
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

15 | P a g e

www.ijacsa.thesai.org

Assisted Requirements Selection by Clustering using

an Analytical Hierarchical Process

Shehzadi Nazeeha Saleem1, Linda Mohaisen2

Department of Computer Science and Software Engineering,

National University of Sciences and Technology, Islamabad, Pakistan1

Department of Information Technology, Faculty of Computing and Information Technology,

King Abdulaziz University, Jeddah, Saudi Arabia2

Department of Computer Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK2

Abstract—This research investigates the fusion of the Analytic

Hierarchy Process (AHP) with clustering techniques to enhance

project outcomes. Two quantitative datasets comprising 20 and

100 software requirements are analyzed. A novel AHP dataset is

developed to impartially evaluate clustering strategies. Five

clustering algorithms (K-means, Hierarchical, PAM, GMM,

BIRCH) are employed, providing diverse analytical tools. Cluster

quality and coherence are assessed using evaluation criteria

including the Dunn Index, Silhouette Index, and Calinski

Harabaz Index. The MoSCoW technique organizes requirements

into clusters, prioritizing critical requirements. This strategy

combines strategic prioritization with quantitative analysis,

facilitating objective evaluation of clustering results and resource

allocation based on requirement priority. The study

demonstrates how clustering can prioritize software

requirements and integrate advanced data analysis into project

management, showcasing the transformative potential of

converging AHP with clustering in software engineering.

Keywords—Requirements prioritization; next release plan;

software product planning; decision support; MoSCoW; AHP; k-

Means; GMM; BIRCH; PAM; hierarchical; clustering; clusters

evaluation

I. INTRODUCTION

Software engineering is built on several pillars and involves
more than just programming. It contains every piece of
supporting information, design principle, or idea required to
make these programmes function as intended. Software
requirements prioritisation (SRP) is one of the design
principles that enable software that is being considered for
development to function as intended [1].

A subfield of requirements engineering called requirements
prioritisation assists in selecting requirements based on the
interests of stakeholders. Giving each requirement a priority to
decide the order in which they should be implemented is a step
in the software engineering process. A requirement engineering
decision process is used to decide which features or
requirements will be developed in the upcoming release while
considering technical, resource, risk, and budget constraints
[2]. Choosing the order in which requirements should be
addressed is a crucial step in the software development
process. This process aids in managing the priority and
urgency of software requirements while considering
stakeholders’ interest, cost, resource, and time issues.
Numerous academics have provided definitions for the ranking

of software demands in order of importance. Software
requirement prioritisation is a process that determines the order
in which needs will be implemented [3]. The process of
selecting the best set of requirements from several conflicting
and competing expectations gathered from various
stakeholders participating in a software development project,
according to Karlsson and Ryan [4].

The success or failure of a project is largely dependent on
the software requirements specification in general and the
prioritisation of software requirements in particular. Almost
80% of software projects fail to achieve the Standish Group's
definitions of success based on time, cost, and scope criteria
each year [5]. The failure is often due to shifting requirements,
as requirements are often documented and rarely changed. This
suggests that software projects fail due to their inability to
evolve efficiently to match shifting requirements or
accommodate new ones. This highlights the importance of
release management and the need for proper decision-making
about the functionality of a software product's release. A well-
selected release will minimize problems with shifting
requirements in future releases.

As a remedy to this issue, many requirements prioritisation
techniques have been put forth. These techniques aim to reduce
the length and cost of software development projects by
supporting developers in identifying the most important and
urgent requirements. Each method has limitations and makes
both explicit and implicit assumptions about the project context
during requirements prioritisation [6]. These presumptions
must be considered while experimentally assessing a
requirement prioritisation approach for usefulness, utility,
application, or effectiveness.

One technique for ranking software requirements is to use
clustering techniques. Similar observations, data points, or
feature vectors can be clustered together based on shared
characteristics using the clustering technique [7]. Clustering
algorithms are used in the prioritising process to group and
categorise requirements based on similarity or relatedness. This
enables effective requirements prioritisation based on the
characteristics of each cluster and the discovery of patterns and
relationships between them. Clustering algorithms can assist in
managing the complexity of prioritising various requirements
by organising requirements into meaningful clusters that can
then be prioritised more successfully.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

16 | P a g e

www.ijacsa.thesai.org

This study thoroughly explores an innovative and
promising method for requirement prioritisation that combines
the Analytic Hierarchy Process (AHP) and clustering
techniques. With the use of the data mining approach known as
clustering, it may be possible to group together requirements
that are similar, making it easier to handle them and improving
the decision-making process. AHP, on the other hand, is a
structured method for making decisions based on several
factors and enables the creation of priorities based on both
qualitative and quantitative judgments.

As we seek to assess the accuracy of quantitative records, it
is crucial to assign requirements the proper level of importance
to determine the core set of requirements. To do this, the
MoSCoW technique, a tried-and-true framework for
prioritising requirements, is used that divides each into Must-
haves, Should-haves, Could-haves, and Won't-haves categories
based on how important and consequential they are. A robust
evaluation framework is also developed using metrics like the
Dunn Index, Silhouette Index, and Calinski Harabaz Index.
These metrics provide quantitative insights into the quality and
cohesion of clusters, aiding decision-making processes.

Let’s suppose a software development team is tasked with
prioritizing features for an e-commerce platform using
clustering techniques. They assign priorities within each cluster
based on business impact and technical complexity. For
example, they prioritize product search functionality (Cluster
A) and payment processing (Cluster B) based on their
significance for user experience and revenue generation. This
approach streamlines decision-making, ensuring high-priority
features align with business goals and user needs, ultimately
optimizing the software development process.

Our overarching objective in this research is to evaluate the
results of combining clustering methods with the Analytic
Hierarchy Process (AHP). Our view of this integration's
potential impact will be greatly influenced by the outcomes of
this integration, which are expected to provide a distinctive
perspective on requirement prioritisation and project
management. In keeping with this goal, we have developed two
key research questions that will direct our empirical studies and
provide the information required to make well-informed
decisions.

RQ1: Is a semi-automated approach to SRP processes
possible with the incorporation of clustering techniques?

RQ2: Does the fusion of AHP and clustering generate
better results?

The remainder of the paper is structured as follows: It
commences with the state of the art for clustering algorithms
and prioritisation techniques in Section II. Following this,
Section III gives an overview of established techniques for
clustering and requirements prioritisation. In Section IV, we
elaborate on the methodology proposed for clustering
requirements using AHP including how to determine the
number of clusters, evaluate clusters, and associate MoSCoW
categories with them. Section V presents and analyzes the
results of an effectiveness study conducted on two different
datasets. Section VI is dedicated to addressing the effectiveness
of the proposed method. Lastly, Section VII presents the

Results. Section VIII encapsulates the conclusions drawn from
the research.

