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Abstract—To avoid the issue of significant redundancy in the 

spatiotemporal features extracted from multimodal video 

description methods and the substantial semantic gaps between 

different modalities within video data.  Building upon the 

TimeSformer model, this paper proposes a two-stage video 

description approach (Multimodal Feature Fusion Video 

Description Model Integrating Attention Mechanism and 

Contrastive Learning, MFFCL). The TimeSformer encoder 

extracts spatiotemporal attention features from the input video 

and performs feature selection.  Contrastive learning is employed 

to establish semantic associations between the spatiotemporal 

attention features and textual descriptions. Finally, GPT2 is 

employed to generate descriptive text.  Experimental validations 

on the MAVD, MSR-VTT, and VATEX datasets were conducted 

against several typical benchmark methods, including Swin-

BERT and GIT.  The results indicate that the proposed method 

achieves outstanding performance on metrics such as Bleu-4, 

METEOR, ROUGE-L, and CIDEr.  The spatiotemporal 

attention features extracted by the model can fully express the 

video content and that the language model can generate complete 

video description text. 

Keywords—Multimodal feature fusion; video description; 

spatiotemporal attention; comparative learning 

I. INTRODUCTION 

Video description is a field of deep learning with practical 
value, and it has application value in areas such as assisting 
visually impaired individuals in accessing video content and 
video content analysis. When dealing with video content from 
real life, video description models require complex 
preprocessing steps, such as frame extraction and 
normalization operations, followed by feature extraction, and 
finally, the transformation of these features into linguistic 
descriptions. In this process, the model must not only delve 
into the semantic content of the video but also establish precise 
correspondences between visual and textual information to 
generate accurate descriptions [1]. However, due to the 
excessive redundancy in video data and the vast semantic gap 
between modalities, it is challenging for models to establish a 
unified representation of these modalities and to capture key 
information accurately for detailed descriptions. 

To address the aforementioned issues, this paper proposes a 
two-stage multimodal feature fusion method. In the first stage, 
the TimeSformer encoder [2] is employed to extract 
spatiotemporal features from the input video. The 
TimeSformer is a transformer-based model for video action 

recognition that effectively captures spatiotemporal features 
within videos. The model generates video vectors rich in 
semantic features by dividing video frames into non-
overlapping blocks and applying attention mechanisms in both 
temporal and spatial dimensions. After spatiotemporal feature 
extraction, these vectors undergo feature selection and are used 
as visual cues input into the GPT-2 model to generate video 
descriptions. This paper employs a contrastive learning 
approach in the second stage to align video embeddings with 
text embeddings in the latent space. Video-text contrastive 
learning is an effective training method that minimizes the 
semantic differences between different modalities by pulling 
closer the representations of the same entity across modalities 
and pushing apart the representations of different entities. This 
method enhances the similarity between the features output by 
TimeSformer and the corresponding textual descriptions. 
Experimental evidence suggests that the scheme incorporating 
contrastive learning is easier to train than the one that fine-
tunes TimeSformer directly with video descriptions without 
contrastive learning. This ease of training may be attributed to 
the reduced involvement of generative methods, which 
typically require more extensive training time when contrastive 
learning is not employed. 

This paper conducts comparative experiments to validate 
the effectiveness of the proposed model, and the results 
indicate that the proposed model achieves state-of-the-art 
results on the MSVD, MSR-VTT, and VATEX datasets. 
Compared to existing models, the text generated by this model 
is capable of providing a comprehensive description of video 
content and is straightforward to train. The contributions of this 
paper are as follows: 

1) This paper proposes a two-stage multimodal feature 

fusion method that combines spatiotemporal attention with 

contrastive learning, efficiently integrating and utilizing 

temporal, visual, and textual features. 

2) Within the training process, this paper conducts feature 

selection on spatiotemporal features to prevent redundant 

information from entering the language model, which could 

otherwise interfere with text generation. 

3) Experimental evidence demonstrates that our method 

can effectively comprehend and describe the rich multimodal 

information within videos, achieving advanced results 

compared to similar models in the field. 

