeters [3, 4]. 

Enhancing the performance of CNNs involves 
incorporating task-specific layers tailored to the desired 
application. CNN models mimic certain aspects of human 
visual processing, thus enabling effective image analysis akin 
to human brain functions [5]. Consequently, extensive research 
has focused on utilizing CNNs for the automatic classification 
of lung cancer nodules from CT images. However, traditional 
CNN architectures typically rely solely on CT image features, 
neglecting potential contributions from physiological data that 

could enhance lung cancer diagnosis [3]. Conversely, 
advancements in medical IoT methodologies have facilitated 
remote patient monitoring, leveraging wearable health sensors. 
These sensors monitor various vital signs including blood 
pressure, body temperature, heart rate, respiratory patterns, 
weight fluctuations, and sleep behaviors [6, 7]. Notably, certain 
indicators such as anorexia, anxiety, constipation, depression, 
and fatigue pose challenges for direct tracking via wearable 
sensors [8]. 

However, there are alternative approaches that utilize 
textual and graphical interactions through mobile applications, 
offering symptom-based data that can aid in diagnosing lung 
cancer [9, 10]. This study introduces a medical body area 
network integrating medical IoT technologies and mobile 
applications. A data normalization technique, facilitated by the 
application programming interface, is employed to receive and 
process the data. Subsequently, the processed data is stored in a 
database using a relational schema. 

Various studies have been conducted to identify and 
characterize lung diseases. Due to the abundance and 
complexity of lung radiographic images, distinguishing 
nodules from veins, wounds, and other structures poses a 
significant challenge for medical practitioners [4]. Computer-
aided diagnosis systems serve as valuable tools to assist 
physicians in disease diagnosis. This paper introduces a novel 
approach based on a hybrid Deep Convolutional Neural 
Network (DCNN), trained on CT scans and medical data 
obtained from wearable IoT sensors. Our method incorporates 
a CNN with 22 layers, leveraging hidden features extracted 
from both CT images and IoT sensor data to enhance detection 
accuracy. Training our model on a balanced dataset, we 
evaluate its performance based on accuracy, Area Under the 
Curve (AUC) score, loss, and recall metrics. 

The motivation behind this study stems from the pressing 
need for improved methods of early detection and precise 
diagnosis of lung cancer, given its significant impact on public 
health. With lung cancer accounting for a substantial portion of 
cancer-related deaths globally, there is an urgent requirement 
for innovative models that can aid in early detection, thereby 
improving treatment outcomes and patient survival rates. 
Traditional diagnostic methods, while effective to some extent, 
often rely solely on imaging modalities and may overlook 
valuable physiological data that could enhance diagnostic 
accuracy. Moreover, advancements in medical IoT 
technologies offer opportunities for remote patient monitoring, 
presenting a wealth of physiological data that could be 
leveraged for improved lung cancer diagnosis. By integrating 
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these disparate data sources and utilizing advanced machine 
learning techniques, using the DCNN, this study seeks to 
develop a novel approach that enhances the accuracy and 
efficiency of lung cancer detection, ultimately contributing to 
improved patient care and outcomes. 

The subsequent sections of this article are structured as 
follows: Section II presents a literature review. Section III 
provides a detailed description of our proposed method. 
Section IV outlines the dataset used, tests performed, and 
results obtained. Finally, Section V offers conclusions and 
recommendations. 

II. RELATED WORKS 

Considerable progress has been made in lung cancer 
diagnosis, with numerous studies contributing to this field. In 
this section, we provide an overview of some notable research 
endeavors. 

In study [11], researchers utilized Artificial Neural 
Network (ANN) techniques to analyze chest radiograph images 
for lung cancer detection. Their approach involved a novel 
method for identifying lung cancer from raw X-ray images 
sourced from the JSRT database. Initially, conventional image 
processing techniques were employed to reduce noise and 
differentiate lung structures from other anatomical features 
present in chest X-rays. Subsequently, regions displaying 
characteristics indicative of pulmonary nodules were isolated 
from the images. These areas were then subjected to statistical 
analysis, with the first and second categories of tissue statistical 
characteristics serving as input for ANN training. This process 
aimed to ascertain whether the identified regions represented 
nodules in the initial stage of diagnosis. 

In study [12], the authors explored the use of CNN with 
transfer learning for the diagnosis of non-nodules, benign 
nodules, and malignant nodules, along with determining nodule 
locations. The experiments have shown that this proposed 
model has less ability in the characterization of the nodules of 
the benign and the nodules of malignant, and it is also unable 
to determine the exact location of the nodule. In study [13], the 
authors have used the K-nearest neighbor classifier in their 
proposed system. This classification identifies the K-nearest 
neighbor among all nodule candidates by searching in the 
feature space. Finally, the probability of nodule detection will 

be 
𝑛

𝐾
, where 𝑛 displays the number of the real nodules between 

𝐾 adjacent neighbors. They have stated in their article that the 
classification results are largely independent of the number of 
neighbors. 

In study [14], a method combining features derived from 
wavelet transform and morphological characteristics was 
employed as input for Multilayer Perceptron (MLP). The 
number of neurons in the first layer of MLP depended on the 
input feature count, with neuron outputs determining whether a 
candidate region represented a nodule or normal tissue while 
neural networks excel in training based on explicit error criteria 
such as mean square error, direct comparison of network 
efficiency remains challenging. Neural networks suffer from 
the time-intensive nature of their training phase, exacerbated 
by the random selection of initial weights that are adjusted 
during learning, leading to varying separation thresholds. Thus, 

achieving an optimal configuration necessitates running the 
network multiple times with different initial weights and 
evaluating efficiency criteria. 

