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Abstract—There are problems such as low scalability and low 

convergence accuracy in the economic dispatch of smart grids. 

To address these situations, this study considers various 

constraints such as supply-demand balance constraints, climb 

constraints, and capacity constraints based on the unified 

consensus algorithm of multi-agent systems. By using Lagrange 

duality theory and internal penalty function method, the 

optimization of smart grid economic dispatch is transformed into 

an unconstrained optimization problem, and a distributed 

second-order consistency algorithm is proposed to solve the 

model problem. IEEE6 bus system testing showed that the 

generator cost of the distributed second-order consistency 

algorithm in the first, second, and third time periods was 2.2475 

million yuan, 5.8236 million yuan, and 3.7932 million yuan, 

respectively. Compared to the first-order consistency algorithm, 

the generator cost during the corresponding time period has 

increased by 10.23%, 11.36%, and 13.36%. The actual total 

output has reached supply-demand balance in a short period of 

time with the changes in renewable energy, while maintaining 

supply-demand balance during the scheduling process. The 

actual total output during low, peak, and off peak periods was 

99MW, 147MW, and 120MW, respectively. This study uses 

distributed second-order consistency algorithm to solve the 

economic dispatch model of smart grid to achieve higher 

convergence accuracy and speed. The study is limited by the 

assumption that the cost functions of each power generation unit 

are quadratic convex cost functions under ideal conditions. This 

economic dispatch model may not accurately reflect practical 

applications. 
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I. INTRODUCTION 

In the context of rapid climate change and the crisis of 
non-renewable energy, traditional power grids have faced 
enormous challenges, such as low stability, strong 
concentration, and poor coordination of the power system. 
Therefore, the development of smart grids is urgent, and their 
advantages are as follows: they can achieve bidirectional flow 
of electricity and information, are suitable for different types 
of storage facilities and power generation equipment, and can 
automatically detect and repair system faults. Under the goal 
of ensuring stability, economy, and sustainability, smart grids 
are developing towards a more environmentally friendly, 
economical, safe, and efficient direction. The economic 

dispatch of smart grids (EDoSG) is a process that considers 
multiple constraints to ensure the overall stability, safety, and 
economic operation of the system. Its essence is a 
multi-objective optimization problem. Studying EDoSG under 
the dual carbon target has positive significance [1-3]. With the 
complexity of smart grid network structure and the increase in 
grid scale, EDoSG has encountered significant obstacles. For 
example, in practical situations, factors such as energy storage 
devices (ESD) and renewable energy are complex and variable, 
and the accuracy of model solving algorithms is low. 
Centralized power grid economic dispatch has poor scalability, 
low flexibility, and low robustness, while distributed 
economic dispatch (DED) can achieve plug and play of power 
sources, avoiding the drawbacks of the former [4-5]. At the 
same time, the consistency theory of multi-agent systems 
(MAS) has been recognized by economic dispatch researchers 
due to its own characteristics [6-7]. In response to various 
constraints such as supply-demand balance (SDB) constraints, 
climb constraints, and capacity constraints in EDoSG 
optimization problems, this study will transform the 
optimization problem into an unconstrained optimization 
problem through Lagrange duality theory (LDT) and internal 
penalty function method (IPFM). Additionally, it combines 
with the consistency algorithm to design a distributed 
second-order consistency algorithm (D2OCA), aiming to 
improve the operational accuracy and convergence effect of 
the solving algorithm, and thereby reduce the cost of smart 
grids. As one of the fundamental issues in the operation of 
smart grids, the economic dispatch problem of smart grids is 
studied. A more practical smart grid economic dispatch model 
is considered for distributed dispatch analysis. Intelligent 
economic dispatch with energy storage devices and renewable 
energy under complex constraint conditions has outstanding 
advantages in practical applications. The advantages of the 
research are as follows: Based on the D2OCA, a consistency 
algorithm that can be used to solve economic scheduling 
problems considering generators, energy storage units (ESU), 
and renewable energy is proposed. The convergence 
performance of the proposed algorithm is verified through 
simulation comparison with traditional consistency algorithms. 
The constructed economic dispatch model achieves 
collaborative optimization by exchanging information with 
adjacent units and making autonomous decisions to adjust its 
own output in the communication network. The technology 
proposed in the study can always meet the SDB constraints 
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and the capacity constraints of each power generation unit 
during the scheduling process, and can converge to the 
optimal solution in a relatively fast time. This scheduling 
method has advantages such as strong scalability, information 
confidentiality and security, and robustness. It is of great 
significance in the fields of smart grid economy, stability, and 
safe operation. This study elaborates on the content from the 
following four sections. Section I analyzes the current 
situation of centralized EDoSG and smart grid DED both 
domestically and internationally. Section II focuses on the 
first-order consistency algorithm (1OCA) and D2OCA in 
EDoSG problems. Section III analyzes the convergence 
performance and accuracy of D2OCA. Section IV summarizes 
the research results and elaborates on the limitations and 
shortcomings of the study. 