II. LITRUTURE REVIEW

Table I extensively evaluates several works on algorithms
for clustering and requirements prioritisation. Notably, a wide
range of techniques were investigated within the state of the
art, including Binary Search Tree, Analytic Network Process,
Spanning Tree, Numerical Analysis, Bubble Sort, MoSCoW,
and Analytical Hierarchical Process. Remarkably, the
Analytical Hierarchical Process (AHP) was the method of
choice among researchers due to its constant production of
superior results. The section also discusses several clustering
techniques, such as K-Means, Partition Around Medoids,
BIRCH, Agglomerative Hierarchical Clustering, and Gaussian
Mixture Model (GMM). This review of the literature provides
an overview of the field and paves the way for the creation of
an original and useful framework, laying the groundwork for
succeeding research phases.

TABLE I. LITERATURE REVIEW

Year Title
Techniques

Used
Results Ref.

2015

Applying the

analytical hierarchy

process to system
quality requirements

prioritisation

AHP

The AHP
technique

effectively

removes
discrepancies

between

stakeholders’
interests and

the business

goals.

[8]

2015

Comparison of

Requirement
Prioritisation

Techniques to Find

the Best Prioritisation
Technique

binary search

tree, AHP,

hierarchy AHP,

spanning tree

matrix, priority

group/Numerical
Analysis, bubble

sort, MoSoW,

simple ranking,
and Planning

Game

 [9]

2016

An Evaluation of

Requirement

Prioritisation
Techniques with

ANP

ANP, binary
search tree,

AHP, hierarchy

AHP, spanning
tree matrix,

priority group

and bubble sort

AHP is the
best

requirements

prioritisation
technique

amongst all

the
requirements

prioritisation

techniques

[10]

2016

An approach to the

estimation of the

degree of
customization for

ERP projects using

prioritised
requirements

Framework

using AHP

AHP

framework

gave better
results

[11]

2017

Fuzzy_MoSCoW: A

fuzzy based
MoSCoW method for

the prioritisation of

software
requirements

Fuzzy MoSCoW

ANP is the

best
technique

among the

seven
techniques,

[12]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

17 | P a g e

www.ijacsa.thesai.org

Year Title
Techniques

Used
Results Ref.

though it

consumes

time

2020

A Novel Approach

for Software

Requirement
Prioritisation

MAHP, a

combination of

AHP and
MoSCoW

 [13]

2020

Prioritisation of

Software Functional
Requirements from

Developers'

Perspective

Spanning Tree

and AHP

AHP

framework

gave better
results

[14]

2022

E-AHP: An

Enhanced Analytical

Hierarchy Process
Algorithm for

Prioritising Large

Software
Requirements

Numbers

Enhanced AHP

E-AHP gives
better results

for large

projects

[15]

2015

Efficient

agglomerative

hierarchical
clustering

Efficient

agglomerative

hierarchical
clustering

Experimental
results show

consistent

performance
across various

settings,

proving
efficient AHP

to be reliable.

[16]

2016

A hierarchical

clustering method for

multivariate
geostatistical data

Aglomerative
hierarchical

clustering

Proposed
clustering

method yields

satisfactory
results

compared to

other
geostatistical

methods.

[17]

2017

Milling tool wear
state recognition

based on partitioning

around medoids
(PAM) clustering

PAM

PAM

outperforms

k-means and

fuzzy c-
means in Ti-

6Al-4V alloy

end milling
experiments.

[18]

2017

Malware family

identification with
BIRCH clustering

BIRCH

BIRCH

excels in

malware
family

identification
with high

accuracy and

low clustering
time.

[19]

2020

Unsupervised K-

Means Clustering

Algorithm

Unsupervised K-
Means

The U-k-

means

algorithm is
robust to data

structure and

performs
better than

existing
algorithms.

[20]

2020

Applications of
Clustering

Techniques in Data

Mining: A
Comparative Study

K-Means,

Hierarchical

Clustering, DB
Scan, OPTICS,

Density-Based

Clustering, EM

The paper

emphasises

the value of
K-means

clustering in

consumer

[21]

Year Title
Techniques

Used
Results Ref.

Algorithm data analysis

and business

decision-
making

2020

A Comparative Study

on K-Means
Clustering and

Agglomerative

Hierarchical
Clustering

K-Means and

Agglomerative
Hierarchy

K-means

performs
faster for

large datasets

and
agglomerative

hierarchical is

better for
smaller ones.

[22]

2021

Gaussian Mixture

Model Clustering
with Incomplete Data

GMM

Experiments

validate the
effectiveness

of the

proposed
algorithm.

[23]

2022

Bayesian Inference-

Based Gaussian
Mixture Models with

Optimal Components

Estimation Towards
Large-Scale

Synthetic Data

Generation for In
Silico Clinical Trials

BGMM-OCE

BGMM-OCE

outperforms
other

synthetic data

generators in
terms of

computational

efficiency and
unbiasedness

[24]

2022

Design and
Implementation of an

Improved K-Means

Clustering Algorithm

Improved K-

Means

Enhanced

algorithm
works better

than

conventional
K-Means.

[25]

2022

Gaussian mixture

model clustering
algorithms for the

analysis of high-

precision mass
measurements

GMM

Results from

GMMs were
closely

congruent

with values

that had

previously

been
published.

[26]

A. Research Gap

The limited investigation of the Analytical Hierarchy
Process (AHP) as a technique for clustering requirements in the
context of planning a project's next release is the area of
research that will be addressed in this research. Although most
of the literature now in existence focuses on the use of AHP in
requirements prioritisation and decision-making, there is a
striking paucity of studies that explore its potential utility in
grouping or clustering requirements to speed up the release
planning process. In the context of release planning, AHP in
integration with clustering can be used to enhance how
requirements are organised, classified, and prioritised. This will
ultimately result in more effective and efficient project
management.

III. TECHNIQUES USED IN THE STUDY

A. Requirements Prioritisation Techniques

Software engineering professionals utilise a collection of
methodologies called software requirements prioritisation
techniques to rank the importance or priority of various
software project requirements. Because not all requirements

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

18 | P a g e

www.ijacsa.thesai.org

can be addressed at the same time during software
development due to restricted resources (such as time and
money), prioritising requirements is essential. To ensure the
successful delivery of a software product, it is crucial to
identify and concentrate on the most important and significant
needs. The two techniques that we will be using in this study
are AHP and MoSCoW.

1) Analytical hierarchical process: The Analytical

Hierarchy Process (AHP) is a systematic decision-making

technique [27] proposed by Thomas L. Saaty in the 1970s. It

was developed for complex decision-making so that the

decision-maker could set priorities and get to the best option

possible [28]. AHP starts by modeling the decision issue as a

hierarchical structure and breaks it into three parts: a goal or

aim, criteria that help achieve the goal, and alternatives or

possibilities that need to be examined. In the next step, experts

or decision-makers are requested to compare the criteria and

options at each level of the hierarchy in pairs. They utilise a

scale to indicate the relative importance of things, often

ranging from 1 (equal importance) to 9 (much more essential).