This research was funded by Key Technology Research and Demonstration 
Application of News Intelligent Production (212102210417), Science and 

Technology Plan of Henan Province in 2021. 
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II. RELATED WORK 

When processing videos, video descriptions require the 
extraction of temporal information, image information, and 
other modal information from the video. These data are then 
multimodal fused to build a joint representation between 
modalities. The resulting representation serves as visual cues 
input into a text model to generate textual descriptions. This 
section discusses related work from spatiotemporal feature 
extraction and multimodal feature fusion perspectives. 

A. Spatiotemporal Feature Extraction 

In video description tasks, models must be capable of 
extracting temporal and spatial features from the video content. 
For temporal feature extraction, common methods include 3D 
Convolutional Neural Networks (CNN) and optical flow-based 
networks. As for spatial features that pertain to image 
characteristics, one can utilize popular pre-trained image 
feature extraction networks such as ResNet [3] and Vision 
Transformer [4]. 

DC-RL [5] employs a 3D CNN to model temporal features 
and concatenates these features with image features obtained 
from a pre-trained image encoder using an LSTM. However, 
this approach may yield little improvements over previous 
methods. This is because of the inherent locality of 3D neural 
networks, which limits their ability to learn long-term temporal 
dependencies. Moreover, LSTM are prone to vanishing or 
exploding gradients when dealing with long sequences of input 
temporal information, making them difficult to train 
effectively. 

MA-Net [6] employs the Inflated 3D (I3D) [7] network to 
model temporal relationships and constructs semantic feature 
vectors from the textual descriptions of the video. These 
semantic feature vectors are then used alongside the video 
feature vectors for semantic detection, aiming to bridge the gap 
between the semantic video features and the actual semantic 
content of the video. I3D expands pre-trained 2D CNN into 3D 
CNN by "inflating" their 2D filters into 3D filters, allowing the 
network to capture spatiotemporal information in video data.  
Experimental results have shown improvements compared to 
DC-RL. However, it does not overcome the drawbacks of 
CNN, which fails to model long-range temporal information, 
and the extracted video features cannot fully represent the 
content of the video.  

This paper addresses the issues above by employing 
TimeSformer. TimeSformer divides the video into non-
overlapping spatial and temporal patches. It then applies 
attention mechanisms between patches that belong to the same 
spatial location but different time points and between patches 
from different spatial locations but the same time point. This 
approach enables efficient extraction of temporal and spatial 
features across the entire video, making it highly suitable for 
video description models. 

B. Multimodal Feature Fusion 

Videos are composed of multimodal data, including visual, 
audio, and textual components, each containing a vast amount 
of information accompanied by noise and uncertainty. To 
accurately describe the content of videos, it is necessary to 
employ multimodal feature fusion techniques to achieve 

complementarity and verification between different modalities. 
This approach facilitates a comprehensive understanding and 
analysis of video content, enhancing the accuracy and 
reliability of information processing. When performing 
multimodal feature fusion, common strategies include the 
following: (1) Data Fusion: This strategy involves combining 
information from multiple modalities through operations such 
as concatenation, addition, and multiplication and then passing 
the integrated data to subsequent processes. The advantages of 
this approach are its simplicity and the absence of the need for 
additional training methods. However, it may also lead to 
information redundancy or the inability to leverage complex 
modality information. (2) Neural Network Fusion: This 
strategy involves using neural network methods to jointly 
encode multimodal information based on data fusion or 
directly accepting multimodal inputs. For instance, the cross-
attention mechanism in Transformer[8] utilizes self-attention to 
relate and fuse information from different modalities. The 
Feature Pyramid Network (FPN)[9] achieves fusion by 
constructing feature maps at different scales, which allows for 
information integration at various levels, thereby enhancing the 
performance of object detection tasks. 

Fu et al. [10] have utilized the attention mechanism to 
query the relationship between object detection and action 
features, establishing a subject-verb relationship from a 
grammatical perspective and generating text accordingly. The 
primary benefit of this approach lies in the generation of 
coherent textual output. However, this grammar-based method 
has limitations in terms of text generation diversity. Since it 
focuses on establishing accurate grammatical structures, the 
generated text often follows similar sentence templates, which 
can lead to stiff and repetitive expressions in language. 
Moreover, in Fu’s work, action features extracted by 3D neural 
networks fail to capture long-distance temporal information, 
which can lead to the model that is incapable of fully 
describing the semantics of the video. 