In study [15], a combination of Artificial Neural Networks 
(ANN) and fuzzy clustering was employed for lung cancer 
diagnosis using CT scan images. Their model comprised four 
stages: pre-processing, target area evaluation, feature 
extraction, and final classification using ANN. Pre-processing 
involved various image enhancement techniques to enhance 
tumor observations in CT scan images. Subsequently, the 
target area was identified, and its features were input into the 
classification phase for diagnosis. 

In study [16], the authors have presented a model based on 
the automata of cellular learning to detect cancer of the lung by 
using CT scan images. Their images contain both undesirable 
and significant features crucial for processing. In this 
framework, they employed pre-processing techniques, such as 
Gabor filtering, to enhance CT scan images. Images from prior 
stages were fed into the cellular learning automata for training, 
followed by extraction of automata rules. In study [17], the 
classification of the tumor tissue by using recurrent networks 
along with short-term memory is presented. The training 
samples are obtained from the real soft tissue samples through 
the tomography, and they are given as the input to the network. 
Their tests show that this classifier is a good choice for the 
classification. In study [18], authors utilized a combination of 
two-dimensional and three-dimensional models for pulmonary 
nodule detection, resulting in reduced false positive errors. 

In study [19], the authors have used the model of ANN and 
the clustering of the fuzzy to detect the cancer of the lung. 
They have used two methods of the Hopfield neural networks 
and the clustering fuzzy algorithm to segment the color images. 
The experiments have displayed which ANN of Hopfield 
outperforms for the classification from the fuzzy clustering. In 
[20], the convolutional neural network with a cut has been used 
to diagnose the nodules of the pulmonary by the images of CT. 
The difference between their model and the traditional CNN 
model is in the use of a creative aggregation function. In [21], 
the main focus was on the feature extraction from the 3D CT 
images, and for this purpose, the morphological operators were 
used to thin the images. The classifier used in study [21] was 
the support vector machine. In study [22], to extract the 
feature, the embedded linear local maps have been used and 
correlation coefficients have been used to adjust the distance 
criterion in LLE. 

The existing research landscape in lung cancer diagnosis 
reveals a plethora of methodologies, each with its strengths and 
limitations. However, a critical gap exists in the current 
literature, prompting the need for further investigation. While 
previous studies have explored various techniques, including 
ANN, CNN, and hybrid models, each approach has 
encountered challenges in accurately diagnosing lung cancer 
nodules. For instance, while ANN methods have shown 
promise in analyzing chest radiograph images, they may 
struggle with the precise identification of nodules due to 
limitations in feature extraction. Similarly, CNN models, 
despite their success in image classification tasks, may lack the 
ability to accurately determine nodule locations or characterize 
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benign versus malignant nodules. Moreover, techniques such 
as fuzzy clustering and cellular learning automata have 
demonstrated potential, yet their effectiveness in addressing the 
complexities of lung cancer diagnosis remains uncertain. Thus, 
there is a pressing need for novel methodologies that address 
these limitations, offering improved accuracy, robustness, and 
efficiency in lung cancer detection. This research gap 
underscores the motivation for the present study, which seeks 
to develop an innovative approach leveraging medical IoT data 
and advanced CNN architectures to enhance the accuracy and 
reliability of lung cancer diagnosis. 

III. OUR PRESENTED APPROACH 

Our method integrates CNN with medical IoT sensors, 
establishing a medical body area network that furnishes vital 
data for classification purposes. This approach significantly 
bolsters the reliability and precision of diagnosis. Following 
initial classification, identified nodules undergo segmentation, 
with subsequent sub-classification based on nodule size. This 
method typically unfolds in four sequential steps. Firstly, data 
collection entails transmitting sensor data from wearables and 
CT scanners to a central server. Next, data undergoes 
processing to train the network, encompassing numerical data 
processing and image data processing. In numerical data 
processing, data are condensed and outliers are identified and 
removed. Meanwhile, image preprocessing is performed to 
enhance features by minimizing the feature distance between 
cancerous and non-cancerous nodules. Subsequently, sub-
classification based on nodule size ensues. The final step 
entails detection and decision-making based on predictions 
generated by our trained model. 

It should be noted that the last conformity of the 5G 
technology in mobile has enabled advanced functionality of 
medical IoT sensors for the monitoring and the transmission of 
related data in real-time. These sensors can identify patient 
symptomatic information and send it to specified servers in 

real-time via the Internet. In the following and each of the 
below sub-sections, more details of our presented approach are 
provided. 

A. First Step: Data Collection 

As described, the medical IoT sensors form a network, 
depicted in Fig. 1(a). This network comprises sensors 
responsible for collecting physiological data. Communication 
within the network is structured into three levels, as illustrated 
in Fig. 1. Level 1 encompasses communication between 
sensors. Level 2 involves final devices utilized by patients for 
monitoring, accessing, and transmitting data to our proposed 
method. Level 3 manages the secure transmission of 
physiological data and CT images to the proposed method's 
server. Data collection occurs through two methods: active 
monitoring and passive monitoring. Active monitoring 
involves data collection via wearable IoT sensors, while 
passive monitoring involves patient interaction with sensors to 
generate data. This includes physiological data obtained 
through a mobile app and CT images. Level 2 networks 
comprise final devices utilized by patients, where physiological 
data is stored. Patients can access CT images through client-
server communication. The server used in our proposed 
method receives data sent from the network at this stage. 

