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Abstract—This research investigates the fusion of the Analytic 

Hierarchy Process (AHP) with clustering techniques to enhance 

project outcomes. Two quantitative datasets comprising 20 and 

100 software requirements are analyzed. A novel AHP dataset is 

developed to impartially evaluate clustering strategies. Five 

clustering algorithms (K-means, Hierarchical, PAM, GMM, 

BIRCH) are employed, providing diverse analytical tools. Cluster 

quality and coherence are assessed using evaluation criteria 

including the Dunn Index, Silhouette Index, and Calinski 

Harabaz Index. The MoSCoW technique organizes requirements 

into clusters, prioritizing critical requirements. This strategy 

combines strategic prioritization with quantitative analysis, 

facilitating objective evaluation of clustering results and resource 

allocation based on requirement priority. The study 

demonstrates how clustering can prioritize software 

requirements and integrate advanced data analysis into project 

management, showcasing the transformative potential of 

converging AHP with clustering in software engineering. 
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I. INTRODUCTION 

Software engineering is built on several pillars and involves 
more than just programming. It contains every piece of 
supporting information, design principle, or idea required to 
make these programmes function as intended. Software 
requirements prioritisation (SRP) is one of the design 
principles that enable software that is being considered for 
development to function as intended [1].  

A subfield of requirements engineering called requirements 
prioritisation assists in selecting requirements based on the 
interests of stakeholders. Giving each requirement a priority to 
decide the order in which they should be implemented is a step 
in the software engineering process. A requirement engineering 
decision process is used to decide which features or 
requirements will be developed in the upcoming release while 
considering technical, resource, risk, and budget constraints 
[2]. Choosing the order in which requirements should be 
addressed is a crucial step in the software development 
process. This process aids in managing the priority and 
urgency of software requirements while considering 
stakeholders’ interest, cost, resource, and time issues. 
Numerous academics have provided definitions for the ranking 

of software demands in order of importance. Software 
requirement prioritisation is a process that determines the order 
in which needs will be implemented [3]. The process of 
selecting the best set of requirements from several conflicting 
and competing expectations gathered from various 
stakeholders participating in a software development project, 
according to Karlsson and Ryan [4]. 

The success or failure of a project is largely dependent on 
the software requirements specification in general and the 
prioritisation of software requirements in particular. Almost 
80% of software projects fail to achieve the Standish Group's 
definitions of success based on time, cost, and scope criteria 
each year [5]. The failure is often due to shifting requirements, 
as requirements are often documented and rarely changed. This 
suggests that software projects fail due to their inability to 
evolve efficiently to match shifting requirements or 
accommodate new ones. This highlights the importance of 
release management and the need for proper decision-making 
about the functionality of a software product's release. A well-
selected release will minimize problems with shifting 
requirements in future releases.  

As a remedy to this issue, many requirements prioritisation 
techniques have been put forth. These techniques aim to reduce 
the length and cost of software development projects by 
supporting developers in identifying the most important and 
urgent requirements. Each method has limitations and makes 
both explicit and implicit assumptions about the project context 
during requirements prioritisation [6]. These presumptions 
must be considered while experimentally assessing a 
requirement prioritisation approach for usefulness, utility, 
application, or effectiveness.  

One technique for ranking software requirements is to use 
clustering techniques. Similar observations, data points, or 
feature vectors can be clustered together based on shared 
characteristics using the clustering technique [7]. Clustering 
algorithms are used in the prioritising process to group and 
categorise requirements based on similarity or relatedness. This 
enables effective requirements prioritisation based on the 
characteristics of each cluster and the discovery of patterns and 
relationships between them. Clustering algorithms can assist in 
managing the complexity of prioritising various requirements 
by organising requirements into meaningful clusters that can 
then be prioritised more successfully. 
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This study thoroughly explores an innovative and 
promising method for requirement prioritisation that combines 
the Analytic Hierarchy Process (AHP) and clustering 
techniques. With the use of the data mining approach known as 
clustering, it may be possible to group together requirements 
that are similar, making it easier to handle them and improving 
the decision-making process. AHP, on the other hand, is a 
structured method for making decisions based on several 
factors and enables the creation of priorities based on both 
qualitative and quantitative judgments. 

As we seek to assess the accuracy of quantitative records, it 
is crucial to assign requirements the proper level of importance 
to determine the core set of requirements. To do this, the 
MoSCoW technique, a tried-and-true framework for 
prioritising requirements, is used that divides each into Must-
haves, Should-haves, Could-haves, and Won't-haves categories 
based on how important and consequential they are. A robust 
evaluation framework is also developed using metrics like the 
Dunn Index, Silhouette Index, and Calinski Harabaz Index. 
These metrics provide quantitative insights into the quality and 
cohesion of clusters, aiding decision-making processes.  

Let’s suppose a software development team is tasked with 
prioritizing features for an e-commerce platform using 
clustering techniques. They assign priorities within each cluster 
based on business impact and technical complexity. For 
example, they prioritize product search functionality (Cluster 
A) and payment processing (Cluster B) based on their 
significance for user experience and revenue generation. This 
approach streamlines decision-making, ensuring high-priority 
features align with business goals and user needs, ultimately 
optimizing the software development process. 

Our overarching objective in this research is to evaluate the 
results of combining clustering methods with the Analytic 
Hierarchy Process (AHP). Our view of this integration's 
potential impact will be greatly influenced by the outcomes of 
this integration, which are expected to provide a distinctive 
perspective on requirement prioritisation and project 
management. In keeping with this goal, we have developed two 
key research questions that will direct our empirical studies and 
provide the information required to make well-informed 
decisions. 

RQ1: Is a semi-automated approach to SRP processes 
possible with the incorporation of clustering techniques? 

RQ2: Does the fusion of AHP and clustering generate 
better results? 