II. RELATED WORKS 

Against the backdrop of the continuous development of 
new energy technologies, scholars in the field of smart grids 
have conducted extensive research on economic low-carbon 
scheduling. Guo R et al. established a stepped carbon trading 
model with different carbon emission ranges corresponding to 
different carbon trading prices. The goal of this model was to 
minimize the sum of power generation costs and carbon 
emissions, while considering safety constraints. Case studies 
have shown that analyzing the tiered carbon trading 
mechanism (TCTM) has great advantages in guiding the 
operation of low-carbon economy (LCE) in the system, 
providing necessary support for the LCE operation of smart 
grids [8]. Cui D’s teams have proposed a peak shaving and 
valley filling model to regulate the LCE clean power system. 
It could preliminarily achieve LCE scheduling of integrated 
energy systems [9]. Scholars such as Zhu X have established 
an LCE scheduling model under TCTM, focusing on electrical 
and thermal integrated energy systems. Through comparative 
analysis of multiple scenarios, the proposed technology 
improved the economic benefits of the system by consuming 
wind power, thereby reducing the cost of the power grid [10]. 
Fu Y and researchers proposed a DED scheme that combines 
consensus theory and deep strong zeroing learning theory to 
solve the problems of low security and scheduling 
effectiveness of centralized algorithms in the optimization 
scheduling of smart grids. This scheme used Adam algorithm 
and consistency algorithm to obtain the optimal economic 
scheduling of unit output. This scheme was suitable for smart 
grids with complex network structures and could handle 
economic dispatch problems with large-scale data, reducing 
the impact of the objective function on economic dispatch 
results [11]. 

Ayalew F et al. summarized relevant literature reports on 
existing economic dispatch problems in smart grids, including 
economic dispatch, centralized and distributed algorithms, 
demand side management, etc. [12]. Ismi et al. analyzed the 
economic dispatch problem under assumed uncertainty and 
solved it through centralized methods under load or energy 
changes to maintain the stability of the power system [13]. 
Wang et al. proposed an economic scheduling algorithm for 
parallel computing in distributed power nodes, which has 
higher convergence performance compared to centralized 
methods [14]. Sadouni H et al. analyzed the current research 

status of smart grid DED problems, including efficient 
uninitialized processes, distributed power generation systems 
with practical constraints, and safety [15]. Liu H et al. 
proposed a finite time DED model suitable for smart grids. 
The simulation results obtained through DED algorithm had 
high robustness in time-varying communication networks [16]. 
Table Ⅰ refers to the limitations of the relevant research work. 

TABLE I.  LIMITATIONS OF RELATED RESEARCH WORK 

Reference Achievement Limit 

Guo R [8] 

Established a tiered carbon trading 

model with different carbon 
emission ranges corresponding to 

different carbon trading prices 

Only considering 

carbon constraints and 

emissions 

Cui D [9] 

Proposed a peak shaving and valley 
filling model to regulate the 

economic, low-carbon, and clean 

power system 

The applicability of 

scheduling models is 
limited 

Zhu X [10] 
Established a low-carbon economic 

dispatch model under a TCTM 

Mainly aimed at 
minimizing economic 

operating costs 

Fu Y [11] 

Obtained the optimal economic 
dispatch of unit output through 

Adam algorithm and consistency 

algorithm 

DED not considered 

Ayalew F 

[12] 

Analyzed relevant literature on 
existing economic dispatch 

problems, including economic 

dispatch, centralized and distributed 
algorithms, demand side 

management, etc. 