In addition, the communication of the point of the access is 
maintained via the key of PreShared, it is applied as the main 
key of the pairwise in the 4 method-method handshakes [23]. 
Four thousand ninety-six iterations create PMK with 256 bits. 
The mentioned procedure exploits the function of the 
derivation of the key basis on the password, which is described 
in the relation as shown in Eq. (1): 

𝑃𝑆𝐾 

= 𝑃𝐵𝐾𝐷𝐹2 (𝐻𝑀𝐴𝐶 − 𝑆𝐻𝐴1. 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑. 𝑆𝑆𝐼𝐷. 4096.256)
 (1) 

 
Fig. 1. The framework of the medical body area networkCT image. 
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A function of the Hash-based Message Authentication 
Code (HMAC) is applied for the generation of the hash of the 
password. On the mentioned test, the password has 16 
characters, which are codified with the use of the ASCII of the 
printable. The counter of the packet and the service set 
identifier (SSID) are applied as the salt of the password. Then, 
the data is transmitted to the server with the patient's approval. 
The task manager checks the type of the data of the input. 
Next, the method schedules the tasks. Once data is placed in 
the database, the next stage is started. In these stages, the data 
is processed for the training, the validation, and the test of the 
model based on DNN. The data that is displayed by the portal 
of the patient doctor is also processed from this data. 

B. Second Step: Pre-processing of Collected Data 

The performance of Deep Neural Network (DNN)-based 
models relies heavily on both the quantity and quality of the 
data, emphasizing the importance of data preprocessing. 
Particularly, the focus lies on preprocessing imaging data 
related to lung cancer nodules, which often requires several 
stages of refinement. In this section, we outline the methods 
applied for preprocessing both non-image and image data. 

Firstly, let's discuss non-image data preprocessing. Non-
image data is typically gathered from sensor responses or 
patient interactions with healthcare applications. Wearable 
sensors capture various data such as temperature, irregular 
heartbeat, breathing patterns, and blood pressure. Additionally, 
non-wearable sensors are utilized for measuring weight loss 
and managing CT image data. Patient interactions also provide 
valuable data, including reports of anorexia, anxiety, 
depression, pain, insomnia, fatigue, and constipation. These 
signals and the relevant sensor values are normalized with the 
use of the defined linear normalization by relation as shown in 
Eq. (2). The lack of the related data is exchanged by 𝑁𝐴. But, 
in the numerical calculations, these values are considered as 0. 
𝑠′ displays the normalized data, and 𝑠 displays the real data. 

𝑠′ =
𝑠−min (𝑠)

max(𝑠)−min (𝑠)
      (2) 

However, when dealing with image data, a distinct 
preprocessing approach becomes necessary. Image data 
processing comprises three main stages: 1) resizing and 
transforming the images; 2) validating candidate images; and 
3) segmenting symmetrically with feature enhancement. Each 
Convolutional Neural Network (CNN) has a fixed input layer 
size, but there's no assurance that the input image size will 
align perfectly with the input layer size. Additionally, CNN 
input layers can only process a certain number of channels at a 
time. Hence, it's crucial to resize images and adjust color 
spaces according to network specifications. Certain CT scans 
may include regions with minimal lung tissue or even areas 
devoid of lung tissue entirely. Removing these sections 
improves the quality of training data. 

Moreover, the ambiguous characteristics of lung cancer 
nodules pose challenges to the efficacy of feature learning 
layers. Consequently, it becomes imperative to augment the 
features of lung cancer nodules. The initial preprocessing step 
involves resizing images and transforming color spaces. The 
input layer size of our proposed model is set at 224×224×3. 
The collected data for this experiment includes both three-

channel and one-channel images. All images are resized to 
224×224 while maintaining the aspect ratio to streamline 
training duration. Furthermore, one-channel images are 
converted to RGB three-channel images using Eq. (3). 

𝐼𝑅𝐺𝐵 = 𝐼(𝐺𝑟𝑎𝑦.𝑅) + 𝐼(𝐺𝑟𝑎𝑦.𝐺) + 𝐼(𝐺𝑟𝑎𝑦.𝐵)      (3) 

𝐼𝑅𝐺𝐵 represents our created RGB image from the grayscale 

image. Also, 𝐼(𝐺𝑟𝑎𝑦.𝑅) , 𝐼(𝐺𝑟𝑎𝑦.𝐺)  and 𝐼(𝐺𝑟𝑎𝑦.𝐵)  represent, 

respectively, the equivalent value of the gray for the red 
channel, the equivalent value of the gray for the green channel, 
and the equivalent value of the gray for the blue channel. The 
size resizing of the image does not modify the data inside it due 
to the logical change. Even after the transformation of it into an 
image of 3-channel, our essential features stay without change. 
Our second processing of the image data is the candidate image 
validation. In this stage, the function of the validation takes the 
images. Then, it validates whether the image displays a 
candidate valid or not. The candidate's set of valid and set of 
invalids are shown in Fig. 2. If the image of the input does not 
include a part of the effective lung, which the nodules can be 
recognized, then the function ignores this image. Differently, 
this function rebounds the pre-processed copy of the image, 
and then, the algorithm exploits it for more pre-processing. 
This function takes the images of RGB (𝐼𝐶𝑜𝑙𝑜𝑟 ) which it is 
described as below: 

𝐼𝐶𝑜𝑙𝑜𝑟 = ∑ ∑ 𝐼(𝑛. 𝑚. 𝑔)

𝑀

𝑚=1

𝑁

𝑛=1

 

+ ∑ ∑ 𝐼(𝑛. 𝑚. 𝑟) + ∑ ∑ 𝐼(𝑛. 𝑚. 𝑏)

𝑀

𝑚=1

𝑁

𝑛=1

𝑀

𝑚=1

𝑁

𝑛=1

 

(4) 

Also, the image of RGB is transformed into an image of the 
grayscale by using relation, as shown in Eq. (5). 