The remainder of the paper is structured as follows: It 
commences with the state of the art for clustering algorithms 
and prioritisation techniques in Section II. Following this, 
Section III gives an overview of established techniques for 
clustering and requirements prioritisation. In Section IV, we 
elaborate on the methodology proposed for clustering 
requirements using AHP including how to determine the 
number of clusters, evaluate clusters, and associate MoSCoW 
categories with them. Section V presents and analyzes the 
results of an effectiveness study conducted on two different 
datasets. Section VI is dedicated to addressing the effectiveness 
of the proposed method. Lastly, Section VII presents the 

Results. Section VIII encapsulates the conclusions drawn from 
the research. 

II. LITRUTURE REVIEW 

Table I extensively evaluates several works on algorithms 
for clustering and requirements prioritisation. Notably, a wide 
range of techniques were investigated within the state of the 
art, including Binary Search Tree, Analytic Network Process, 
Spanning Tree, Numerical Analysis, Bubble Sort, MoSCoW, 
and Analytical Hierarchical Process. Remarkably, the 
Analytical Hierarchical Process (AHP) was the method of 
choice among researchers due to its constant production of 
superior results. The section also discusses several clustering 
techniques, such as K-Means, Partition Around Medoids, 
BIRCH, Agglomerative Hierarchical Clustering, and Gaussian 
Mixture Model (GMM). This review of the literature provides 
an overview of the field and paves the way for the creation of 
an original and useful framework, laying the groundwork for 
succeeding research phases. 

TABLE I.  LITERATURE REVIEW 

Year Title 
Techniques 

Used 
Results Ref. 

2015 

Applying the 

analytical hierarchy 

process to system 
quality requirements 

prioritisation 

AHP 

The AHP 
technique 

effectively 

removes 
discrepancies 

between 

stakeholders’ 
interests and 

the business 

goals. 

[8] 

2015 

Comparison of 

Requirement 
Prioritisation 

Techniques to Find 

the Best Prioritisation 
Technique 

binary search 

tree, AHP, 

hierarchy AHP, 

spanning tree 

matrix, priority 

group/Numerical 
Analysis, bubble 

sort, MoSoW, 

simple ranking, 
and Planning 

Game 

 [9] 

2016 

An Evaluation of 

Requirement 

Prioritisation 
Techniques with 

ANP 

ANP, binary 
search tree, 

AHP, hierarchy 

AHP, spanning 
tree matrix, 

priority group 

and bubble sort 

AHP is the 
best 

requirements 

prioritisation 
technique 

amongst all 

the 
requirements 

prioritisation 

techniques 

[10] 

2016 

An approach to the 

estimation of the 

degree of 
customization for 

ERP projects using 

prioritised 
requirements 

Framework 

using AHP 

AHP 

framework 

gave better 
results 

[11] 

2017 

Fuzzy_MoSCoW: A 

fuzzy based 
MoSCoW method for 

the prioritisation of 

software 
requirements 

Fuzzy MoSCoW 

ANP is the 

best 
technique 

among the 

seven 
techniques, 

[12] 
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Year Title 
Techniques 

Used 
Results Ref. 

though it 

consumes 

time 

2020 

A Novel Approach 

for Software 

Requirement 
Prioritisation 

MAHP, a 

combination of 

AHP and 
MoSCoW 

 [13] 

2020 

Prioritisation of 

Software Functional 
Requirements from 

Developers' 

Perspective 

Spanning Tree 

and AHP 

AHP 

framework 

gave better 
results 

[14] 

2022 

E-AHP: An 

Enhanced Analytical 

Hierarchy Process 
Algorithm for 

Prioritising Large 

Software 
Requirements 

Numbers 

Enhanced AHP 

E-AHP gives 
better results 

for large 

projects 

[15] 

2015 

Efficient 

agglomerative 

hierarchical 
clustering 

Efficient 

agglomerative 

hierarchical 
clustering 

Experimental 
results show 

consistent 

performance 
across various 

settings, 

proving 
efficient AHP 

to be reliable. 

[16] 

2016 

A hierarchical 

clustering method for 

multivariate 
geostatistical data 

Aglomerative 
hierarchical 

clustering 

Proposed 
clustering 

method yields 

satisfactory 
results 

compared to 

other 
geostatistical 

methods. 

[17] 

2017 

Milling tool wear 
state recognition 

based on partitioning 

around medoids 
(PAM) clustering 

PAM 

PAM 

outperforms 

k-means and 

fuzzy c-
means in Ti-

6Al-4V alloy 

end milling 
experiments. 

[18] 

2017 

Malware family 

identification with 
BIRCH clustering 

BIRCH 

BIRCH 

excels in 

malware 
family 

identification 
with high 

accuracy and 

low clustering 
time. 

[19] 

2020 

Unsupervised K-

Means Clustering 

Algorithm 

Unsupervised K-
Means 

The U-k-

means 

algorithm is 
robust to data 

structure and 

performs 
better than 

existing 
algorithms. 

[20] 

2020 

Applications of 
Clustering 

Techniques in Data 

Mining: A 
Comparative Study 

K-Means, 

Hierarchical 

Clustering, DB 
Scan, OPTICS, 

Density-Based 

Clustering, EM 

The paper 

emphasises 

the value of 
K-means 

clustering in 

consumer 

[21] 

Year Title 
Techniques 

Used 
Results Ref. 

Algorithm data analysis 

and business 

decision-
making 

2020 

A Comparative Study 

on K-Means 
Clustering and 

Agglomerative 

Hierarchical 
Clustering 

K-Means and 

Agglomerative 
Hierarchy 

K-means 

performs 
faster for 

large datasets 

and 
agglomerative 

hierarchical is 

better for 
smaller ones. 

[22] 

2021 

Gaussian Mixture 

Model Clustering 
with Incomplete Data 

GMM 

Experiments 

validate the 
effectiveness 

of the 

proposed 
algorithm. 