The work by Ren et al. [11] is similar to the present study, 
as it also employs an attention mechanism to integrate 
spatiotemporal features. Additionally, they designed a semantic 
enhancement network to learn the latent semantic information 
of object features. However, in fusing visual-textual features, 
they utilized Long Short-Term Memory networks (LSTM). 
LSTM is a type of recurrent neural network (RNN) that is 
capable of handling sequence data and can remember long-
term dependencies. In their work, LSTM networks were 
employed to process textual information, obviating the need to 
add position vectors within the attention mechanism. Position 
vectors are commonly used in attention mechanisms to ensure 
the model can understand the order of elements in the input 
sequence. Although LSTM networks have certain advantages 
in processing sequence data, it also have limitations, 
particularly when dealing with long-distance dependencies. 
LSTM networks may encounter issues with vanishing or 
exploding gradients, limiting its effectiveness in modeling 
long-distance dependencies between elements in long 
sequences. 

To address the aforementioned issues, this paper employs a 
Visual-Text Contrastive (VTC) learning method to align the 
spatiotemporal features output by TimeSformer with textual 
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features. By analyzing the similarities and differences between 
data samples, VTC can discern the relationships and 
discrepancies between spatiotemporal and textual features, 
ensuring that semantically similar spatiotemporal features 
remain close to their corresponding textual features in the 
latent space. This facilitates the ability of feature mapping 
module to map spatiotemporal features to textual laten spaces 
and makes it possible to generate textual descriptions via 
GPT2[12]. This approach allows the model to learn a complete 
representation of spatiotemporal features and generates 
accurate textual descriptions. 

III. METHODOLOGY 

When processing videos, TimeSformer first applies an 
attention mechanism in both temporal and spatial dimensions 
to extract spatiotemporal features of videos. Subsequently, this 
paper utilizes a fully connected network to map the 
spatiotemporal features into a feature sequence, adapting them 
for input into the Transformer Encoder, the mapping network. 
In preparation for the input to the Transformer Encoder, a 
learnable vector of length   was concatenated to the video 

feature sequence to screen the sequence and prevent the 
inclusion of redundant information. The learnable vector, 
which can be referred to as a visual prompt, is then input into 
the language model for decoding, yielding a textual description 
of the video. During the training process, the semantic gap 
between video and text features poses a significant challenge. 
To address this issue, the paper introduces a Video-Text 
Contrastive Learning module, which aligns video and text 
features in the semantic space. Fig. 1 depicts the structure of 
the entire model. 

 
Fig. 1. Overall structure diagram. 

A. Spatiotemporal Attention-based Feature Fusion 

To fully comprehend video content, it is necessary to 
integrate both spatial and temporal information. In traditional 
3D CNN, convolution operations are performed 
simultaneously across both temporal and spatial dimensions, 
allowing the model to capture spatiotemporal features within 
the video. However, 3D convolution operations are 
computationally intensive, leading to slower training and 
inference speeds for the model. To overcome this limitation, 
TimeSformer organizes the temporal and spatial dimensions 
into multiple video patches and performs attentional 

interactions on them separately, incorporating attention 
mechanisms into video understanding tasks. This approach has 
achieved outstanding results in the field of action recognition. 

This paper employs TimeSformer to extract spatiotemporal 
features from videos. After preprocessing, a video is mapped 
into multiple non-overlapping patches through a linear layer, 
which is then input into the spatiotemporal feature extraction 
network, as illustrated in Fig. 2. 

The output can be represented as 1 2 }, ,{ ,vv v , where 

videoH

i Rv  and   denote the number of video patches. During 

the training of TimeSformer, the learnable vector 
videoCLS  at 

the head of the video patch sequence is randomly initialized 
and incorporates the embedding representation of the entire 
video throughout the training process. In subsequent modules, 

the paper primarily uses 
videoCLS  as the video feature for 

computation. 