𝐼𝑔𝑟𝑎𝑦(𝑛. 𝑚) = 𝛼𝐼𝐶𝑜𝑙𝑜𝑟(𝑛. 𝑚. 𝑟) + 𝛽𝐼𝐶𝑜𝑙𝑜𝑟(𝑛. 𝑚. 𝑔) 

+𝛾𝐼𝐶𝑜𝑙𝑜𝑟(𝑛. 𝑚. 𝑏)   (5) 

𝛼, 𝛽, and 𝛾 denote the constants for the red, green, and blue 
channels, respectively. It is essential to calculate the part area 
of the lung in the image because it is necessary to check 
whether 𝐼𝐶𝑜𝑙𝑜𝑟  is a valid candidate or not. It is easier and faster 
to measure the lung area in the binary image. The threshold of 
the gray conversion 𝐼𝑔𝑟𝑎𝑦  into the binary image is calculated by 

using the Otsu method, which is shown in the relation (6): 

𝜎𝑏
2(𝑡) = 𝜎2 − 𝜎𝑤

2(𝑡) = 𝜔0(𝜇0 − 𝜇𝑇)2 + 𝜔0(𝜇1 − 𝜇𝑇)2   (6) 

where, 𝜎𝑏
2(𝑡) is the maximum threshold and 𝜎2 represents 

the variance and 𝜇0  represents the mean. Also, 𝜔0  is the 
weighted probability. The obtained threshold from the relation 
(6) is used to transform 𝐼𝑔𝑟𝑎𝑦(𝑛. 𝑚)  into a binary image 

𝐼𝑏𝑖𝑛(𝑛. 𝑚) by using the relation (7). 

𝑋 = {
1       𝐼𝑔𝑟𝑎𝑦(𝑛. 𝑚) ≥ 𝜎𝑏

2(𝑡) 

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (7) 

A binary image contains small noise objects that these 
objects have areas of about 450 -5000  pixels. The obtained 
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objects influence the accuracy of the learning of the layers of 
the learning of the feature. Thus, that is why it is essential to 
discard these cases. The opening of the region of the 
morphological is applied for the removal of the objects by a 
value of the threshold equal to 5000. The series of little holes 
remain in the foreground after the region opens. To remove the 
holes, the operation of the flood filling by the four-way 
connection is applied. 

𝐼𝑓𝑖𝑙𝑙(𝑛. 𝑚) = 𝐹𝑙𝑜𝑜𝑑𝑓𝑖𝑙𝑙𝑖𝑛𝑔(𝑎𝑟𝑒𝑎𝑜𝑝𝑒𝑛𝑖𝑛𝑔(𝐼𝑏𝑖𝑛(𝑛. 𝑚)))    (8) 

where, 𝐼𝑓𝑖𝑙𝑙(𝑛. 𝑚) displays the image after filling the holes 

and 𝐼𝑏𝑖𝑛(𝑛. 𝑚)  is the binary image. Next, the image of the 
binary is deduced by the filled image. Finally, it renders the 
lung form as an object in the foreground. 

𝐼𝑠𝑢𝑏(𝑛. 𝑚) = 𝐼𝑓𝑖𝑙𝑙(𝑛. 𝑚) − 𝐼𝑏𝑖𝑛(𝑛. 𝑚)     (9) 

where, 𝐼𝑠𝑢𝑏(𝑛. 𝑚) displays the image after the deduction of 
the image of the binary by the filled image. Then, the area is 
computed with the implementation of a logical operation of 
𝐴𝑁𝐷 among 𝐼𝑠𝑢𝑏(𝑛. 𝑚) and the logical 1, which is shown in 
the relation (10). 

𝐴𝑟𝑒𝑎 = ∑ ∑ 𝐼𝑠𝑢𝑏(𝑛. 𝑚)⋀𝐿𝑜𝑔𝑖𝑐𝑎𝑙(1)𝑀
𝑚=1

𝑁
𝑛=1         (10) 

Assuming the area exceeds 20,000, we consider the image 
to represent a valid candidate for lung cancer nodule diagnosis. 
Conversely, if the area falls below 20,000, the image is deemed 
invalid. Validating the candidate confirms the efficacy of the 
feature learning layer and captures key features crucial for lung 
cancer nodule classification. Thus, this method serves to 
enhance the quality of lung cancer image datasets. 

Lastly, the third step in image data processing involves 
segmenting the lungs symmetrically and enhancing features. 
Following validation, symmetric segmentation is performed. 
The segmented lungs, enhanced by improved features, are 

illustrated in Fig. 3. The lung separation function operates on 
the pre-processed binary image copies of valid candidate 
images (I_sub(n.m)). At this stage, both the left and right lungs 
are presented in a composite image. To separate the left and 
right lungs, two separate masks need to be generated. This 
process initiates by convolving an image of zeros with the 
grayscale image and saving the results as left and right masks, 
as described in Eq. (11) and Eq. (12). 