[23] 

2022 

Bayesian Inference-

Based Gaussian 
Mixture Models with 

Optimal Components 

Estimation Towards 
Large-Scale 

Synthetic Data 

Generation for In 
Silico Clinical Trials 

BGMM-OCE 

BGMM-OCE 

outperforms 
other 

synthetic data 

generators in 
terms of 

computational 

efficiency and 
unbiasedness 

[24] 

2022 

Design and 
Implementation of an 

Improved K-Means 

Clustering Algorithm 

Improved K-

Means 

Enhanced 

algorithm 
works better 

than 

conventional 
K-Means. 

[25] 

2022 

Gaussian mixture 

model clustering 
algorithms for the 

analysis of high-

precision mass 
measurements 

GMM 

Results from 

GMMs were 
closely 

congruent 

with values 

that had 

previously 

been 
published. 

[26] 

A. Research Gap 

The limited investigation of the Analytical Hierarchy 
Process (AHP) as a technique for clustering requirements in the 
context of planning a project's next release is the area of 
research that will be addressed in this research. Although most 
of the literature now in existence focuses on the use of AHP in 
requirements prioritisation and decision-making, there is a 
striking paucity of studies that explore its potential utility in 
grouping or clustering requirements to speed up the release 
planning process. In the context of release planning, AHP in 
integration with clustering can be used to enhance how 
requirements are organised, classified, and prioritised. This will 
ultimately result in more effective and efficient project 
management. 

III. TECHNIQUES USED IN THE STUDY 

A. Requirements Prioritisation Techniques 

Software engineering professionals utilise a collection of 
methodologies called software requirements prioritisation 
techniques to rank the importance or priority of various 
software project requirements. Because not all requirements 
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can be addressed at the same time during software 
development due to restricted resources (such as time and 
money), prioritising requirements is essential. To ensure the 
successful delivery of a software product, it is crucial to 
identify and concentrate on the most important and significant 
needs. The two techniques that we will be using in this study 
are AHP and MoSCoW. 

1) Analytical hierarchical process: The Analytical 

Hierarchy Process (AHP) is a systematic decision-making 

technique [27] proposed by Thomas L. Saaty in the 1970s. It 

was developed for complex decision-making so that the 

decision-maker could set priorities and get to the best option 

possible [28]. AHP starts by modeling the decision issue as a 

hierarchical structure and breaks it into three parts: a goal or 

aim, criteria that help achieve the goal, and alternatives or 

possibilities that need to be examined. In the next step, experts 

or decision-makers are requested to compare the criteria and 

options at each level of the hierarchy in pairs. They utilise a 

scale to indicate the relative importance of things, often 

ranging from 1 (equal importance) to 9 (much more essential). 

Then a consistency check is done to make sure the 

comparisons are reliable. To determine if decision-makers 

judgments are consistent, the AHP technique uses 

mathematical calculations. It may be necessary for decision-

makers to reevaluate their conclusions if contradictions are 

found. 
AHP uses pairwise comparison data to determine the 

relative weights or priorities of the criteria and alternatives. 
These weights reflect the preference for each choice relative to 
the criteria and the significance of each criterion in reaching 
the overall aim. The scores of the options for each criterion are 
then combined using the estimated weights. Depending on the 
decision context, different aggregation techniques, such as 
weighted sum or weighted average, might be used. To rank and 
evaluate the options based on their overall desirability or 
performance in relation to the goal, AHP aggregates the 
aggregated scores. Lastly, decision-makers can use the 
prioritised rankings and scores to make decisions. Based on the 
established criteria and their relative relevance, AHP offers an 
organised and clear way to assess and choose the best 
alternative. 

2) MoSCoW: The Dynamic Software Development 

Method (DSDM) provides the foundation for the MoSCoW 

method [29]. It is a common strategy for prioritising 

requirements. As a matter of fact, it is one of the easiest 

techniques [30]. The acronym stands for must have, should 

have, could have, and won't have. The importance or priority 

of a certain feature within a project is represented by each 

category. The core project scope is made up of must-haves, 

which are important and non-negotiable components 

necessary for project success. Should-haves are crucial 

characteristics that greatly enhance the value of the project 

and ought to be applied whenever practical. Could-haves offer 

flexibility for prospective improvements because they are 

desired but not necessary. To manage scope and avoid feature 

creep, won't-haves are expressly left out of the current phase 

or project. MoSCoW supports resource allocation and project 

planning by assisting project teams and stakeholders in 

prioritising requirements, ensuring that critical components 

are addressed first while providing clarity on what may be 

postponed or excluded. 

B. Clustering Algorithms 

The need to find knowledge in multidimensional data is 
growing since massive volumes of data are being continuously 
collected today. One of the crucial steps in mining or extracting 
massive information is data miming. Clustering is the most 
intriguing area of data mining, which seeks to identify 
underlying patterns in data and identify some useful subgroups 
for additional investigation. Each group, or cluster, is made up 
of things that are dissimilar from those in other groups yet like 
one another [31]. 

A total of five clustering algorithms have been used in this 
paper and each algorithm is briefly discussed in this section. 

1) K-Means: In machine learning and data mining, the 

clustering algorithm K-Means is very famous and frequently 

employed [32]. It requires the number of clusters to be 

specified prior to the operation [33]. It seeks to divide a given 

dataset into the specified number of clusters (K) according to 

how similar the data points are to one another to maximise 

certain clustering criteria. K-Means is an iterative technique 

that minimises the sum of squared distances between data 

points and the centroids of each cluster to give results. The k-

means algorithm is a well-liked clustering technique that 

minimises clustering error [34]. 

2) Partition Around Medoids (PAM): The PAM method 

partitions a distance matrix into a predetermined number of 

clusters [35]. The goal of PAM is to divide a dataset into a 

predetermined number of clusters by choosing actual data 

points, known as medoids, as representatives of the clusters. 

PAM is meant to work with dissimilarity or distance matrices. 

Like centroids, medoids are chosen from the actual data 

points, which makes PAM more resistant to noise and outliers. 