B. Visual Prompt Based on Contrastive Learning and 

Feature Selection 

In the training process, the input video is first mapped using 
a linear layer to extract the embedded representation of the 
video. These representations capture the temporal and visual 
features between video frames. Subsequently, these video 
embeddings are concatenated with a learnable query vector of 
length   and jointly input into a Transformer Encoder. The 

role of the query vector is to select the relevant features of the 
video that need to be described and filter out irrelevant 
information. Next, the query vector is used as a prompt and 
input into the GPT2 model.  

Since the prompt already contains the necessary semantic 
information, the language model can generate readable text 
based on this prompt vector. This approach has been applied in 

 
Fig. 2. TimeSformer architecture diagram. 

the work by Zhou et al. [13]. However, a significant gap 
often exists between the vector spaces of video and text 
embeddings, even when they may be semantically related. This 
discrepancy makes it challenging to train directly using these 
embeddings. To address this issue, the paper introduces a 
contrastive learning approach. Contrastive learning aims to 
bridge the gap between visual and text embeddings in the 
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semantic space, even if they are far apart in the original space. 
By doing so, the model can learn how to map video content to 
relevant textual descriptions more easily, facilitating the 
training process. 

Suppose the data consists of a dataset 1{ , }N

i i iTV   of N  

video-text pairs, where  V  represents the video and T  

corresponds to the associated textual description. Since GPT2 
accepts input as a sequence of tokens, the paper maps the 

videoCLS  obtained from TimeSformer to a sequence of video 

patches. Its formal representation is given in Eq. (1). 

1 2 3, , , ( ( ))L videop p p FFN Timp eS f ormer CLS 
  (1) 

where, 
ip  is a one-dimensional vector of length H . In 

this paper, the hidden layer vectors for video and text are the 
same, set to 768. 

During training, the paper concatenates the video patch 

vectors 
1 2 3{ }, , , Lp p pp  with randomly initialized 

learnable vectors 
1{ , }q q . It is then fed into the 

Transformer Encoder to obtain 

1 2 3 1{ ` ` ` `, ` , }, , , `Lp p p p q q   , where L  and   are 

hyperparameters, with   representing the length of the prefix.  

The training objective is to predict the tokens 
autoregressively conditional on the prompt. The generation of 
the text loss objective can be described by the Eq. (2). The true 

distribution 
lI  is an indicator distribution that takes the value 

of 1 for the correct token 
lt  and 0 for all other tokens. 

1 1

1

log ( , | ` ), , `token

i

L

Lloss p t t qq 



   
 (2) 

In contrastive learning, the paper uses the CLS token as the 
video representation directly, which is paired with the text 
features extracted by BERT for contrastive learning. Similarly, 

the text feature utilizes BERT's CLS token,
textCLS , with the 

shape of 
HR . The loss function is as follows in Eq. (3), where 

  is the temperature parameter, taking the value of 0.07. 

0

( / )
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exp CLS CL
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os









 


 (3) 

IV. EXPERIMENTAL VERIFICATION 

A. Dataset 

In this paper, the experimental verification is carried out on 
three public datasets: MSVD, MSR-VTT, and VATEX 

The Microsoft Research Video Description Corpus 
(MSVD) dataset [14] is widely used in video understanding 
models. Introduced by Microsoft Research in 2016, it is 
designed for video description generation, which automatically 

produces natural language descriptions for video clips. The 
dataset comprises 1,970 video segments, each accompanied by 
multiple English descriptions written by different individuals. 
The videos in the MSVD dataset are primarily sourced from 
YouTube and cover a variety of genres, including music 
videos, movie trailers, television shows, and more. 

The Microsoft Research Video to Text [15] (MSR-VTT) 
dataset is another widely used dataset in video understanding 
models. Proposed by Microsoft Research in 2016 is also 
designed for video description generation, where the goal is to 
produce natural language descriptions for video clips 
automatically. This dataset comprises over 10,000 video 
segments, each with at least one English description. The 
videos in the MSR-VTT dataset are primarily sourced from 
YouTube and encompass a variety of genres, such as music 
videos, movie trailers, television shows, and more. 