𝐿𝑚𝑎𝑠𝑘 = ∑ ∑ 𝐼𝑔𝑟𝑎𝑦(𝑛. 𝑚) ⊗ 𝐼𝑧𝑒𝑟𝑜(𝑛. 𝑚)𝑀
𝑚=1

𝑁
𝑛=1  (11) 

𝑅𝑚𝑎𝑠𝑘 = ∑ ∑ 𝐼𝑔𝑟𝑎𝑦(𝑛. 𝑚) ⊗ 𝐼𝑧𝑒𝑟𝑜(𝑛. 𝑚)𝑀
𝑚=1

𝑁
𝑛=1  (12) 

𝐿𝑚𝑎𝑠𝑘 and 𝑅𝑚𝑎𝑠𝑘 indicate the mask of the left and the mask 
of the right. 𝐼𝑠𝑢𝑏(𝑛. 𝑚) contains more than one area with the 
values of the pixel of the binary. For the segmentation of the 
obtained areas, it is necessary to label them. The labeling is 
performed with the use of the relation (13) where 𝐾 = {𝑥|𝑥 ∈
𝑁}  and 𝐼𝑠𝑡𝑟  is an 8-connection morphological structure with 
the pixel values equal to 1. 

𝐿𝐾 = (𝐿𝐾−1 ⊗ 𝐼𝑠𝑡𝑟) ∪ 𝐼𝑠𝑢𝑏         (13) 

where, 𝐿𝐾  is the label of the region 𝐾. Also, 𝐼𝑠𝑢𝑏(𝑛. 𝑚) can 
have a maximum of two regions. That is why, 𝐿𝐾 =  {𝑥 ∣ 𝑥 ∈
 𝑁. 𝑥 ≤  2}. In 𝐿𝑚𝑎𝑠𝑘  where 𝐿𝐾 = 1, the values of the pixel are 
filled. In the same way, in 𝑅𝑚𝑎𝑠𝑘 where, 𝐿𝐾 = 2, the values of 
the pixel are also filled. Finally, 𝐿𝑚𝑎𝑠𝑘 and 𝑅𝑚𝑎𝑠𝑘 are deduced 
by the main image to fill masks further. Next, the opening of 
the morphological with the ellipse has a main axis equal to 90 
pixels and a height equal to 10 pixels. This case is used in 2 
masks and the other complementary action, which is described 
by the relation (14). 𝑀𝑜  displays the opening of the 
morphological and 𝑀𝑚𝑎𝑠𝑘 represents the mask of the left and 
the mask of the right. 

𝑋𝑚𝑎𝑠𝑘 = 1 − 𝑀𝑜((1 − 𝑋𝑚𝑎𝑠𝑘).
𝑛2

902 +
𝑚2

102      (14) 

 

Fig. 2. (a,b) the candidates of the invalid; (c,d) the candidates of the valid. 
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Fig. 3. The segmentation of the symmetric and the enhancement of the feature in the image data processing stage. 

The obtained masks from the relation (14) include a blurred 
gradient. Binarization for 𝑋12  in the value of the threshold 
equal to 0.5 returns the severe discontinuities. 

𝑋𝑚𝑎𝑠𝑘 = {
1              𝑋𝑚𝑎𝑠𝑘 ≥ 0.5 
0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (15) 

Finally, the masks are connected with 𝐼𝑠𝑢𝑏(𝑛. 𝑚)  as 
separately and then, it separates the lung of the left and the 
lung of the right from the image of the source. 

𝐼𝑙𝑢𝑛𝑔 = ∑ ∑ 𝐼𝑔𝑟𝑎𝑦(𝑛. 𝑚) ⊗ 𝑋𝑚𝑎𝑠𝑘(𝑛. 𝑚)𝑀
𝑚=1

𝑁
𝑛=1  (16) 

Here, 𝐼𝑙𝑢𝑛𝑔 represents the lung of the left and the lung of 

the right separately. If 𝐼𝑔𝑟𝑎𝑦(𝑛. 𝑚) is convolved by the mask of 

the left, relation (16) creates the left lung. Similarly, when 
𝐼𝑔𝑟𝑎𝑦(𝑛. 𝑚) is convolved with the right mask, the relation (16) 

creates the lung of the right. Finally, the lung of the left and the 
lung of the right are elided together. 

The enhancement of the feature is a successive procedure 
that this procedure begins with noise removal. The non-local 
average methods, under the control of the relation (17), have 
been applied to the current test for the removal of the noise 
from the image, which in it, ν(𝐼𝑓)  displays the pixel of the 

filtered, ν(𝐼𝑠)  displays the pixel of the target and υ(𝐼𝑠) 
represents the value of the unfiltered in ν(𝐼𝑓). Also, 𝑓(𝐼𝑓 . 𝐼𝑠) is 

the weighting function [24]. 

ν(𝐼𝑓) =
1

𝑐(𝐼𝑓)
∫ υ(𝐼𝑠)𝑓(𝐼𝑓 . 𝐼𝑠)𝑑𝐼𝑓

 

𝑛×𝑚
  (17) 

Following noise removal, the adaptive histogram 
equalization algorithm, leveraging genetic algorithms [25], is 
applied. Subsequently, a surface contrast enhancement window 
is utilized to eliminate irrelevant features unrelated to lung 
cancer nodules. The segmentation result of the symmetric and 
the outcome of the feature enhancement process are depicted in 
Fig. 3. Augmenting data is one strategy employed to address 
overfitting challenges. However, the annotated dataset, even 
with input from radiologists, proves insufficient for achieving 
optimal classification efficiency in our model. Moreover, a 
significant disparity exists between the number of positive and 
negative training images, leading to imbalanced data in 

predictive modeling. To address this, we employ data 
augmentation techniques to generate additional relevant data 
from the existing dataset, thereby balancing the number of 
positive and negative images. Sufficient training samples are 
created through random spatial transformations and data 
augmentation methods. 