3) Agglomerative hierarchical clustering: The process of 

clustering data points into a hierarchical structure of clusters is 

called agglomerative hierarchical clustering. Due to the 

exponential rise of real-world data, hierarchical clustering is 

crucial for data analytics [36]. In this type of clustering, each 

item at first represents a separate cluster. The appropriate 

cluster structure is then created by repeatedly merging clusters 

until all data points are members of a single cluster, or until a 

stopping requirement is satisfied. A dendrogram, which is a 

tree-like structure created because of this procedure, shows the 

clustering hierarchy visually. 

4) Gaussian Mixture Models (GMM): Gaussian Mixture 

Models (GMMs) are probabilistic models used for modelling 

complicated data distributions in statistical analysis and 

machine learning. Much research has been done on it due to 

its usefulness and efficiency [37].  They presume that a variety 

of Gaussian (normal) distributions, each with its mean and 

covariance, were combined to produce the data. These 
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parameters are intended to be learned, and GMMs estimate the 

likelihood that data points will belong to each Gaussian 

component. They are frequently used for tasks like clustering, 

density estimation, and data generation. 

5) BIRCH: Balanced Iterative Reducing and Clustering 

Using Hierarchies is an effective hierarchical clustering 

algorithm made for grouping huge datasets. Its key 

characteristic is to employ low memory resources for high-

quality clustering of large-scale data datasets and to only scan 

datasets once to reduce I/O overhead [38]. A comparable B + 

tree structure known as a Clustering Feature Tree (CF Tree) is 

used by Birch to perform clustering [39]. 

IV. PROPOSED METHODOLOGY 

 
Fig. 1. Proposed methodology. 

This study presents a method for prioritizing requirements 
for the next release using requirements prioritisation methods. 
It considers the effort required for implementing a requirement 
and its satisfaction with stakeholders. Clustering algorithms are 
applied to cluster requirements, and the technique is used to 
extract a group of requirements for the next release. The 
validity of clusters is evaluated. In the end MoSCoW is applied 
to assign importance to the clusters. The Fig. 1 provides a 
bird's eye view of the process. 

A. Requirements Elicitation 

Requirement elicitation is a crucial step in requirement 
engineering, gathering stakeholders' needs and expectations for 
a software project through discussions, interviews, and 
surveys, ensuring comprehensive documented requirements. 

B. Requirements Analysis 

Requirements Analysis involves a thorough examination of 
requirements to eliminate ambiguity, address inconsistencies, 
and evaluate feasibility. It aims to create a refined 
representation of the software's functionalities. 

C. Stakeholders’ Input 

Stakeholders actively contribute to the decision-making 
process by offering critical input on two important factors: the 
amount of work necessary to accomplish the project and the 
expected degree of satisfaction. Their insights cover both effort 
(resource allocation, time commitments, and potential 
obstacles) and satisfaction (alignment with organisational goals 
and client needs). Through the careful balancing of resource 
optimisation and stakeholder satisfaction throughout project 
planning, this dual input enables informed decision-making. 

D. Problem Formulation 

1) Quantitative data: Consider a situation where we have 

a list of requirements, R = r1, r2 ,..., rn, that reflect the new 

features that various customers have recommended for a 

forthcoming software version. Each stakeholder i is given a 

weight wi to indicate their significance. This implies that some 

stakeholders' preferences will be taken into consideration 

more so than others when deciding what issues need to be 

solved in a software version. The set of customer weights is 

denoted by the notation W = w1, w2, ..., wn. 
Each requirement rj in the set R has a corresponding 

development effort value ej that calculates the resources or cost 
necessary for its implementation. The notation for this 
collection of effort values is E = e1, e2 ,..., en. This is measured 
by a value vij, which expresses the significance of need rj for 
customer i. In essence, higher vij values indicate that 
stakeholder i is given more priority. 

Summing up a requirement's importance ratings across all 
stakeholders yields the total value of including it in the 
upcoming software release, or its global satisfaction, 
abbreviated as sj (sj = m i=1 wi vij). By considering each 
stakeholder's own priorities and weights, this indicates the 
overall satisfaction that the addition of requirement rj would 
offer to all stakeholders. The set of requirement satisfactions 
that result is denoted by S = s1, s2,..., sn [40].  

2) AHP dataset: For the pairwise comparisons of each 

criterion in this study, the quantitative data set is used. As a 

result, the AHP data set for our requirements generated. 

Following the collection of pairwise comparison judgments, 

the eigenvector approach is used to determine the respective 

weights of the two criteria, effort, and satisfaction. Then, a 

square matrix known as the comparison matrix is formed, with 

elements cij standing in for the weighting of the criteria effort 

(ci) and satisfaction (cj). By dividing each column by its sum, 

the matrix is normalised, producing a matrix of normalised 

values. To determine the priority vector for each level, the 

normalised values in each row are averaged. The consistency 

ratio (CR), which assesses whether the judgments line 

coherently, is used in a consistency check to ensure consistent 

pairwise comparisons. Adjustments are made if the CR 

exceeds a predetermined limit, which is commonly set at 0.1. 

The priority vectors show the relative weights of the 

requirements after the consistency check has been successful. 

E. Elbow Method 

The elbow method is a heuristic in data science and 
machine learning for determining the optimal number of 
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clusters in a dataset. It involves considering a range of potential 
cluster numbers and computing the sum of squared distances 
between data points and cluster centers. The study applies the 
elbow method to the requirements dataset, calculating the 
within-cluster sum of squares (WCSS) for varying cluster 
numbers and plotting these values. 

F. Clusters Formation 

In this phase clusters of requirements are formed. It 
involves organizing and grouping similar requirements into 
clusters using techniques like similarity analysis or domain 
categorization. This process enhances manageability and 
provides a structured approach for analysis. Five distinct 
clustering algorithms will be employed: K-Means, 
Agglomerative Hierarchical Clustering, Partitioning Around 
Medoids (PAM), Gaussian Mixture Model (GMM), and 
BIRCH. These algorithms help extract meaningful patterns and 
structures from requirements, aiding in informed decision-
making during the prioritization process. 