The Video-and-Text EXchange (VATEX) dataset[16] is a 
large-scale video description and subtitle dataset that contains 
multimodal information including video, audio, and text data. 
It is characterized by its vast scale, comprising over 250,000 
pairs of videos and subtitle descriptions, covering multiple 
languages, with a particular focus on Chinese and English. The 
data is sourced from various scenes, including movies, TV 
series, news broadcasts, variety shows, and more, which results 
in a highly diverse dataset in both content and language. 

B. Experimental Setup 

All experiments were conducted using the PyTorch deep 
learning framework on two GTX-3090 GPUs. The model 
employed Adaptive Moment Estimation (Adam) as the 
optimization strategy and used the cross-entropy function as 
the loss function for back propagating gradients. The weight 
decay parameter was set to 0.009. The learning rate was 
scheduled using an inverse time scheme, as shown in the Eq. 
(4), where ò was set to 0.5, and the initial learning rate r  was 
set to 0.01. 

1 *
newr

step

r


ò
     (4) 

In the MSVD dataset, a total of 14,910 steps were trained 
with a batch size of 16; in the MSR-VTT dataset, a total of 
25,320 steps were trained with a batch size of 8; and in the 
VATEX dataset, a total of 113,350 steps were trained with a 
batch size of 6. 

C. Comparative Experiments 

The proposed model is compared with state-of-the-art 
methods. MA-Net[6] attempts to construct semantic feature 
vectors from the textual description of videos, which are then 
used in conjunction with video feature vectors for semantic 
detection, to bridge the gap between semantic video features 
and the actual semantics of the video. However, the I3D 
network employed by the authors cannot model long-range 
temporal relationships. 

MGRMP [17] proposes a recurrent regional attention 
module to extract diverse spatial features better and establish 
higher-order relationships between different regions across 
frames through motion-guided cross-frame message passing.  
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Uni-perceiver [18] attempts to create a unified model 
architecture that can flexibly handle multiple modalities of data 
without training separate models for each modality or task. 

Fu Yan et al. [10] proposed a video description method 
based on the syntactic analysis of object features in scene 
representation. This method utilizes an object feature detector 
and constructs a grammar to generate textual descriptions. 

Swin-BERT [19] successfully adapted the Swin 
Transformer [20] to the video description field and achieved 
promising results. However, it needed to address the significant 
semantic gap between video and text representations, leading 
to the protracted training process and failing to yield 
satisfactory results.  

GIT [21] also attempted to model images, videos, and text 
using a unified network. However, video content merely relied 
on concatenating video frames without adequately learning the 
temporal features. 

The evaluation metrics used are Bleu-4, METEOR, 
ROUGE-L, and CIDEr.  

The performance of MFFCL on the MSVD dataset is 
presented in Table ITABLE I. In this work, we introduce a 
contrastive learning method in addition to Swin-BERT [16], 
which enables semantic alignment between videos and text. 
This method is easier to train than text generation tasks and has 
achieved promising results. Our approach outperforms Swin-
BERT with 17%, 6%, and 18% improvements in Bleu-4, 
ROUGE-L, and CIDEr scores, respectively. 

Unlike the MSVD dataset, the MSR-VTT dataset contains 
a richer set of scene information. TimeSformer is trained on 
human action recognition datasets. When the video has a lot of 
non-human behavior information, such as camera movements 
or birds flying, these details may act as noise for the MFFCL 
model, potentially leading to a degradation in performance. 
However, TimeSformer not only extracts features along the 
temporal dimension but also thoroughly learns video 
representations in the spatial dimension. Consequently, even in 
complex video scenes, MFFCL still achieves commendable 
results. In the work by Wang [22] et al. LSTM were employed 
for text generation. A limitation of this approach is that the 
length and coherence of the generated text are constrained. In 
contrast, our work utilizes GPT2 as the text generation model. 
During the text generation process, we randomly select from a 
set of p high-probability words, which allows for the 
generation of diverse and coherent texts. Compared to the 
method proposed by Wang et al., our approach demonstrates 
improvements of 4%, 3%, 9%, and 5% in Bleu-4, METEOR,  