C. Third Step and Fourth Step: Proposed Network, Training, 

and Classification 

The proposed method introduces a unique network 
structure and a combined classification approach. This method 
employs a deep network with 22 layers, enabling it to learn 
distinctive features of lung cancer nodules. Additionally, the 
combined classifier enhances efficiency and provides more 
reliable predictions by leveraging data from the medical body 
area network. The CNN architecture used in our method is 
illustrated in Fig. 4, featuring a convolutional neural network 
with 22 layers and an input layer size of 224×224×3. Rectified 
Linear Unit (ReLU) functions are applied as activation 
functions for each convolution operation in the network. 

Given the centralized server used by the network, reducing 
operational costs and maintaining accuracy presents a 
challenge. To address this, we adopt an alternative method 
compared to advanced CNN models, which typically utilize 
convolution operations of size n×n. Instead, our proposed 
model employs convolution operations of size 1×1, resulting in 
reduced weights and biases. However, this deepens the 
network model, leading to a performance reduction of 46%. It's 
worth noting that fully connected CNNs are popular among 
researchers in lung cancer diagnosis due to their satisfactory 
efficiency [26]. 

Nevertheless, a model of the fully connected needs further 
resources of computational from the models of the sparsely 
connected [27]. That is why, thus, in our proposed method, a 
model of the non-fully-connected is applied. In addition, a 
global layer of the average-pooling averages the signals; it 
decreases the 7 × 7 feature maps to the 1 × 1 feature maps to 
reduce the number of non-cooperative features. 
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Fig. 4. Structure of the presented method. 

It has been observed that employing a diverse range of 
convolutional matrices instead of a constant matrix enhances 
network performance. In our proposed method, convolutional 
matrices of sizes 1×1, 3×3, 5×5, and 7×7 are aggregated 
together by a max-pooling layer of size 3×3, which operates in 
parallel with this stack. The ability of the convolutional layer to 
investigate objects of varying sizes is crucial, and the use of 
multiple convolution matrices ensures this capability. 

These separate layers are then combined into a deep 
concatenation layer, which transmits signals to the subsequent 
layer. In contrast to fully connected layers, our proposed 
method includes several intermediate pre-classification layers 
to mitigate the impact of the vanishing gradient problem. These 
branches are only activated during the training process. The 
purpose of these pre-classification layers is to perform 
classification before reaching the final classifier. Each of these 
layers comprises a 5×5 average pooling layer with a stride of 3, 

performing convolutions with 1×1 filters totaling 128 filters. 
The proposed method features 5 output nodes, processed 
through a softmax classification layer and aided by dataset 
data. The 2nd and 3rd nodes are combined for sub-
classification. 

In terms of the learning algorithm, it's worth noting that 
most CNNs initialize the weights of the classification layer 
randomly. However, for our proposed method, we've adopted 
various techniques to achieve better efficiency. Empirical 
results indicate that employing the modified Nguyen-Widrow 
initial weighting approach [28] improves validation accuracy 
and reduces validation loss more quickly. 

We utilize the Levenberg-Marquardt backpropagation 
algorithm as the learning rule [29]. This choice is validated by 
the computational expense of calculating the Hessian matrix 
[30]. Given that our proposed method is intended to operate 
from a centralized server, multiple instances could degrade 
service quality. The Levenberg-Marquardt backpropagation 
algorithm estimates the Hessian matrix using the Jacobian 
matrix, which is computationally cheaper and faster [31]. 
Consequently, we update weights using the Levenberg-
Marquardt backpropagation algorithm. 

Furthermore, employing a dynamic learning rate, as 
opposed to a fixed learning rate, enhances validation accuracy 
[32]. Therefore, our proposed method adopts an adaptive 
learning rate during training, where the rate starts at 0.01 and 
gradually decreases to 0.0003. 

After the training step, the classification step is done. A 
new hybrid classifier is designed and is used in the proposed 
method. The network classifier is considered for cancer 
classification. The data of the feature of the image of the high 
level and the data of the feature of the image of the low level 
are the features of the node based on the classification of the 
network. Commonly, the data of the probabilistic network is 
applied for the classification. Our proposed method 
incorporated an extra system of support for the decision-
making of the weighted with the classifier of the convolution. 
The normalized data are the parameters of the step of the 
classification. The sum of the weighted of the prediction for 
our proposed method (𝑃𝐿 ) and also prediction based on the 
normalized data (𝑃𝑆 ), which is defined by the relation (18), 
form the final output of the proposed method. 

𝑃𝑠𝑡𝑎𝑔𝑒𝑛
= 0.6𝑃𝐿 + 0.4𝑃𝑠    (18) 

By using the value of 𝑃𝑠𝑡𝑎𝑔𝑒𝑛
, where 𝑛 = {𝑛 ∣ 𝑛 ⊂ 𝑍. 0 ≤

𝑛 ≤ 4}, the classification of the final (based on the medical 
thresholds) is performed. The lung cancer is further classified 
based on the size of the nodule. After the classification, the test 
image is sent to the sub-classifier. This module includes a 
module for the processing of the image and also a module for 
decision-making. The module of the processing of the image 
separates the nodule of the lung from the image. Next, the 
module of decision-making computes the nodule size. Based 
on the medical thresholds, this module classifies the nodules 
(see Fig. 5). 
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Fig. 5. An example of the separation of the lung nodule from the sub-classified image. 