Then a consistency check is done to make sure the

comparisons are reliable. To determine if decision-makers

judgments are consistent, the AHP technique uses

mathematical calculations. It may be necessary for decision-

makers to reevaluate their conclusions if contradictions are

found.
AHP uses pairwise comparison data to determine the

relative weights or priorities of the criteria and alternatives.
These weights reflect the preference for each choice relative to
the criteria and the significance of each criterion in reaching
the overall aim. The scores of the options for each criterion are
then combined using the estimated weights. Depending on the
decision context, different aggregation techniques, such as
weighted sum or weighted average, might be used. To rank and
evaluate the options based on their overall desirability or
performance in relation to the goal, AHP aggregates the
aggregated scores. Lastly, decision-makers can use the
prioritised rankings and scores to make decisions. Based on the
established criteria and their relative relevance, AHP offers an
organised and clear way to assess and choose the best
alternative.

2) MoSCoW: The Dynamic Software Development

Method (DSDM) provides the foundation for the MoSCoW

method [29]. It is a common strategy for prioritising

requirements. As a matter of fact, it is one of the easiest

techniques [30]. The acronym stands for must have, should

have, could have, and won't have. The importance or priority

of a certain feature within a project is represented by each

category. The core project scope is made up of must-haves,

which are important and non-negotiable components

necessary for project success. Should-haves are crucial

characteristics that greatly enhance the value of the project

and ought to be applied whenever practical. Could-haves offer

flexibility for prospective improvements because they are

desired but not necessary. To manage scope and avoid feature

creep, won't-haves are expressly left out of the current phase

or project. MoSCoW supports resource allocation and project

planning by assisting project teams and stakeholders in

prioritising requirements, ensuring that critical components

are addressed first while providing clarity on what may be

postponed or excluded.

B. Clustering Algorithms

The need to find knowledge in multidimensional data is
growing since massive volumes of data are being continuously
collected today. One of the crucial steps in mining or extracting
massive information is data miming. Clustering is the most
intriguing area of data mining, which seeks to identify
underlying patterns in data and identify some useful subgroups
for additional investigation. Each group, or cluster, is made up
of things that are dissimilar from those in other groups yet like
one another [31].

A total of five clustering algorithms have been used in this
paper and each algorithm is briefly discussed in this section.

1) K-Means: In machine learning and data mining, the

clustering algorithm K-Means is very famous and frequently

employed [32]. It requires the number of clusters to be

specified prior to the operation [33]. It seeks to divide a given

dataset into the specified number of clusters (K) according to

how similar the data points are to one another to maximise

certain clustering criteria. K-Means is an iterative technique

that minimises the sum of squared distances between data

points and the centroids of each cluster to give results. The k-

means algorithm is a well-liked clustering technique that

minimises clustering error [34].

2) Partition Around Medoids (PAM): The PAM method

partitions a distance matrix into a predetermined number of

clusters [35]. The goal of PAM is to divide a dataset into a

predetermined number of clusters by choosing actual data

points, known as medoids, as representatives of the clusters.

PAM is meant to work with dissimilarity or distance matrices.

Like centroids, medoids are chosen from the actual data

points, which makes PAM more resistant to noise and outliers.

3) Agglomerative hierarchical clustering: The process of

clustering data points into a hierarchical structure of clusters is

called agglomerative hierarchical clustering. Due to the

exponential rise of real-world data, hierarchical clustering is

crucial for data analytics [36]. In this type of clustering, each

item at first represents a separate cluster. The appropriate

cluster structure is then created by repeatedly merging clusters

until all data points are members of a single cluster, or until a

stopping requirement is satisfied. A dendrogram, which is a

tree-like structure created because of this procedure, shows the

clustering hierarchy visually.

4) Gaussian Mixture Models (GMM): Gaussian Mixture

Models (GMMs) are probabilistic models used for modelling

complicated data distributions in statistical analysis and

machine learning. Much research has been done on it due to

its usefulness and efficiency [37]. They presume that a variety

of Gaussian (normal) distributions, each with its mean and

covariance, were combined to produce the data. These

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

19 | P a g e

www.ijacsa.thesai.org

parameters are intended to be learned, and GMMs estimate the

likelihood that data points will belong to each Gaussian

component. They are frequently used for tasks like clustering,

density estimation, and data generation.

5) BIRCH: Balanced Iterative Reducing and Clustering

Using Hierarchies is an effective hierarchical clustering

algorithm made for grouping huge datasets. Its key

characteristic is to employ low memory resources for high-

quality clustering of large-scale data datasets and to only scan

datasets once to reduce I/O overhead [38]. A comparable B +

tree structure known as a Clustering Feature Tree (CF Tree) is

used by Birch to perform clustering [39].

IV. PROPOSED METHODOLOGY

Fig. 1. Proposed methodology.

This study presents a method for prioritizing requirements
for the next release using requirements prioritisation methods.
It considers the effort required for implementing a requirement
and its satisfaction with stakeholders. Clustering algorithms are
applied to cluster requirements, and the technique is used to
extract a group of requirements for the next release. The
validity of clusters is evaluated. In the end MoSCoW is applied
to assign importance to the clusters. The Fig. 1 provides a
bird's eye view of the process.

A. Requirements Elicitation

Requirement elicitation is a crucial step in requirement
engineering, gathering stakeholders' needs and expectations for
a software project through discussions, interviews, and
surveys, ensuring comprehensive documented requirements.

B. Requirements Analysis

Requirements Analysis involves a thorough examination of
requirements to eliminate ambiguity, address inconsistencies,
and evaluate feasibility. It aims to create a refined
representation of the software's functionalities.

C. Stakeholders’ Input

Stakeholders actively contribute to the decision-making
process by offering critical input on two important factors: the
amount of work necessary to accomplish the project and the
expected degree of satisfaction. Their insights cover both effort
(resource allocation, time commitments, and potential
obstacles) and satisfaction (alignment with organisational goals
and client needs). Through the careful balancing of resource
optimisation and stakeholder satisfaction throughout project
planning, this dual input enables informed decision-making.

D. Problem Formulation

1) Quantitative data: Consider a situation where we have

a list of requirements, R = r1, r2 ,..., rn, that reflect the new

features that various customers have recommended for a

forthcoming software version. Each stakeholder i is given a

weight wi to indicate their significance. This implies that some

stakeholders' preferences will be taken into consideration

more so than others when deciding what issues need to be

solved in a software version. The set of customer weights is

denoted by the notation W = w1, w2, ..., wn.
Each requirement rj in the set R has a corresponding

development effort value ej that calculates the resources or cost
necessary for its implementation. The notation for this
collection of effort values is E = e1, e2 ,..., en. This is measured
by a value vij, which expresses the significance of need rj for
customer i. In essence, higher vij values indicate that
stakeholder i is given more priority.

Summing up a requirement's importance ratings across all
stakeholders yields the total value of including it in the
upcoming software release, or its global satisfaction,
abbreviated as sj (sj = m i=1 wi vij). By considering each
stakeholder's own priorities and weights, this indicates the
overall satisfaction that the addition of requirement rj would
offer to all stakeholders. The set of requirement satisfactions
that result is denoted by S = s1, s2,..., sn [40].