No mention of 

D2OCA 

Ismi [13] 
Solved economic dispatch under 
load or energy changes through 

centralized methods 

There are too many 
assumptions in the 

model 

Wang S 
[14] 

Proposed an economic scheduling 
algorithm for parallel computing in 

distributed power generation nodes, 

which has high convergence 
performance 

But compared to the 
latest scheduling 

algorithms, the 

convergence 
performance is average 

Sadouni H 

[15] 

Analyzed the current situation of 
distributed power generation 

systems 

Failure to analyze the 

algorithm for solving 

the DED model of the 
smart grid 

Liu H [16] 

Distributed economic scheduling 

algorithms have extremely high 
robustness in time-varying 

communication networks 

Model solving without 

considering 

consistency algorithms 

Based on the current situation of centralized smart grid and 
DED, current consistency algorithms have a positive role in 
EDoSG optimization problems, but EDoSG also has 
prominent problems. In economic dispatch, few scholars 
analyze energy storage equipment, renewable energy, and 
power generation constraints. Based on this, this study 
proposes D2OCA to achieve EDoSG on the basis of 
multi-agent consensus algorithms, providing new development 
directions for the sustainable development of smart grids. 

III. EDOSG MODEL OF D2OCA 

The goal of EDoSG is to find the optimal power 
generation with the minimum economic cost while ensuring 
that the system constraints are met. The economic scheduling 
method commonly used in the past for generator scheduling 
was centralized, but the optimal scheduling solution obtained 
from this method cannot meet the real-time requirements of 
distributed power consumption and power outage. DED has 
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advantages such as simple protocol, strong scalability, and low 
complexity, which can achieve safe and stable economic 
operation of smart grids. The study examines different 
limitations, including SDB and climb constraints. Using the 
unified consensus algorithm of multiple intelligent systems, it 
transforms the optimization problem of smart grid economic 
dispatch into an unconstrained optimization problem through 
LDT, IPFM, and the alternating direction multiplier method 
(ADMM). At the same time, a D2OCA is proposed to solve 
the optimization model problem of smart grid economic 
dispatch. 

A. EDoSG and Multi-Intelligent 1OCA 

The research content of DED problem in smart grid is to 
maximize the economic effect of power generation under the 
constraint of power generation unit, that is, to find the optimal 
power generation required at the lowest cost. The research on 
DED problems can be divided into three parts: problem 
modeling, algorithm design, algorithm analysis, and validation 
[17-18]. Problem modeling is a convex optimization problem, 
but it involves constraints such as SDB and capacity 
constraints in economic scheduling problems. Therefore, this 
study utilizes IPFM to remove capacity constraints, while 
utilizing LDT to address SDB constraints and climb 
constraints. If the set is a convex set, then all points on the line 

connecting any two points 1
x  and 2

x  in set nC R  are in 

set C , then it can be considered a convex set, that is, Eq. (1). 

 1 2
1βx β x C    (1) 

In Eq. (1), β  refers to any real number within 0-1, and 

the convex function (CF) f  of C  on the convex set must 

satisfy Eq. (2). 

        1 2 1 2
1 1f βx β x βf x β f x      (2) 

When the coordinates of points 1
x  and 2

x  are the same. 

Eq. (2) takes equal sign. At this point, f  is a strictly CF on 

the convex set C . The optimization problem with constraints 

can be referred to by Eq. (3). 

     min . . 0, 0
i j

x
f x s t g x h x     (3) 

In Eq. (3),  f x  and  i
g x  are different CFs,  j

h x  

is an affine function, 1, ,i n , 1, ,m m , 1, ,j j . 

Fig. 1(a) is a schematic diagram of a CF. 