IV. TESTS AND EVALUATION OF RESULTS 

In this section, the details of the evaluation criteria, the used 
datasets, our performed tests, and the gained outcomes are 
provided. The language of the programming of Python has 
been applied to implement these experiments. Our proposed 
approach is done in a computer with 8G RAM and Core (TM) 
i7 CPU 3.0 GHz Intel(R). The network of the convolutional is 
implemented on GPU and the used card of the graphics in our 
approach is GEFORCE 840M for NVIDIA. 

A. Applied Datasets and Evaluation Criteria 

The performance evaluation criteria in this paper include 
accuracy, false positive rate, and false negative rate, which are 
utilized to calculate the Area Under the Curve (AUC) score 
and Recall. The LIDC-IDRI dataset [33] and the LUNGx 
dataset [34] are employed to evaluate the effectiveness of our 
proposed approach and to compare it with similar approaches. 
These two datasets are combined into a single dataset for 
evaluating our approach. Additionally, data obtained from the 
medical body area network are incorporated into this 
evaluation process. 

Within this dataset, image scans containing lung regions are 
considered non-candidates and are consequently excluded from 
the datasets. 

Furthermore, the datasets contain scans both with and 
without nodules. These cases are identified and separated based 

on existing metadata within the dataset, with annotations 
performed by radiologists. However, there is no inherent 
distribution logic between these two classes. Following 
partitioning, the number of images available for training, 
testing, and validation is insufficient. The scarcity of images 
poses a challenge in achieving satisfactory validation accuracy 
for CNNs. To overcome this challenge, we employ two-
dimensional spatial image enhancement and generate features 
to preserve enhanced images using the existing dataset [35]. As 
a result, each CT scan is represented as a 3-channel image with 
dimensions of 224×224. The statistics of our utilized datasets 
are presented in Table I. 

B. Obtained Results 

In this section, we examine and also, we analyze the 
obtained results from the different experiments. Before the 
presentation of the results, we should mention that we compare 
the obtained outcomes by our presented approach with the 
obtained outcomes by the ResNet-50 network [36], the 
Inception V3 network [37], and the Xception network [38]. 
The results of our presented approach and other deep learning-
based networks in our used dataset and the obtained data are 
provided in Tables II, III, and IV. Also, Fig. 6 displays the 
efficiency of deep learning models and the efficiency of our 
presented model according to accuracy, score of AUC, and 
loss. Note that in Tables II, III, and IV, results are presented for 
training, validation, and testing, respectively. 

TABLE I.  THE STATISTICS OF USED DATASETS AND THEIR COMBINATION FOR THE EVALUATION OF THE PROPOSED METHOD 

Augmented Cases Cases with Nodules Candidate Cases CT Cases Dataset 

160000 1822 3280 70 LUNGx 

365000 5249 8252 1018 LIDC-IDRI 

TABLE II.  OUTCOMES OF TRAINING OF THE DIFFERENT DEEP LEARNING APPROACHES AND OUR PRESENTED APPROACH 

Loss Recall AUC Score Accuracy Model 

0.045 99.60 99.99 99.56 ResNet-50 

1.960 94.23 96.40 94.25 InceptionV3 

1.450 94.08 96.70 94.10 Xception 

0.0018 99.76 100 99.85 Proposed Model 

TABLE III.  OUTCOMES OF VALIDATION OF THE DIFFERENT DEEP LEARNING APPROACHES AND OUR PRESENTED APPROACH 

Loss Recall AUC Score Accuracy Model 

0.598 83.50 94.90 84.20 ResNet-50 

15.70 82.10 88.50 82.07 InceptionV3 

8.270 82.06 90.00 82.10 Xception 

0.324 91.54 98.12 92.25 Proposed Model 
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TABLE IV.  OUTCOMES OF TEST OF THE DIFFERENT DEEP LEARNING APPROACHES AND OUR PRESENTED APPROACH 

Loss Recall AUC Score Accuracy Model 

0.604 83.45 94.85 84.13 ResNet-50 

15.64 82.06 88.65 82.09 InceptionV3 

8.301 82.07 90.13 82.12 Xception 

0.321 92.01 98.46 92.78 Proposed Model 

  
(a)       (b) 

 
(c) 

Fig. 6. Illustration of performance evaluation results for different methods, (a) Result of training process, (b) Result of validation process, (c) Result of test 

process. 

Accuracy AUC Score Recall
91

92

93

94

95

96

97

98

99

100

101

 ResNet-50  InceptionV3  Xception  Proposed Model

Accuracy AUC Score Recall
0

10

20

30

40

50

60

70

80

90

100

 ResNet-50  InceptionV3  Xception  Proposed Model

Accuracy AUC Score Recall
0

10

20

30

40

50

60

70

80

90

100

 ResNet-50  InceptionV3  Xception  Proposed Model



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

188 | P a g e  

www.ijacsa.thesai.org 

After analyzing the outcomes of our proposed model and 
comparing them with ResNet-50, Inception V3, and Xception, 
it is evident that our model outperforms similar deep learning 
models, as shown in Tables II, III, and IV, as well as Fig. 6. 
Our proposed method achieved a test accuracy of 92.78%, a 
test AUC score of 98.46%, a test recall of 92.01%, and a test 
loss of 0.321. 