TABLE I. PERFORMANCE OF MFFCL ON THE MSVD DATASET 

Model Year Bleu-4 METEOR ROUGE-L CIDEr 

MA-Net[6] 2021 50.3 33.4 70.7 78.3 

MGRMP[17] 2021 55.8 36.9 74.5 98.5 

Uni-perceiver[18] 2022 56.7 38.7 70 88.2 

Swin-BERT[19] 2022 58.2 41.3 77.5 120.6 

FU et.al.[10] 2023 53.5 - - 83.1 

MFFCL 2024 68.4 40.2 82.6 142.3 

TABLE II. PERFORMANCE OF MFFCL ON THE MSR-VTT DATASET 

Model Year Bleu-4 METEOR ROUGE-L CIDEr 

MGRMP[17] 2021 41.7 28.9 62.1 51.4 

MA-Net[6] 2021 40.5 27.9 60.3 50.6 

Swin-BERT[19] 2022 42.8 29.3 61.7 52.9 

FU et al.[10] 2023 43.2 - - 51.3 

Wang et.al.[22] 2023 44.8 29.4 63.0 52.3 

MFFCL 2023 46.6 30.3 68.6 54.8 

TABLE III. PERFORMANCE OF MFFCL ON THE VATEX DATASET 

Model Year Bleu-4 METEOR ROUGE-L CIDEr 

GIT[21] 2021 41.6 28.1 55.4 91.5 

Swin-BERT[19] 2022 38.7 26.2 53.2 73.0 

MFFCL 2024 50.2 35.3 65.6 100.2 

ROUGE-L, and CIDEr scores, respectively. The specific 
data are shown in Table II. 

While constructing the VATEX dataset, the authors 
extensively reused videos from the Kinetics-600 dataset[7], 
resulting in a rich presence of human actions. TimeSformer can 
fully model spatiotemporal features and accurately recognize 
action information, thus achieving significant results on 
VATEX. As mentioned earlier, Swin-BERT lacks the 
contrastive learning module used in this paper, which may lead 
to insufficient training. The GIT model, which is not 
specialized for video data, is less effective in temporal feature 
extraction than ours. Compared to GIT, our approach shows 
improvements of 20%, 25%, 18%, and 9% in Bleu-4, 
METEOR, ROUGE-L, and CIDEr scores, respectively. The 
specific data are given in Table III. 

D. Ablation Experiments 

To validate the effectiveness of the modules, this paper 
conducts ablation studies on the model from three aspects: the 
contrastive learning module, the mapping module, and the 
prompt length. 

In the learning process of the contrastive learning module, 
the TimeSformer was fine-tuned using only textual 
descriptions. During the experiment, it was observed that the 
improvement in evaluation metrics was very slow. Even 
doubling the training time on the MSVD dataset did not yield 
satisfactory results. This could be due to the fact that the text 
generation task, which relies on contrastive learning, requires 
more advanced GPUs, and our experimental setup may not 
meet the training requirements. 

TABLE IV. ABLATION EXPERIMENTS WITH CONTRASTIVE LEARNING 

Contrastive Learning Prompt Length Bleu-4 METEOR ROUGE-L CIDEr 

√ 10 32.6 19.6 39.3 52.6 

√ 30 60.8 36.6 42.1 82.3 

√ 50 68.4 40.2 82.6 142.3 

× 30 52.3 34.1 69.8 80.3 

× 50 52.3 34.1 69.8 80.3 
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The results of the ablation study are presented in Table IV, 
the contrastive learning module structure is shown in Fig. 4. 
The model structure without the contrastive learning module is 
shown in Fig. 3. 

 
Fig. 3. Overall structure diagram without contrastive learning. 

 
Fig. 4. Contrastive learning module structure. 