G. Clusters Evaluation 

The evaluation of clusters is crucial for assessing the 
quality and validity of data analysis or machine learning 
algorithms. Three mechanisms are used: Dunn Index, 
Silhouette Index, and Caliński-Harabasz Index, which are 
calculated after cluster formation and used to rate them. 

1) Dunn index: The Dunn Index is a clustering validation 

statistic that unsupervised machine learning researchers use to 

rate the accuracy of their clustering findings. It gauges the 

separation between clusters, or how far away various clusters 

are, in relation to the compactness of clusters, or how near the 

data points inside a cluster are to one another. Better 

clustering with smaller within-cluster distances and larger 

between-cluster distances is indicated by a higher Dunn Index. 

Dunn Index = min_intercluster_distance / 

max_intracluster_distance 

Where: 

Min_intercluster_distance: The minimal distance between 
any two centroids that belong to separate clusters. 

Max_intracluster_distance: The maximum distance 
between any two data points within the same cluster. 

2) Silhouette index: The Silhouette Index is a tool for 

clustering evaluation that assesses how cohesive and well-

separated clusters are. Higher values denote better clustering 

quality; the range is -1 to 1. (b(i) - a(i)) / maxa(i), b(i) is the 

formula for calculating the silhouette score for a single data 

point, where a(i) is the average distance inside the same 

cluster and b(i) is the smallest average distance to another 

cluster. Greater clustering is suggested by average silhouette 

scores that are higher across all data points. 

S(i) = (b(i) - a(i)) / max{a(i), b(i)} 

Where: 

S(i): The silhouette score for data point i. 

a(i): The average distance between data points i and all 
other data points in the same cluster. 

b(i): The shortest average distance between data point i and 
all other data points in a distinct cluster. 

3) Caliński-Harabasz index: The Calinski-Harabasz 

Index, commonly referred to as the Variance Ratio Criterion, 

is a clustering evaluation metric used in unsupervised machine 

learning to rate the calibre of clusters. It calculates the 

difference between the variances within and between clusters. 

Better-defined and more distinct clusters are indicated by 

higher Calinski-Harabasz Index values. 

CH= B/W{(N-K)/(K-1)} 

Where: 

B: Between-cluster variance, which measures the variance 
between different clusters. 

W: Within-cluster variance, which measures the variance 
within individual clusters. 

N: Total number of data points. 

K: Number of clusters. 

H. Requirements Prioritisation 

The MoSCoW approach is used in this study as a useful 
tool to prioritise requirements clusters. Requirements clusters 
are systematically classified and ranked using MoSCoW based 
on their importance and criticality to the project. This will help 
in improving efficiency and efficacy of the project planning 
and resource allocation and will make sure that the 
development efforts are concentrated on the most important 
and impactful clusters of needs. 

V. METHODOLOGY IMPLEMENTATION 

A. Formulation of Problem 

1) 20 Requirements Problem: There are twenty 

requirements and five stakeholders in this dataset, and it was 

drawn from [41]. The level of priority or value assigned by 

each stakeholder to each requirement is shown in Table II 

along with the development effort connected to each 

requirement. The stakeholder weights are offered in the range 

of 1 to 5 (Table III). These values might be thought of as 

linguistic terms like "without importance" (1), "less 

important" (2), "important" (3), "very important" (4), and 

"extremely important" (5). They also line up with the relative 

importance of each need. There is an estimated effort score 

that corresponds to each requirement, ranging from 1 to 10. 

TABLE II.  20 REQUIREMENTS PROBLEM 

 
C1 C2 C3 C4 C5 Effort 

R1 4 4 5 4 5 1 

R2 2 4 3 5 4 4 

R3 1 2 3 2 2 2 

R4 2 2 3 3 4 3 

R5 5 4 4 3 5 4 
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R6 5 5 5 4 4 7 

R7 2 1 2 2 2 10 

R8 4 4 4 4 4 2 

R9 4 4 4 2 5 1 

R10 4 5 4 3 2 3 

R11 2 2 2 5 4 2 

R12 3 3 4 2 5 5 

R13 4 2 1 3 3 8 

R14 2 4 5 2 4 2 

R15 4 4 4 4 4 1 

R16 4 2 1 3 1 4 

R17 4 3 2 5 1 10 

R18 1 2 3 4 2 4 

R19 3 3 3 3 4 8 

R20 2 1 2 2 1 4 

TABLE III.  CUSTOMERS. WEIGHTS FOR 20 REQ. PROBLEM 

Customers' Weights C1 C2 C3 C4 C5 

 
1 4 2 3 4 

a) 20 Requirements Problem using Quantitative 

Approach: To convert the data into two dimensions to apply 

clustering on it, we considered Section 4.4.1. Here: 

R = {r1, r2, ……., r20}, 

E = {1, 4, 2, …….,4}, 

W = {1, 4, 2, ……., 4}.  

This is how ‘S’ (Satisfaction) was calculated for r1. 

S = ∑ (Vij * Wi) 

S= {(4*1) + (4*4) + (5*2) + (4*3) + (5*4)} 

S= 62 

So, satisfaction for r1 was calculated to be 62 whereas the 
effort is 1. The rest was also calculated similarly, and this 
Table IV was generated as a result. 

TABLE IV.  QUANTITATIVE DATASET FOR 20 REQ. PROBLEM 

ID Eff. Sat. 
 

ID Effort Sat. 

R1 1 62 
 

R11 2 45 

R2 4 55 
 

R12 5 49 

R3 2 29 
 

R13 8 35 

R4 3 41 
 

R14 2 50 

R5 4 58 
 

R15 1 56 

R6 7 63 
 

R16 4 27 

R7 10 24 
 

R17 10 39 

R8 2 56 
 

R18 4 35 

R9 1 54 
 

R19 4 46 

R10 3 49 
 

R20 4 20 

 

b) 20 Requirements Problem using AHP: This Table V 

was created by using the same data set to get the AHP values 

for effort and satisfaction. 