The methods for solving convex optimization problems 
include Newton's method, Lagrangian dual function method, 
IPFM, etc. The solving principle of IPFM is shown in Fig. 1 
(b). IPFM converts constraint conditions into obstacle terms 
that constrain the objective, and the iteration point needs to be 
far away from the boundary of the feasible domain to find the 
optimal solution. When the iteration point approaches the 
boundary of the feasible domain, the value of the obstacle 
term tends to infinity. The augmented objective function 

 ,L x γ  constructed by this method is represented by Eq. (4). 

     ,L x γ f x γb x      (4) 

In Eq. (4), the penalty factor is γ . To reduce the impact of 
this parameter on the function value, it is defined as a 
first-order jump function, and the value increases with time. 

The obstacle function is  b x , characterized by continuous 

numerical values within the feasible domain. If the constraint 
conditions are met, its numerical value is a finite positive 
number. LDT is suitable for raw optimization problems that 
are difficult to handle. A generalized Lagrangian function 
based on Eq. (3) is built and the Eq. (5) is used to refer to it. 

       
1 1

, ,
n m

i i j j
i j

L x a b f x a g x b h x
 

      (5) 

In Eq. (5), the Lagrange multiplier is represented by b , 

and the dual variable is a . The dual problem of the original 
problem can be represented by Eq. (6). 

   
, , 0 , , 0
max , max min , ,

i i
D

xa b a a b a
L a b L x a b

 
   (6) 

1
x

2
x 1 2

1αx α x 

 f x

  1 2
1f αx α x 

 1
f x

     1 2
1αf x α f x 

 2
f x

(a) Schematic diagram of 

convex functions

(b) The Principle of Solving Internal 

Penalty Function Method

Extremely small point

Feasible domain

Optimize the path

Initial 

point

Extremely 

small 

point

Boundary 

high-end

 

Fig. 1. The schematic diagram of CFs and the principle of solving IPFM. 
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In Eq. (6),   : 0n

i
D x R k x    refers to the feasible 

region and  i
k x  refers to the boundary function of the 

feasible region. The optimal solutions for the original problem 

and the dual problem are 
*p  and *d , respectively, as shown 

in Eq. (7). 

   * *

, , 0 , , 0
max min , , min max , ,

i ix xa b a a b a
d L x a b L x a b p

 
    (7) 

The ADMM, as an extension of augmented Lagrangian, is 
a framework for solving large-scale data in machine learning. 
It can transform large-scale image problems into relatively 
simple local sub-problems, and obtain global solutions by 
calculating the solutions of local sub-problems. ADMM solves 
constrained local problems by introducing auxiliary variables, 
decomposing the objective function containing the original 
problem into multiple easily solvable local sub-problems. 
ADMM is related to iterative algorithms such as splitting, 
multiplier methods, and dual decomposition methods, and is 
very suitable for solving distributed convex optimization 
problems. On the basis of augmenting the Lagrangian function, 
ADMM has multiple advantages in simplicity, efficiency, and 
convex optimization solving. It can solve the minimization 
problem with equality constraints on two variables and the 
objective function, as shown in Eq. (8). 

   
,

min . .
x z

f x g z s t Wx Bz c      (8) 

In Eq. (8), x , z , and c  refer to vectors, W , and B  
matrices. x  and z  are the optimization variables for the 

demand solution.    f x g z  refers to minimizing the 

objective function, which can be composed of the function of 
variable x  and z . They can handle regularization terms in 
optimization objectives of statistical learning problems, 
consisting of equality constraints. The specific process of 
minimizing iterative solutions and updates is as follows. 
Combining the linear part with the quadratic term yields a 
concise scaling form, with the specific iteration process as 
follows. One is to calculate and minimize related problems, 
and solve variables. The second is the calculation and related 
minimization problem. The third is to update the dual 
variables until the algorithm reaches the convergence 
condition. The multiplier method in ADMM refers to the dual 
ascent method of augmented Lagrangian functions, while the 
alternating direction refers to the alternating updates between 
the original variable and the dual variable. Fig. 2 is a 
schematic diagram of ADMM. 