In Fig. 6, the accuracy, AUC score, and loss values of 
different models are depicted. These metrics are crucial for 
evaluating model performance. Notably, our proposed model 
exhibits the highest test accuracy compared to other models. 
The AUC score is a key measure for assessing method 
efficiency and its ability to discriminate between positive and 
negative classes. A higher AUC score indicates superior 
performance. A score between 0.7 and 0.8 is considered 
acceptable, between 0.8 and 0.9 is excellent, and above 0.9 is 
considered outstanding [39]. As shown in Fig. 6, the proposed 
method not only achieved the highest test accuracy but also 
attained the highest test AUC score, indicating its excellent 
discriminatory ability between positive and negative classes. 

Indeed, the loss value is another crucial criterion in 
assessing model performance. It represents the degree of 
inaccuracy in the model's predictions at each iteration. A loss 
value of 0 indicates perfect model predictions, whereas higher 
loss values indicate poorer performance. In our detection 
process, we use the cross-entropy loss function, commonly 
employed for multi-class classification tasks [38]. The 
proposed method achieves the lowest loss value, indicating 
superior predictive accuracy. Conversely, models such as 
Xception and Inception V3 exhibit significantly higher loss 
values [40, 41]. This evaluation demonstrates that our approach 
outperforms other deep learning models in diagnosing various 
types of lung cancer using the datasets and collected data. 

C. Discussion and Limitations 

Despite the promising results observed in various tests, the 
proposed method has several limitations, most of which are 
typical of CNN-based models. These limitations are outlined 
below. 

Firstly, the efficacy of our approach, which surpasses that 
of similar methods, heavily relies on hybridization. The 
integration of data from the medical body area network 
contributes to the combined layer. However, any erroneous 
measurements by faulty IoT sensors could significantly 
compromise the overall integrity of the model. Although such 
occurrences are rare, the absence of a fault detection 
mechanism for medical sensors poses a potential risk. 

Moreover, like any lung cancer classifier based on CNN, 
our proposed method requires image processing to enhance 
features. This image processing involves a series of 
computationally expensive processes. Each image must be 
processed and segmented individually, resulting in significant 
time consumption. Additionally, it is beyond the scope of this 
paper to dissect each module of image processing separately 
and evaluate its impact on the overall efficiency of the 
network. 

However, this also underscores the need for further 
research. The validation performance of our proposed approach 

sees a significant decline when image enhancement is not 
employed. This implies that the overall efficacy of the model is 
reliant on image enhancement. However, it's important to note 
that this limitation isn't exclusive to our proposed method. To 
date, no efforts have been made to determine the optimal 
number of enhanced images. This aspect leaves room for future 
optimization of the efficiency of our proposed method. 

V. CONCLUSIONS AND SUGGESTIONS 

The mortality rate associated with lung cancer remains 
alarmingly high, underscoring its status as one of the most 
prevalent and aggressive forms of cancer worldwide. While its 
occurrence cannot be prevented, early diagnosis can 
significantly improve patient outcomes, prolonging lives. 
Notably, in North America and other industrialized nations, 
lung cancer ranks as the leading cause of cancer-related deaths. 
Despite significant strides in recent years, early diagnosis 
remains challenging and lacks reliability. 

In this study, we departed from current research trends to 
explore specialized layers within our CNN model. By 
integrating physiological data into our CNN model specifically 
designed for lung nodule classification, we achieved promising 
results. Our combined classifier attained an accuracy of 
92.78%, surpassing similar models according to our literature 
review. Even in scenarios where feature learning layers may 
suffer from mistraining due to the absence of beneficial 
features, the classification accuracy of our proposed method 
remains reliable, thanks to the weighted aggregation of data 
collected from the medical body area network. 

This study extends the development of one of the most 
precise automated models for lung cancer detection, 
emphasizing its comprehensive service availability. In 
summary, our proposed method represents a significant 
advancement in CNN-based automated models for lung cancer 
detection. We anticipate that our approach will pave the way 
for the development of more reliable computer-aided detection 
systems. 

The proposed approach addresses the critical problem of 
early and accurate detection of lung cancer through the 
integration of data from CT scans and wearable IoT sensors, 
leveraging the DCNN for analysis. By combining information 
from both sources, the approach enhances diagnostic accuracy 
by capturing a comprehensive range of patient data. The hybrid 
model trained on a balanced dataset ensures robust learning 
and classification of lung nodules, while rigorous evaluation 
metrics such as accuracy, AUC score, loss, and recall provide 
thorough assessment of performance. Overall, the proposed 
approach offers a holistic and reliable solution to the challenge 
of lung cancer diagnosis, leveraging advanced machine 
learning techniques and diverse data sources to improve patient 
outcomes. 

Future research could focus on integrating multi-modal 
data, including medical imaging, physiological data from 
wearable sensors, and patient history, into a comprehensive 
diagnostic model. By leveraging a wider range of data sources, 
such as genetic information, lifestyle factors, and 
environmental exposures, researchers can develop a more 
holistic understanding of lung cancer risk and improve the 
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accuracy of early detection models. This approach would 
require advanced data fusion techniques and machine learning 
algorithms capable of processing diverse data types and 
extracting meaningful patterns for accurate diagnosis and 
prognosis. 

Another potential avenue for future research is the 
development of explainable artificial intelligence (XAI) 
models for lung cancer diagnosis. While deep learning models 
like CNNs have demonstrated impressive performance, their 
inner workings can be opaque, making it challenging to 
understand the factors driving their decisions. By incorporating 
explainability into the model architecture, researchers can 
provide clinicians with insights into how specific features 
contribute to the diagnostic process, enhancing trust and 
facilitating clinical decision-making. This research could 
involve exploring interpretable machine learning techniques, 
such as attention mechanisms, feature visualization, and 
decision trees, to create transparent and clinically actionable 
diagnostic models for lung cancer detection. 
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