TABLE V.  AHP DATASET FOR 20 REQ. PROBLEM 

ID Effort Satisfaction 

R1 12.7640176 3.24660865 

R2 3.19100441 3.65981339 

R3 6.38200881 6.9410254 

R4 4.25467254 4.90950577 

R5 3.19100441 3.4705127 

R6 1.82343109 3.19507518 

R7 1.27640176 8.38707236 

R8 6.38200881 3.59445958 

R9 12.7640176 3.72758771 

R10 4.25467254 4.10795381 

R11 6.38200881 4.47310526 

R12 2.55280353 4.10795381 

R13 1.5955022 5.75113533 

R14 6.38200881 4.02579473 

R15 12.7640176 3.59445958 

R16 3.19100441 7.45517543 

R17 1.27640176 5.1612753 

R18 3.19100441 5.75113533 

R19 3.19100441 4.37586384 

R20 3.19100441 10.0644868 

2) 100 Requirements Problem: There are five 

stakeholders in this data set as well, but there are 100 

requirements this time and it was obtained from [42].The 

difficulty of selecting requirements from a bigger set in the 

early timeboxes of establishing true agile software projects led 

to the selection of this dataset. Because of this, we now have 

100 requirements rather than simply 20. For the development 

effort, each requirement has a value that runs from 1 to 20. 

The maximum development effort in this case is 20 units, or 4 

weeks, which roughly corresponds to the timescale set by 

agile approaches (such as Scrum's proposed iteration length of 

2 to 4 weeks). Stakeholders rate the significance of criteria on 

a scale of 1 to 3. Here, the digits 1-3 stand for (1) not 

necessary, (2) preferable, or (3) required [43]. 

The Effort and Satisfaction for each requirement was 
calculated in the similar way as it was calculated for 20 
Requirements problem. The Quantitative and AHP datasets for 
100 requirements problem is given in Table VI: 

TABLE VI.  QUANTITATIVE DATASET (LEFT) AND AHP DATASET (RIGHT) 

FOR 100 REQ. PROBLEM 

ID Effort Satisfaction  ID Effort Satisfaction 

R1 16 29 
 

R1 0.35245612 0.87906114 

R2 19 23 
 

R2 0.29680515 1.10838143 
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R3 16 18 

 

R3 0.35245612 1.41626516 

R4 7 21 

 

R4 0.80561398 1.21394157 

R5 19 22 

 

R5 0.29680515 1.15876241 

R6 15 20 

 

R6 0.37595319 1.27463865 

R7 8 22 
 

R7 0.70491224 1.15876241 

R8 10 29 
 

R8 0.56392979 0.87906114 

R9 6 27 
 

R9 0.93988298 0.94417678 

R10 18 21 
 

R10 0.31329433 1.21394157 

R11 15 31 
 

R11 0.37595319 0.82234751 

R12 12 33 

 

R12 0.46994149 0.77250827 

R13 16 33 

 
R13 0.35245612 0.77250827 

R14 20 25 

 
R14 0.28196489 1.01971092 

R15 9 25 

 
R15 0.62658865 1.01971092 

R16 4 30 

 

R16 1.40982447 0.8497591 

R17 16 25 

 
R17 0.35245612 1.01971092 

R18 2 28 

 
R18 2.81964894 0.91045618 

R19 9 35 

 
R19 0.62658865 0.72836494 

R20 3 29 
 

R20 1.87976596 0.87906114 

R21 2 27 
 

R21 2.81964894 0.94417678 

R22 10 23 
 

R22 0.56392979 1.10838143 

R23 4 28 
 

R23 1.40982447 0.91045618 

R24 2 29 

 
R24 2.81964894 0.87906114 

R25 7 36 

 
R25 0.80561398 0.70813258 

R26 15 28 

 
R26 0.37595319 0.91045618 

R27 8 30 

 
R27 0.70491224 0.8497591 

R28 20 22 

 
R28 0.28196489 1.15876241 

R29 9 30 

 
R29 0.62658865 0.8497591 

R30 11 32 

 
R30 0.51266344 0.79664915 

R31 5 20 

 
R31 1.12785958 1.27463865 

R32 1 31 
 

R32 5.63929788 0.82234751 

R33 17 24 
 

R33 0.3317234 1.06219887 

R34 6 26 
 

R34 0.93988298 0.98049127 

R35 2 24 
 

R35 2.81964894 1.06219887 

R36 16 23 

 
R36 0.35245612 1.10838143 

R37 8 26 

 
R37 0.70491224 0.98049127 

R38 12 32 

 
R38 0.46994149 0.79664915 

R39 18 26 

 
R39 0.31329433 0.98049127 

R40 5 27 

 
R40 1.12785958 0.94417678 

R41 6 32 

 
R41 0.93988298 0.79664915 

R42 14 30 

 
R42 0.40280699 0.8497591 

R43 15 15 

 
R43 0.37595319 1.6995182 

R44 20 26 
 

R44 0.28196489 0.98049127 

R45 14 29 
 

R45 0.40280699 0.87906114 

R46 9 28 
 

R46 0.62658865 0.91045618 

R47 16 27 
 

R47 0.35245612 0.94417678 

R48 6 21 

 
R48 0.93988298 1.21394157 

R49 6 28 

 