B. EDoSG Combined with D2OCA 

The EDoSG problem considers ESDs, renewable energy, 
and generators, due to differences in ideal models and power 
generation equipment. Therefore, the generator set needs to 
consider capacity constraints, climb constraints, and SDB on 
both sides, and based on this, construct D2OCA to solve the 
EDoSG problem. The MAS is a system that places individual 
agents to achieve overall optimization goals. According to 
different control strategies, MASs can be divided into three 
structural systems: hybrid, distributed, and centralized [19-20]. 
Fig. 3 is a diagram of a distributed system. 
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Fig. 2. Schematic diagram of alternating direction multiplier method. 
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Fig. 3. Schematic diagram of a distributed system. 

In a distributed architecture system, the task of each agent 
is to collect local information, exchange and update 
information with neighboring agents, with the aim of 
achieving task objectives. The consistency problem of MASs 
has been applied in EDoSG and state estimation of power 
networks, which can be described through graph theory. The 
communication topology relationships of various generator 
units in EDoSG can be represented through graph theory. Fig. 
4(a) and 4(b) are directed and undirected graphs, respectively. 
The difference between the two graphs is that directed graphs 
have directions, while undirected graphs have no directions. 
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(b) Undirected graph
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Fig. 4. Schematic diagrams of directed and undirected graphs. 
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The topology of multi-agent networks is represented by an 

undirected graph  , ,G V E A . The state information of the 

i -th agent in a MAS at time t  is  i
x t . The model of a 

MAS with first-order continuous time is Eq. (9). 

   i i
x t u t      (9) 

In Eq. (9), the control input at time t  is  i
u t . The 

classic 1OCA under continuous time is expressed as Eq. (10). 

        
1

n

i i ij j i
j

x t u t a x t x t


      (10) 

The matrix form of Eq. (10) indicates that the states of 
each agent gradually reach homogeneity, i.e. 

    0
j i

x t x t  . The first-order consistent dynamic model 

of MASs in discrete-time is Eq. (11). 

     1
i i i

x k x k u k       (11) 

The distributed consistency algorithm achieves the same 
value of state variables through a consistency mechanism, 
including average consistency, arithmetic consistency, 
geometric consistency, and harmonic consistency. The daily 
economic dispatch period can be divided into flat peak, low 
valley, and peak. The total demand during the corresponding 
time period is 128MW, 96MW, and 148MW, respectively. The 
total output of ESU and renewable energy is 20MW, 10MW, 
and 13MW, respectively. Eq. (12) is the mathematical 
expression for the EDoSG problem. 

    

 

. , , ,
1 1

, , ,
1

, , 1

,

,

min
H N

i h i h i h i h
h i

N

i h i h i h h
i

R R

i i h i h i

m M

i i h i

m M

i i h i

f P g S

P R S D

P P P P

P P P

S S S

 









   


   


 
  








   (12) 

In Eq. (12), the different time periods in the daily schedule 

are  1,2, ,h H . The output power of the i -th generator 

during time period h  is ,i h
P . The output power of the i -th 

ESU is ,i h
S . The output power of the i -th renewable power 

generation unit is ,i h
R . The expected electricity demand 

during time period h  is h
D . The ramp rate limit for the 

i -th generator is 
R

i
P . The min-output and max-output of the 

i -th generator are 
m

i
P  and 

M

i
P , respectively. The 

min-output and max-output of the i -th ESU are 
m

i
S  and 

M

i
S , respectively. The cost functions for the i -th ESD and 

the i -th generator during time period h  are  , ,i h i h
g S  and 

 . ,i h i h
f P , respectively, and the calculation formula is Eq. 

(13). 