2) AHP dataset: For the pairwise comparisons of each

criterion in this study, the quantitative data set is used. As a

result, the AHP data set for our requirements generated.

Following the collection of pairwise comparison judgments,

the eigenvector approach is used to determine the respective

weights of the two criteria, effort, and satisfaction. Then, a

square matrix known as the comparison matrix is formed, with

elements cij standing in for the weighting of the criteria effort

(ci) and satisfaction (cj). By dividing each column by its sum,

the matrix is normalised, producing a matrix of normalised

values. To determine the priority vector for each level, the

normalised values in each row are averaged. The consistency

ratio (CR), which assesses whether the judgments line

coherently, is used in a consistency check to ensure consistent

pairwise comparisons. Adjustments are made if the CR

exceeds a predetermined limit, which is commonly set at 0.1.

The priority vectors show the relative weights of the

requirements after the consistency check has been successful.

E. Elbow Method

The elbow method is a heuristic in data science and
machine learning for determining the optimal number of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

20 | P a g e

www.ijacsa.thesai.org

clusters in a dataset. It involves considering a range of potential
cluster numbers and computing the sum of squared distances
between data points and cluster centers. The study applies the
elbow method to the requirements dataset, calculating the
within-cluster sum of squares (WCSS) for varying cluster
numbers and plotting these values.

F. Clusters Formation

In this phase clusters of requirements are formed. It
involves organizing and grouping similar requirements into
clusters using techniques like similarity analysis or domain
categorization. This process enhances manageability and
provides a structured approach for analysis. Five distinct
clustering algorithms will be employed: K-Means,
Agglomerative Hierarchical Clustering, Partitioning Around
Medoids (PAM), Gaussian Mixture Model (GMM), and
BIRCH. These algorithms help extract meaningful patterns and
structures from requirements, aiding in informed decision-
making during the prioritization process.

G. Clusters Evaluation

The evaluation of clusters is crucial for assessing the
quality and validity of data analysis or machine learning
algorithms. Three mechanisms are used: Dunn Index,
Silhouette Index, and Caliński-Harabasz Index, which are
calculated after cluster formation and used to rate them.

1) Dunn index: The Dunn Index is a clustering validation

statistic that unsupervised machine learning researchers use to

rate the accuracy of their clustering findings. It gauges the

separation between clusters, or how far away various clusters

are, in relation to the compactness of clusters, or how near the

data points inside a cluster are to one another. Better

clustering with smaller within-cluster distances and larger

between-cluster distances is indicated by a higher Dunn Index.

Dunn Index = min_intercluster_distance /

max_intracluster_distance

Where:

Min_intercluster_distance: The minimal distance between
any two centroids that belong to separate clusters.

Max_intracluster_distance: The maximum distance
between any two data points within the same cluster.

2) Silhouette index: The Silhouette Index is a tool for

clustering evaluation that assesses how cohesive and well-

separated clusters are. Higher values denote better clustering

quality; the range is -1 to 1. (b(i) - a(i)) / maxa(i), b(i) is the

formula for calculating the silhouette score for a single data

point, where a(i) is the average distance inside the same

cluster and b(i) is the smallest average distance to another

cluster. Greater clustering is suggested by average silhouette

scores that are higher across all data points.

S(i) = (b(i) - a(i)) / max{a(i), b(i)}

Where:

S(i): The silhouette score for data point i.

a(i): The average distance between data points i and all
other data points in the same cluster.

b(i): The shortest average distance between data point i and
all other data points in a distinct cluster.

3) Caliński-Harabasz index: The Calinski-Harabasz

Index, commonly referred to as the Variance Ratio Criterion,

is a clustering evaluation metric used in unsupervised machine

learning to rate the calibre of clusters. It calculates the

difference between the variances within and between clusters.

Better-defined and more distinct clusters are indicated by

higher Calinski-Harabasz Index values.

CH= B/W{(N-K)/(K-1)}

Where:

B: Between-cluster variance, which measures the variance
between different clusters.

W: Within-cluster variance, which measures the variance
within individual clusters.

N: Total number of data points.

K: Number of clusters.

H. Requirements Prioritisation

The MoSCoW approach is used in this study as a useful
tool to prioritise requirements clusters. Requirements clusters
are systematically classified and ranked using MoSCoW based
on their importance and criticality to the project. This will help
in improving efficiency and efficacy of the project planning
and resource allocation and will make sure that the
development efforts are concentrated on the most important
and impactful clusters of needs.

V. METHODOLOGY IMPLEMENTATION

A. Formulation of Problem

1) 20 Requirements Problem: There are twenty

requirements and five stakeholders in this dataset, and it was

drawn from [41]. The level of priority or value assigned by

each stakeholder to each requirement is shown in Table II

along with the development effort connected to each

requirement. The stakeholder weights are offered in the range

of 1 to 5 (Table III). These values might be thought of as

linguistic terms like "without importance" (1), "less

important" (2), "important" (3), "very important" (4), and

"extremely important" (5). They also line up with the relative

importance of each need. There is an estimated effort score

that corresponds to each requirement, ranging from 1 to 10.

TABLE II. 20 REQUIREMENTS PROBLEM

C1 C2 C3 C4 C5 Effort

R1 4 4 5 4 5 1

R2 2 4 3 5 4 4

R3 1 2 3 2 2 2

R4 2 2 3 3 4 3

R5 5 4 4 3 5 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

21 | P a g e

www.ijacsa.thesai.org

R6 5 5 5 4 4 7

R7 2 1 2 2 2 10

R8 4 4 4 4 4 2

R9 4 4 4 2 5 1

R10 4 5 4 3 2 3

R11 2 2 2 5 4 2

R12 3 3 4 2 5 5

R13 4 2 1 3 3 8

R14 2 4 5 2 4 2

R15 4 4 4 4 4 1

R16 4 2 1 3 1 4

R17 4 3 2 5 1 10

R18 1 2 3 4 2 4

R19 3 3 3 3 4 8

R20 2 1 2 2 1 4

TABLE III. CUSTOMERS. WEIGHTS FOR 20 REQ. PROBLEM

Customers' Weights C1 C2 C3 C4 C5

1 4 2 3 4

a) 20 Requirements Problem using Quantitative

Approach: To convert the data into two dimensions to apply

clustering on it, we considered Section 4.4.1. Here:

R = {r1, r2, ……., r20},

E = {1, 4, 2, …….,4},

W = {1, 4, 2, ……., 4}.

This is how ‘S’ (Satisfaction) was calculated for r1.

S = ∑ (Vij * Wi)

S= {(4*1) + (4*4) + (5*2) + (4*3) + (5*4)}

S= 62

So, satisfaction for r1 was calculated to be 62 whereas the
effort is 1. The rest was also calculated similarly, and this
Table IV was generated as a result.

TABLE IV. QUANTITATIVE DATASET FOR 20 REQ. PROBLEM

ID Eff. Sat.

ID Effort Sat.