Regarding the prompt length, it was noted that as the 
prompt length increased, the amount of information the model 
could accommodate increased, thereby enhancing its 
descriptive capabilities. It is believed that longer prompts can 
fully extract video representation information, which helps the 
model to understand and describe video content more 
accurately. However, excessively long prompts may 
complicate the training process and be limited by device 
performance and computational resources in practical 
applications. Experiments have demonstrated that the model 
can learn the correspondence between videos and texts through 
contrastive learning, bringing the representations of videos and 
texts closer in the feature space. This alignment aids the model 
in better understanding the video content and generates 
accurate descriptions based on the video embeddings. 

To investigate the importance of the understanding 
mapping module, this paper replaces the Transformer Encoder 
with a Feedforward neural networks (FFN) to observe changes 
in the model's performance. Global Linguistic Evaluation 
Understudy (GLEU) was chosen as the activation function for 
this setup. Since feedforward neural networks do not contain 
attention mechanisms, the query vector is removed from the 
input, and the video block sequence is fed directly into the FFN. 

The experimental results indicate that the model's 
performance decreases when the query vector is absent. This 
suggests that the query vector has learned a proficient video 
representation, which aids the model in focusing on the most 
relevant parts of the video and generates more accurate and 
coherent text descriptions. Furthermore, experimental results 
indicate that although feedforward neural networks can learn 
the mapping between video and text to some extent, their 
performance does not match that of the Transformer Encoder. 
The experimental results are presented in Table V. 

TABLE V. ABLATION EXPERIMENTS OF THE MAPPING MODULE 

Mapping Module Bleu-4 METEOR ROUGE-L CIDEr 

Transformer Encode 68.4 40.2 82.6 142.3 

FFN 52.3 34.1 69.8 80.3 

E. Qualitative Analysis 

In this paper, a qualitative analysis of TimeSformer was 
conducted from the perspective of attention weights. During 
the execution of TimeSformer, the spatial attention weights 
were obtained and visualized after being weighted with the 
original images. The results are shown in Fig. 5. It can be 
observed that TimeSformer effectively extracts the 
spatiotemporal representation of the video and adjusts its focus 
to be similar to human visual attention through the two-stage 
learning tasks of video-text learning and text generation 
learning. 
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Fig. 5. The image illustrates the ablation results from the MSVD dataset. In 

each example, the top image represents a schematic of the attention weights, 
with darker colors indicate higher attention weights. The bottom image shows 

the original image. The bold part in the text corresponds to the model's output, 

while the non-bold part represents the dataset labels. 

V. CONCLUSION 

In the field of multimodal video description, effectively 
integrating temporal sequence information, visual imagery, and 
textual descriptions from videos is a worthwhile area of 
research. To address this challenge, this paper proposes a novel 
two-step fusion strategy designed to achieve a more precise 
and coherent understanding and description of video content 
through an efficient model architecture and training mechanism. 

This paper employs TimeSformer, an advanced 
spatiotemporal feature extractor, in the first stage. Its unique 
network design for spatiotemporal feature extraction enables it 
to capture long-range temporal dependencies while preserving 
spatial details. In the second phase, the focus is on aligning 
video representations with text representations through 

contrastive learning. The core principle of contrastive learning 
is to minimize the distance between positive samples and 
maximize the distance between negative samples, thereby 
fostering similarity between video and text representations in 
the latent space. This study fine-tunes the TimeSformer 
through carefully designed contrastive tasks to produce video 
features that are more similar to textual features, prompt the 
model to generate more accurate video descriptions. 

 Compared to the Swin-BERT model on the MSVD dataset, 
our method achieves substantial improvements of 17%, 6%, 
and 18% on the critical evaluation metrics Bleu-4, ROUGE-L, 
and CIDEr, respectively. Experimental results confirm the 
efficacy of the method presented in this paper. TimeSformer is 
capable of fully representing video content in both temporal 
and spatial dimensions. The visual prompt also serve to filter 
out redundant features, while the contrastive learning module 
accelerates the training process of the TimeSformer. 

Future researchers can focus on developing more advanced 
multimodal fusion techniques to enhance the model's 
understanding of context and long-term dependencies. 
Utilizing large-scale, diverse datasets and weak supervision 
learning can also be explored. Additionally, researching the 
field of dense video description are potential avenues for 
advancement. 
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