R49 0.93988298 0.91045618 

R50 6 32 

 
R50 0.93988298 0.79664915 

R51 6 34  R51 0.93988298 0.74978744 

R52 2 27  R52 2.81964894 0.94417678 

R53 17 24  R53 0.3317234 1.06219887 

R54 18 30  R54 0.31329433 0.8497591 

R55 1 24  R55 5.63929788 1.06219887 

R56 3 35  R56 1.87976596 0.72836494 

R57 14 35  R57 0.40280699 0.72836494 

R58 16 18  R58 0.35245612 1.41626516 

R59 18 23  R59 0.31329433 1.10838143 

R60 7 26  R60 0.80561398 0.98049127 

R61 10 18  R61 0.56392979 1.41626516 

R62 7 28  R62 0.80561398 0.91045618 

R63 16 29  R63 0.35245612 0.87906114 

R64 19 38  R64 0.29680515 0.67086245 

R65 17 25  R65 0.3317234 1.01971092 

R66 15 22  R66 0.37595319 1.15876241 

R67 11 23  R67 0.51266344 1.10838143 

R68 8 26  R68 0.70491224 0.98049127 

R69 20 34  R69 0.28196489 0.74978744 

R70 1 15  R70 5.63929788 1.6995182 

R71 5 23  R71 1.12785958 1.10838143 

R72 8 32  R72 0.70491224 0.79664915 

R73 3 28  R73 1.87976596 0.91045618 

R74 15 29  R74 0.37595319 0.87906114 

R75 4 21  R75 1.40982447 1.21394157 

R76 20 21  R76 0.28196489 1.21394157 

R77 10 31  R77 0.56392979 0.82234751 

R78 20 39  R78 0.28196489 0.65366084 

R79 3 21  R79 1.87976596 1.21394157 

R80 20 23  R80 0.28196489 1.10838143 

R81 10 22  R81 0.56392979 1.15876241 

R82 16 22  R82 0.35245612 1.15876241 

R83 19 24  R83 0.29680515 1.06219887 

R84 3 25  R84 1.87976596 1.01971092 

R85 12 29  R85 0.46994149 0.87906114 

R86 16 15  R86 0.35245612 1.6995182 

R87 15 28  R87 0.37595319 0.91045618 

R88 1 21  R88 5.63929788 1.21394157 

R89 6 34  R89 0.93988298 0.74978744 

R90 7 32  R90 0.80561398 0.79664915 

R91 15 27  R91 0.37595319 0.94417678 

R92 18 32  R92 0.31329433 0.79664915 
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R93 4 27  R93 1.40982447 0.94417678 

R94 7 25  R94 0.80561398 1.01971092 

R95 2 21  R95 2.81964894 1.21394157 

R96 7 24  R96 0.80561398 1.06219887 

R97 8 24  R97 0.70491224 1.06219887 

R98 7 39  R98 0.80561398 0.65366084 

R99 7 18  R99 0.80561398 1.41626516 

R100 3 27  R100 1.87976596 0.94417678 

B. Determining No. of Clusters 

To determine the ideal number of clusters, the elbow 
approach was used on data sets from the 20 and 100 
Requirements Problem. The ideal number of clusters is 
depicted in Fig. 2 and 3. 

 
Fig. 2. Optimum no. of clusters using AHP dataset for 20 req. problem. 

 
Fig. 3. Optimum no. of clusters using AHP Dataset for 100 req. problem. 

C. Clusters Formation and Evaluation 

The elbow method's findings show that three clusters are 
the ideal number for both the 20 and 100 Requirements 
Problems.  We made 3 and 4 clusters because we are 
employing MoSCoW in addition to AHP for requirement 
prioritising. This is because MoSCoW has four characteristics. 

In the publication [40], quantitative dataset was used to 
evaluate three clustering algorithms: K-means, Hierarchical 
Clustering, and Partition Around Medoids (PAM). In this 
research, we compare the values acquired by the Analytic 

Hierarchy Process (AHP) approach to the values of 
quantitative dataset. The benefits and drawbacks of various 
techniques are better understood through holistic comparison, 
which also advances knowledge of efficient clustering 
methodologies and their real-world applications.  

The graphical depiction of 100 requirements datasets for 
Agglomerative Hierarchical Clustering is illustrated in Fig. 4 
and 5. This visualization provides a clear representation of the 
analyzed data, offering insights into the observed trends and 
patterns. 

To gain a deeper knowledge of how the proposed technique 
interacts with various clustering algorithms, evaluation indices 
for both types of data sets, namely Quantitative and AHP, are 
also calculated using Gaussian Mixture Models (GMM) and 
BIRCH (Fig. 6 and 7). 

 
Fig. 4. Hierarchical clustering for 100 req. problem using quantitative 

dataset. 

 
Fig. 5. Hierarchical clustering for 100 req. problem using AHP dataset. 
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Fig. 6. BIRCH clustering for 20 req. problem using quantitative dataset. 

 

Fig. 7. BIRCH clustering for 20 req. problem using AHP dataset. 

All in all, five clustering algorithms: K-Means, Partition 
Around Medoids, Agglomerative Hierarchical Clustering, 
Gaussian Mixture Models, and BIRCH and three evaluation 
metrics: the Dunn Index, the Silhouette Index, and the 
Calinski-Harabasz Index are used in this research. 

The outcomes of each clustering algorithm for cluster 
evaluation metrics are provided in the Tables VII-XVI. 

1) K-Means 

2) PAM 

3) Hierarchical 

4) GMM 

5) BIRCH 

TABLE VII.  EVALUATION METRICS FOR 20 REQ. PROBLEM 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.209 0.4336 

Silhouette 3 0.4666 0.5690 

CH 3 22.9273 33.7443 

    

Dunn 4 0.2527 0.2417 

Silhouette 4 0.4176 0.4863 

CH 4 24.3832 34.1044 

TABLE VIII.  EVALUATION METRICS FOR 100 REQ. PROBLEM 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.0548 0.2364 

Silhouette 3 0.4283 0.4632 

CH 3 89.5132 89.7174 

    

Dunn 4 0.0783 0.2377 

Silhouette 4 0.3993 0.4766 

CH 4 90.9959 96.8018 

TABLE IX.  EVALUATION METRICS FOR 20 REQ. PROBLEM 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.2607 2.7100 

Silhouette 3 0.4843 0.5208 

CH 3 22.6144 31.1727 

    