R1 1 62

R11 2 45

R2 4 55

R12 5 49

R3 2 29

R13 8 35

R4 3 41

R14 2 50

R5 4 58

R15 1 56

R6 7 63

R16 4 27

R7 10 24

R17 10 39

R8 2 56

R18 4 35

R9 1 54

R19 4 46

R10 3 49

R20 4 20

b) 20 Requirements Problem using AHP: This Table V

was created by using the same data set to get the AHP values

for effort and satisfaction.

TABLE V. AHP DATASET FOR 20 REQ. PROBLEM

ID Effort Satisfaction

R1 12.7640176 3.24660865

R2 3.19100441 3.65981339

R3 6.38200881 6.9410254

R4 4.25467254 4.90950577

R5 3.19100441 3.4705127

R6 1.82343109 3.19507518

R7 1.27640176 8.38707236

R8 6.38200881 3.59445958

R9 12.7640176 3.72758771

R10 4.25467254 4.10795381

R11 6.38200881 4.47310526

R12 2.55280353 4.10795381

R13 1.5955022 5.75113533

R14 6.38200881 4.02579473

R15 12.7640176 3.59445958

R16 3.19100441 7.45517543

R17 1.27640176 5.1612753

R18 3.19100441 5.75113533

R19 3.19100441 4.37586384

R20 3.19100441 10.0644868

2) 100 Requirements Problem: There are five

stakeholders in this data set as well, but there are 100

requirements this time and it was obtained from [42].The

difficulty of selecting requirements from a bigger set in the

early timeboxes of establishing true agile software projects led

to the selection of this dataset. Because of this, we now have

100 requirements rather than simply 20. For the development

effort, each requirement has a value that runs from 1 to 20.

The maximum development effort in this case is 20 units, or 4

weeks, which roughly corresponds to the timescale set by

agile approaches (such as Scrum's proposed iteration length of

2 to 4 weeks). Stakeholders rate the significance of criteria on

a scale of 1 to 3. Here, the digits 1-3 stand for (1) not

necessary, (2) preferable, or (3) required [43].

The Effort and Satisfaction for each requirement was
calculated in the similar way as it was calculated for 20
Requirements problem. The Quantitative and AHP datasets for
100 requirements problem is given in Table VI:

TABLE VI. QUANTITATIVE DATASET (LEFT) AND AHP DATASET (RIGHT)