Dunn 4 0.3151 1.5103 

Silhouette 4 0.4116 0.4374 

CH 4 24.0329 31.2174 

TABLE X.  EVALUATION METRICS FOR 100 REQ. PROBLEM 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.0831 0.3396 

Silhouette 3 0.4308 0.3943 

CH 3 89.5132 46.9101 

    

Dunn 4 0.0696 0.3024 

Silhouette 4 0.3993 0.3998 

CH 4 88.7641 64.6714 

TABLE XI.  EVALUATION METRICS FOR 20 REQ. PROBLEM 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.2576 2.9804 

Silhouette 3 0.4549 0.5690 

CH 3 18.6832 33.7443 

    

Dunn 4 0.2482 2.7427 
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Silhouette 4 0.3561 0.4863 

CH 4 18.7909 34.1044 

TABLE XII.  EVALUATION METRICS FOR 100 REQ. PROBLEM 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.1096 0.3472 

Silhouette 3 0.4278 0.4327 

CH 3 88.0933 82.8722 

    

Dunn 4 0.1096 0.2518 

Silhouette 4 0.3964 0.4576 

CH 4 82.5902 95.1834 

TABLE XIII.  EVALUATION METRICS FOR 20 REQ. PROBLEM 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.2739 0.3723 

Silhouette 3 0.4568 0.5690 

CH 3 22.5821 33.744 

    

Dunn 4 0.1796 0.310 

Silhouette 4 0.3839 0.4905 

CH 4 22.0866 33.633 

TABLE XIV.  EVALUATION METRICS FOR 100 REQ. PROBLEM 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.7259 0.1706 

Silhouette 3 0.4285 0.0743 

CH 3 90.674 26.5032 

    

Dunn 4 0.5557 0.077 

Silhouette 4 0.3721 0.1082 

CH 4 90.7001 36.2847 

TABLE XV.  EVALUATION METRICS FOR 20 REQ. PROBLEM 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 12.9526 7.249 

Silhouette 3 0.4672 0.5690 

CH 3 18.9442 33.744 

TABLE XVI.  EVALUATION METRICS FOR 100 REQ. PROBLEM 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 8.9139 0.665 

Silhouette 3 0.4384 0.4053 

CH 3 96.1607 79.1779 

D. Prioritisation of Requirements 

The MoSCoW method is used to prioritize requirements 
clusters. Clusters with higher satisfaction and minimal effort 
were given the highest priority and are designated as "MUST" 
fulfillments. Clusters with higher satisfaction and minimal 
effort are designated as "SHOULD" requirements. Clusters in 
the "COULD" category are considered for enhancement due to 
their higher effort cost. Clusters in the "WON'T" category are 
intentionally deferred due to higher effort requirements. This 
dynamic prioritization methodology offers a nuanced 
perspective for optimizing software requirements in line with 
project goals. 

VI. DISCUSSION 

Our study compared the Analytic Hierarchy Process (AHP) 
with quantitative dataset approaches in requirement 
prioritization and clustering, highlighting performance 
differences across multiple evaluations. Each comparison table 
illustrates instances where either AHP or the quantitative 
dataset method performed better, with the superior values 
highlighted for clarity Table (VII-XVI). Out of 54 evaluations, 
AHP showed superior performance in 39 cases, emphasizing 
variability between methods. 

The effectiveness of AHP in generating compact and 
meaningful clusters underscores its potential for handling 
complex datasets in software engineering. By leveraging a 
structured decision-making approach that incorporates both 
qualitative and quantitative judgments, AHP successfully 
groups requirements with closer features or similarities 
together more cohesively. This results in coherent and relevant 
requirement groupings, which in turn facilitates improved 
decision-making and prioritization within software 
development processes. AHP's ability to create compact 
clusters highlights its utility in enhancing the efficiency and 
effectiveness of software engineering practices. 

VII. RESULTS 

The Analytic Hierarchy Process (AHP) and the quantitative 
datasets were compared 54 times in total using evaluation 
metrics. The purpose of these comparisons was to assess the 
efficiency and performance of the AHP approach in 
comparison to the quantitative data representation. 39 of these 
54 comparisons revealed that the AHP technique performed 
better than other approaches. This indicates that, in contrast to 
the quantitative data technique, AHP typically produced more 
favorable outcomes or results. 

This finding's relevance stems from the AHP approach's 
consistent propensity to outperform the quantitative data 
representation over a sizable majority of the comparisons. This 
series of outcomes highlights the possible advantages of 
applying the AHP approach to cluster or analyse the provided 
dataset, suggesting that it might be a more efficient and reliable 
method for producing valuable insights or groups. 
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VIII. CONCLUSION AND FUTURE WORK 

The importance of using data mining techniques to 
efficiently prioritise requirements in software engineering is 
shown by this study. It also emphasises the extraordinary 
excellence of the Analytic Hierarchy Process (AHP) in the 
context of software engineering for prioritising software 
requirements. Based on a detailed analysis of five clustering 
algorithms and three cluster assessment indices, our results 
consistently demonstrate that AHP outperforms traditional 
quantitative data representations in the majority of the 54 
comparisons conducted. Furthermore, the combination of AHP 
with the MoSCoW needs prioritisation framework not only led 
to better results but also enhanced resource allocation, flexible 
planning, and increased stakeholder satisfaction. This study 
recommends using AHP, data mining techniques, and the 
MoSCoW framework as the suggested methodology for 
prospective projects. 

Since the data sets were generated manually with the help 
of stakeholders in this research. In the future, we can use 
machine learning algorithms. These algorithms can be trained 
on historical project data to learn the underlying patterns and 
characteristics of similar projects. By improving the overall 
efficiency of requirements prioritisation techniques, this 
integration could pave the way for more sophisticated and 
context-sensitive approaches to managing software 
requirements. 
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