FOR 100 REQ. PROBLEM

ID Effort Satisfaction ID Effort Satisfaction

R1 16 29

R1 0.35245612 0.87906114

R2 19 23

R2 0.29680515 1.10838143

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

22 | P a g e

www.ijacsa.thesai.org

R3 16 18

R3 0.35245612 1.41626516

R4 7 21

R4 0.80561398 1.21394157

R5 19 22

R5 0.29680515 1.15876241

R6 15 20

R6 0.37595319 1.27463865

R7 8 22

R7 0.70491224 1.15876241

R8 10 29

R8 0.56392979 0.87906114

R9 6 27

R9 0.93988298 0.94417678

R10 18 21

R10 0.31329433 1.21394157

R11 15 31

R11 0.37595319 0.82234751

R12 12 33

R12 0.46994149 0.77250827

R13 16 33

R13 0.35245612 0.77250827

R14 20 25

R14 0.28196489 1.01971092

R15 9 25

R15 0.62658865 1.01971092

R16 4 30

R16 1.40982447 0.8497591

R17 16 25

R17 0.35245612 1.01971092

R18 2 28

R18 2.81964894 0.91045618

R19 9 35

R19 0.62658865 0.72836494

R20 3 29

R20 1.87976596 0.87906114

R21 2 27

R21 2.81964894 0.94417678

R22 10 23

R22 0.56392979 1.10838143

R23 4 28

R23 1.40982447 0.91045618

R24 2 29

R24 2.81964894 0.87906114

R25 7 36

R25 0.80561398 0.70813258

R26 15 28

R26 0.37595319 0.91045618

R27 8 30

R27 0.70491224 0.8497591

R28 20 22

R28 0.28196489 1.15876241

R29 9 30

R29 0.62658865 0.8497591

R30 11 32

R30 0.51266344 0.79664915

R31 5 20

R31 1.12785958 1.27463865

R32 1 31

R32 5.63929788 0.82234751

R33 17 24

R33 0.3317234 1.06219887

R34 6 26

R34 0.93988298 0.98049127

R35 2 24

R35 2.81964894 1.06219887

R36 16 23

R36 0.35245612 1.10838143

R37 8 26

R37 0.70491224 0.98049127

R38 12 32

R38 0.46994149 0.79664915

R39 18 26

R39 0.31329433 0.98049127

R40 5 27

R40 1.12785958 0.94417678

R41 6 32

R41 0.93988298 0.79664915

R42 14 30

R42 0.40280699 0.8497591

R43 15 15

R43 0.37595319 1.6995182

R44 20 26

R44 0.28196489 0.98049127

R45 14 29

R45 0.40280699 0.87906114

R46 9 28

R46 0.62658865 0.91045618

R47 16 27

R47 0.35245612 0.94417678

R48 6 21

R48 0.93988298 1.21394157

R49 6 28

R49 0.93988298 0.91045618

R50 6 32

R50 0.93988298 0.79664915

R51 6 34 R51 0.93988298 0.74978744

R52 2 27 R52 2.81964894 0.94417678

R53 17 24 R53 0.3317234 1.06219887

R54 18 30 R54 0.31329433 0.8497591

R55 1 24 R55 5.63929788 1.06219887

R56 3 35 R56 1.87976596 0.72836494

R57 14 35 R57 0.40280699 0.72836494

R58 16 18 R58 0.35245612 1.41626516

R59 18 23 R59 0.31329433 1.10838143

R60 7 26 R60 0.80561398 0.98049127

R61 10 18 R61 0.56392979 1.41626516

R62 7 28 R62 0.80561398 0.91045618

R63 16 29 R63 0.35245612 0.87906114

R64 19 38 R64 0.29680515 0.67086245

R65 17 25 R65 0.3317234 1.01971092

R66 15 22 R66 0.37595319 1.15876241

R67 11 23 R67 0.51266344 1.10838143

R68 8 26 R68 0.70491224 0.98049127

R69 20 34 R69 0.28196489 0.74978744

R70 1 15 R70 5.63929788 1.6995182

R71 5 23 R71 1.12785958 1.10838143

R72 8 32 R72 0.70491224 0.79664915

R73 3 28 R73 1.87976596 0.91045618

R74 15 29 R74 0.37595319 0.87906114

R75 4 21 R75 1.40982447 1.21394157

R76 20 21 R76 0.28196489 1.21394157

R77 10 31 R77 0.56392979 0.82234751

R78 20 39 R78 0.28196489 0.65366084

R79 3 21 R79 1.87976596 1.21394157

R80 20 23 R80 0.28196489 1.10838143

R81 10 22 R81 0.56392979 1.15876241

R82 16 22 R82 0.35245612 1.15876241

R83 19 24 R83 0.29680515 1.06219887

R84 3 25 R84 1.87976596 1.01971092

R85 12 29 R85 0.46994149 0.87906114

R86 16 15 R86 0.35245612 1.6995182

R87 15 28 R87 0.37595319 0.91045618

R88 1 21 R88 5.63929788 1.21394157

R89 6 34 R89 0.93988298 0.74978744

R90 7 32 R90 0.80561398 0.79664915

R91 15 27 R91 0.37595319 0.94417678

R92 18 32 R92 0.31329433 0.79664915

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

23 | P a g e

www.ijacsa.thesai.org

R93 4 27 R93 1.40982447 0.94417678

R94 7 25 R94 0.80561398 1.01971092

R95 2 21 R95 2.81964894 1.21394157

R96 7 24 R96 0.80561398 1.06219887

R97 8 24 R97 0.70491224 1.06219887

R98 7 39 R98 0.80561398 0.65366084

R99 7 18 R99 0.80561398 1.41626516

R100 3 27 R100 1.87976596 0.94417678

B. Determining No. of Clusters

To determine the ideal number of clusters, the elbow
approach was used on data sets from the 20 and 100
Requirements Problem. The ideal number of clusters is
depicted in Fig. 2 and 3.

Fig. 2. Optimum no. of clusters using AHP dataset for 20 req. problem.

Fig. 3. Optimum no. of clusters using AHP Dataset for 100 req. problem.

C. Clusters Formation and Evaluation

The elbow method's findings show that three clusters are
the ideal number for both the 20 and 100 Requirements
Problems. We made 3 and 4 clusters because we are
employing MoSCoW in addition to AHP for requirement
prioritising. This is because MoSCoW has four characteristics.

In the publication [40], quantitative dataset was used to
evaluate three clustering algorithms: K-means, Hierarchical
Clustering, and Partition Around Medoids (PAM). In this
research, we compare the values acquired by the Analytic

Hierarchy Process (AHP) approach to the values of
quantitative dataset. The benefits and drawbacks of various
techniques are better understood through holistic comparison,
which also advances knowledge of efficient clustering
methodologies and their real-world applications.

The graphical depiction of 100 requirements datasets for
Agglomerative Hierarchical Clustering is illustrated in Fig. 4
and 5. This visualization provides a clear representation of the
analyzed data, offering insights into the observed trends and
patterns.

To gain a deeper knowledge of how the proposed technique
interacts with various clustering algorithms, evaluation indices
for both types of data sets, namely Quantitative and AHP, are
also calculated using Gaussian Mixture Models (GMM) and
BIRCH (Fig. 6 and 7).

Fig. 4. Hierarchical clustering for 100 req. problem using quantitative

dataset.

Fig. 5. Hierarchical clustering for 100 req. problem using AHP dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

24 | P a g e

www.ijacsa.thesai.org

Fig. 6. BIRCH clustering for 20 req. problem using quantitative dataset.

Fig. 7. BIRCH clustering for 20 req. problem using AHP dataset.

All in all, five clustering algorithms: K-Means, Partition
Around Medoids, Agglomerative Hierarchical Clustering,
Gaussian Mixture Models, and BIRCH and three evaluation
metrics: the Dunn Index, the Silhouette Index, and the
Calinski-Harabasz Index are used in this research.

The outcomes of each clustering algorithm for cluster
evaluation metrics are provided in the Tables VII-XVI.

1) K-Means

2) PAM

3) Hierarchical

4) GMM

5) BIRCH

TABLE VII. EVALUATION METRICS FOR 20 REQ. PROBLEM

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.209 0.4336

Silhouette 3 0.4666 0.5690

CH 3 22.9273 33.7443

Dunn 4 0.2527 0.2417

Silhouette 4 0.4176 0.4863

CH 4 24.3832 34.1044

TABLE VIII. EVALUATION METRICS FOR 100 REQ. PROBLEM

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.0548 0.2364

Silhouette 3 0.4283 0.4632

CH 3 89.5132 89.7174

Dunn 4 0.0783 0.2377

Silhouette 4 0.3993 0.4766

CH 4 90.9959 96.8018

TABLE IX. EVALUATION METRICS FOR 20 REQ. PROBLEM

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.2607 2.7100

Silhouette 3 0.4843 0.5208

CH 3 22.6144 31.1727

Dunn 4 0.3151 1.5103

Silhouette 4 0.4116 0.4374

CH 4 24.0329 31.2174

TABLE X. EVALUATION METRICS FOR 100 REQ. PROBLEM

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.0831 0.3396

Silhouette 3 0.4308 0.3943

CH 3 89.5132 46.9101

Dunn 4 0.0696 0.3024

Silhouette 4 0.3993 0.3998

CH 4 88.7641 64.6714

TABLE XI. EVALUATION METRICS FOR 20 REQ. PROBLEM

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.2576 2.9804

Silhouette 3 0.4549 0.5690

CH 3 18.6832 33.7443

Dunn 4 0.2482 2.7427

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

25 | P a g e

www.ijacsa.thesai.org

Silhouette 4 0.3561 0.4863

CH 4 18.7909 34.1044

TABLE XII. EVALUATION METRICS FOR 100 REQ. PROBLEM

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.1096 0.3472

Silhouette 3 0.4278 0.4327

CH 3 88.0933 82.8722

Dunn 4 0.1096 0.2518

Silhouette 4 0.3964 0.4576

CH 4 82.5902 95.1834

TABLE XIII. EVALUATION METRICS FOR 20 REQ. PROBLEM

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.2739 0.3723

Silhouette 3 0.4568 0.5690

CH 3 22.5821 33.744

Dunn 4 0.1796 0.310

Silhouette 4 0.3839 0.4905

CH 4 22.0866 33.633

TABLE XIV. EVALUATION METRICS FOR 100 REQ. PROBLEM

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.7259 0.1706

Silhouette 3 0.4285 0.0743

CH 3 90.674 26.5032

Dunn 4 0.5557 0.077

Silhouette 4 0.3721 0.1082

CH 4 90.7001 36.2847

TABLE XV. EVALUATION METRICS FOR 20 REQ. PROBLEM

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 12.9526 7.249

Silhouette 3 0.4672 0.5690

CH 3 18.9442 33.744

TABLE XVI. EVALUATION METRICS FOR 100 REQ. PROBLEM

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 8.9139 0.665

Silhouette 3 0.4384 0.4053

CH 3 96.1607 79.1779

D. Prioritisation of Requirements

The MoSCoW method is used to prioritize requirements
clusters. Clusters with higher satisfaction and minimal effort
were given the highest priority and are designated as "MUST"
fulfillments. Clusters with higher satisfaction and minimal
effort are designated as "SHOULD" requirements. Clusters in
the "COULD" category are considered for enhancement due to
their higher effort cost. Clusters in the "WON'T" category are
intentionally deferred due to higher effort requirements. This
dynamic prioritization methodology offers a nuanced
perspective for optimizing software requirements in line with
project goals.

VI. DISCUSSION

Our study compared the Analytic Hierarchy Process (AHP)
with quantitative dataset approaches in requirement
prioritization and clustering, highlighting performance
differences across multiple evaluations. Each comparison table
illustrates instances where either AHP or the quantitative
dataset method performed better, with the superior values
highlighted for clarity Table (VII-XVI). Out of 54 evaluations,
AHP showed superior performance in 39 cases, emphasizing
variability between methods.

The effectiveness of AHP in generating compact and
meaningful clusters underscores its potential for handling
complex datasets in software engineering. By leveraging a
structured decision-making approach that incorporates both
qualitative and quantitative judgments, AHP successfully
groups requirements with closer features or similarities
together more cohesively. This results in coherent and relevant
requirement groupings, which in turn facilitates improved
decision-making and prioritization within software
development processes. AHP's ability to create compact
clusters highlights its utility in enhancing the efficiency and
effectiveness of software engineering practices.

VII. RESULTS

The Analytic Hierarchy Process (AHP) and the quantitative
datasets were compared 54 times in total using evaluation
metrics. The purpose of these comparisons was to assess the
efficiency and performance of the AHP approach in
comparison to the quantitative data representation. 39 of these
54 comparisons revealed that the AHP technique performed
better than other approaches. This indicates that, in contrast to
the quantitative data technique, AHP typically produced more
favorable outcomes or results.

This finding's relevance stems from the AHP approach's
consistent propensity to outperform the quantitative data
representation over a sizable majority of the comparisons. This
series of outcomes highlights the possible advantages of
applying the AHP approach to cluster or analyse the provided
dataset, suggesting that it might be a more efficient and reliable
method for producing valuable insights or groups.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

26 | P a g e

www.ijacsa.thesai.org

VIII. CONCLUSION AND FUTURE WORK

The importance of using data mining techniques to
efficiently prioritise requirements in software engineering is
shown by this study. It also emphasises the extraordinary
excellence of the Analytic Hierarchy Process (AHP) in the
context of software engineering for prioritising software
requirements. Based on a detailed analysis of five clustering
algorithms and three cluster assessment indices, our results
consistently demonstrate that AHP outperforms traditional
quantitative data representations in the majority of the 54
comparisons conducted. Furthermore, the combination of AHP
with the MoSCoW needs prioritisation framework not only led
to better results but also enhanced resource allocation, flexible
planning, and increased stakeholder satisfaction. This study
recommends using AHP, data mining techniques, and the
MoSCoW framework as the suggested methodology for
prospective projects.

Since the data sets were generated manually with the help
of stakeholders in this research. In the future, we can use
machine learning algorithms. These algorithms can be trained
on historical project data to learn the underlying patterns and
characteristics of similar projects. By improving the overall
efficiency of requirements prioritisation techniques, this
integration could pave the way for more sophisticated and
context-sensitive approaches to managing software
requirements.

REFERENCES

[1] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin, “A systematic
literature review of software requirements prioritization research,” Inf
Softw Technol, vol. 56, no. 6, pp. 568–585, Jun. 2014, doi:
10.1016/j.infsof.2014.02.001.

[2] X. Franch and G. Ruhe, “Software release planning,” in Proceedings of
the 38th International Conference on Software Engineering Companion,
New York, NY, USA: ACM, May 2016, pp. 894–895. doi:
10.1145/2889160.2891051.

[3] M. Azzolini and L. I. Passoni, “Prioritization of Software Requirements:
a Cognitive Approach,” in Procedings of the Fourth International
Workshop on Knowledge Discovery, Knowledge Management and
Decision Support, Paris, France: Atlantis Press, 2013. doi:
10.2991/.2013.13.

[4] I. Olaronke, I. Rhoda, and G. Ishaya, “An Appraisal of Software
Requirement Prioritization Techniques,” Asian Journal of Research in
Computer Science, pp. 1–16, Apr. 2018, doi:
10.9734/ajrcos/2018/v1i124717.

[5] K. El Emam and A. G. Koru, “A Replicated Survey of IT Software
Project Failures,” IEEE Softw, vol. 25, no. 5, pp. 84–90, Sep. 2008, doi:
10.1109/MS.2008.107.

[6] A. Ahmad, M. Goransson, and A. Shahzad, “Limitations of the Analytic
Hierarchy Process Technique with Respect to Geographically
Distributed Stakeholders,” World Acad Sci Eng Technol, pp. 111–116,
2010.

[7] P. Govender and V. Sivakumar, “Application of k-means and
hierarchical clustering techniques for analysis of air pollution: A review
(1980–2019),” Atmos Pollut Res, vol. 11, no. 1, pp. 40–56, Jan. 2020,
doi: 10.1016/j.apr.2019.09.009.

[8] M. Kassab and N. Kilicay-Ergin, “Applying analytical hierarchy process
to system quality requirements prioritization,” Innov Syst Softw Eng,
vol. 11, no. 4, pp. 303–312, Dec. 2015, doi: 10.1007/s11334-015-0260-
8.

[9] J. Ali Khan, I. Ur Rehman, Y. Hayat Khan, I. Javed Khan, and S.
Rashid, “Comparison of Requirement Prioritization Techniques to Find
Best Prioritization Technique,” International Journal of Modern

Education and Computer Science, vol. 7, no. 11, pp. 53–59, Nov. 2015,
doi: 10.5815/ijmecs.2015.11.06.

[10] J. A. Khan, Izaz-ur-Rehman, S. P. Khan, I. Qasim, and Y. H. Khan, “An
Evaluation of Requirement Prioritization Techniques with ANP,”
International Journal of Advanced Computer Science and Applications,
vol. 7, no. 7, 2016.

[11] S. Parthasarathy and M. Daneva, “An approach to estimation of degree
of customization for ERP projects using prioritized requirements,”
Journal of Systems and Software, vol. 117, pp. 471–487, Jul. 2016, doi:
10.1016/j.jss.2016.04.006.

[12] K. S. Ahmad, N. Ahmad, H. Tahir, and S. Khan, “Fuzzy_MoSCoW: A
fuzzy based MoSCoW method for the prioritization of software
requirements,” in 2017 International Conference on Intelligent
Computing, Instrumentation and Control Technologies (ICICICT),
IEEE, Jul. 2017, pp. 433–437. doi: 10.1109/ICICICT1.2017.8342602.

[13] M. S. Jahan, F. Azam, M. W. Anwar, A. Amjad, and K. Ayub, “A Novel
Approach for Software Requirement Prioritization,” in 2019 7th
International Conference in Software Engineering Research and
Innovation (CONISOFT), IEEE, Oct. 2019, pp. 1–7. doi:
10.1109/CONISOFT.2019.00012.

[14] M. Yaseen, A. Mustapha, and N. Ibrahim, “Prioritization of Software
Functional Requirements from Developers Perspective,” International
Journal of Advanced Computer Science and Applications, vol. 11, no. 9,
2020.

[15] N. Mohamed, S. Mazen, and W. Helmy, “E-AHP: An Enhanced
Analytical Hierarchy Process Algorithm for Priotrizing Large Software
Requirements Numbers,” International Journal of Advanced Computer
Science and Applications, vol. 13, no. 7, 2022, doi:
10.14569/IJACSA.2022.0130725.

[16] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, and A. Song, “Efficient
agglomerative hierarchical clustering,” Expert Syst Appl, vol. 42, no. 5,
pp. 2785–2797, Apr. 2015, doi: 10.1016/j.eswa.2014.09.054.

[17] F. Fouedjio, “A hierarchical clustering method for multivariate
geostatistical data,” Spat Stat, vol. 18, pp. 333–351, Nov. 2016, doi:
10.1016/j.spasta.2016.07.003.

[18] Z. Li, G. Wang, and G. He, “Milling tool wear state recognition based
on partitioning around medoids (PAM) clustering,” The International
Journal of Advanced Manufacturing Technology, vol. 88, no. 5–8, pp.
1203–1213, Feb. 2017, doi: 10.1007/s00170-016-8848-1.

[19] G. Pitolli, L. Aniello, G. Laurenza, L. Querzoni, and R. Baldoni,
“Malware family identification with BIRCH clustering,” in 2017
International Carnahan Conference on Security Technology (ICCST),
IEEE, Oct. 2017, pp. 1–6. doi: 10.1109/CCST.2017.8167802.

[20] K. P. Sinaga and M.-S. Yang, “Unsupervised K-Means Clustering
Algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi:
10.1109/ACCESS.2020.2988796.

[21] M. Faizan, M. F., S. Ismail, and S. Sultan, “Applications of Clustering
Techniques in Data Mining: A Comparative Study,” International
Journal of Advanced Computer Science and Applications, vol. 11, no.
12, 2020, doi: 10.14569/IJACSA.2020.0111218.

[22] K. B, “A Comparative Study on K-Means Clustering and Agglomerative
Hierarchical Clustering,” International Journal of Emerging Trends in
Engineering Research, vol. 8, no. 5, pp. 1600–1604, May 2020, doi:
10.30534/ijeter/2020/20852020.

[23] Y. Zhang et al., “Gaussian Mixture Model Clustering with Incomplete
Data,” ACM Transactions on Multimedia Computing, Communications,
and Applications, vol. 17, no. 1s, pp. 1–14, Jan. 2021, doi:
10.1145/3408318.

[24] V. C. Pezoulas, N. S. Tachos, G. Gkois, I. Olivotto, F. Barlocco, and D.
I. Fotiadis, “Bayesian Inference-Based Gaussian Mixture Models With
Optimal Components Estimation Towards Large-Scale Synthetic Data
Generation for In Silico Clinical Trials,” IEEE Open J Eng Med Biol,
vol. 3, pp. 108–114, 2022, doi: 10.1109/OJEMB.2022.3181796.

[25] H. Zhao, “Design and Implementation of an Improved K-Means
Clustering Algorithm,” Mobile Information Systems, vol. 2022, pp. 1–
10, Sep. 2022, doi: 10.1155/2022/6041484.

[26] C. M. Weber, D. Ray, A. A. Valverde, J. A. Clark, and K. S. Sharma,
“Gaussian mixture model clustering algorithms for the analysis of high-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

27 | P a g e

www.ijacsa.thesai.org

precision mass measurements,” Nucl Instrum Methods Phys Res A, vol.
1027, p. 166299, Mar. 2022, doi: 10.1016/j.nima.2021.166299.

[27] B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm, “An
Industrial Case Study on Distributed Prioritisation in Market-Driven
Requirements Engineering for Packaged Software,” Requir Eng, vol. 6,
no. 1, pp. 51–62, Feb. 2001, doi: 10.1007/s007660170015.

[28] Bruce L. Golden, Edward A. Wasil, and Patrick T. Harker, Eds., “The
analytic hierarchy process.” Applications and Studies. Heidelberg,
1989.

[29] S. Hatton, “Early Prioritisation of Goals,” in Advances in Conceptual
Modeling – Foundations and Applications, Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 235–244. doi: 10.1007/978-3-540-76292-8_29.

[30] A. Hudaib, R. Masadeh, M. H. Qasem, and A. Alzaqebah,
“Requirements Prioritization Techniques Comparison,” Mod Appl Sci,
vol. 12, no. 2, p. 62, Jan. 2018, doi: 10.5539/mas.v12n2p62.

[31] Pradeep Rai and Shubha Singh, “A Survey of Clustering Techniques,”
Int J Comput Appl, vol. 7, Oct. 2010.

[32] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means
Clustering Algorithm,” Appl Stat, vol. 28, no. 1, p. 100, 1979, doi:
10.2307/2346830.

[33] K. P. Sinaga and M.-S. Yang, “Unsupervised K-Means Clustering
Algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi:
10.1109/ACCESS.2020.2988796.

[34] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern Recognit, vol. 36, no. 2, pp. 451–461, Feb. 2003,
doi: 10.1016/S0031-3203(02)00060-2.

[35] L Kaufman and PJ Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons., 2009.

[36] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, and A. Song, “Efficient
agglomerative hierarchical clustering,” Expert Syst Appl, vol. 42, no. 5,
pp. 2785–2797, Apr. 2015, doi: 10.1016/j.eswa.2014.09.054.

[37] Y. Zhang et al., “Gaussian Mixture Model Clustering with Incomplete
Data,” ACM Transactions on Multimedia Computing, Communications,
and Applications, vol. 17, no. 1s, pp. 1–14, Jan. 2021, doi:
10.1145/3408318.

[38] K. Peng, L. Zheng, X. Xu, T. Lin, and V. C. M. Leung, “Balanced
Iterative Reducing and Clustering Using Hierarchies with Principal
Component Analysis (PBirch) for Intrusion Detection over Big Data in
Mobile Cloud Environment,” 2018, pp. 166–177. doi: 10.1007/978-3-
030-05345-1_14.

[39] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH,” ACM SIGMOD
Record, vol. 25, no. 2, pp. 103–114, Jun. 1996, doi:
10.1145/235968.233324.

[40] J. del Sagrado and I. M. del Águila, “Assisted requirements selection by
clustering,” Requir Eng, vol. 26, no. 2, pp. 167–184, Jun. 2021, doi:
10.1007/s00766-020-00341-1.

[41] D. Greer and G. Ruhe, “Software release planning: an evolutionary and
iterative approach,” Inf Softw Technol, vol. 46, no. 4, pp. 243–253, Mar.
2004, doi: 10.1016/j.infsof.2003.07.002.

[42] J. del Sagrado, I. M. del Águila, and F. J. Orellana, “Multi-objective ant
colony optimization for requirements selection,” Empir Softw Eng, vol.
20, no. 3, pp. 577–610, Jun. 2015, doi: 10.1007/s10664-013-9287-3.

[43] E. Simmons, “Requirements triage: what can we learn from a ‘medical’
approach?,” IEEE Softw, vol. 21, no. 4, pp. 86–88, Jul. 2004, doi:
10.1109/MS.2004.25.