 

 

2

. , , , , , ,

2

, , , , , , ,

1 2 3

1 2 3

i h i h i h i h i h i h i h

i h i h i h i h i h i h i h

f P a P a P a

g S b S b S b

   


  

   (13) 

In Eq. (13), the cost parameters of the generator cost 

function are ,
1

i h
a , ,

2
i h

a , and ,
3

i h
a , and the cost parameters 

of the ESU cost function are ,
1

i h
b , ,

2
i h

b , and ,
3

i h
b . Table II 

shows the cost parameters of the generator in the 
communication topology diagram of three nodes. Each vertex 
in the communication topology diagram is connected to a 

generator, ESD, renewable energy, 3i  , 3h  . The Laplace 

matrix can be expressed as 

2 1 1

1 2 1

1 1 2

W

  
 

  
 
   

. 

TABLE II.  COST PARAMETERS OF GENERATORS IN THE COMMUNICATION 

TOPOLOGY DIAGRAM OF THREE NODES 

Alternator 1a  2a  3a  
mP  

MP  
RP  

1,1 1,2 1,3
, ,P P P

 
0.0075 -1 0 34 78 28 

2,1 2,2 2,3
, ,P P P

 
0.2500 -4 0 9 32 17 

3,1 3,2 3,3
, ,P P P

 
0.1000 2 0 17 49 18 

Before solving the optimal solution, the EDoSG model 
needs to propose the following assumptions: the 
communication topology of the smart grid is connected and 
undirected, and the capacity constraints of the generator and 
ESU can be found internally. The direct solution of the 
EDoSG model is computationally challenging, and research is 
needed to transform the problem into an unconstrained 
optimization problem before solving it. Based on the 
assumptions and IPFM, the EDoSG problem can be described 
again using Eq. (14). 

    

 

. ,, ,
1 1

, , ,
1

, , 1

min
i h i h

H N
γ λ

i h i h
h i

N

i h i h i h h
i

R R

i i h i h i

f P g S

P R S D

P P P P

 











  

   





   (14) 

According to LDT, the EDoSG problem can be 

transformed into an optimal solution of  *, *, *, *P S μ λ . 

Renewable energy has characteristics such as intermittency, 
volatility, and randomness, making it difficult for smart grids 
to control output power. To ensure the stability of the 
renewable energy generation grid, the smart grid is set to 
maintain a fixed value of renewable energy and ESUs through 
the output of ESUs during the time period, and the SDB can 
be regarded as unchanged. Based on assumptions and the 
expression of D2OCA, this study proposes D2OCA in the 

EDoSG problem. The new variables for i
P  and i

S  in this 

method are i
B  and i

U , respectively, and the convergence 

parameters are P
η  and S

η . This D2OCA has high 

convergence performance, which can be confirmed by the 
research conclusions of scholars in the supply and demand 
balance of smart grids. The ESU does not change with the 
fluctuation of renewable energy supply at the beginning of 
each time slot, but it can still reach the optimal solution 
through the convergence process within each time slot. 
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IV. ANALYSIS OF D2OCA SIMULATION RESULTS IN 

EDOSG 

The performance of the D2OCA for smart grids is 
analyzed, including convergence performance and output 
power. The used testing system is the IEEE6 bus system, and 
the communication topology of the smart grid is represented 
by an undirected graph with three vertices. The cost function 
of generators and energy storage can be represented by a 
quadratic function. The classic economic scheduling algorithm, 
1OCA, is known for its ideal convergence accuracy and speed. 
The D2OCA, optimized from 1OCA, is used as a comparative 
algorithm. Both algorithms are reasonable. The operating 
system is Windows 7, the storage is solid-state drives, the 
central processing unit is Intel Core i7, and the operating 
memory is 16GB. Table III shows the power generation cost 
parameters of the ESU. The time slot is set to 24 seconds, and 
the starting output power of the generator is (47, 15, 25, 72, 28, 
31, 50, 23, 35) MW. The starting output power of the ESU is 

(5, 3, 3, 6, 3, 4, 8, 8, 4) MW. The initial values of i
B  and i

U  

are 0, and the P
η  values during low, peak, and off peak 

periods are 2.54, 3.95, and 2.20, respectively. The S
η  value 

for all three time periods is 2.14, and the initial values for a  

and b  are all 10. 

This study first conducts economic dispatch simulation 

analysis on the output power of the generator and variable i
B . 

Fig. 5(a) to 5(c) show the economic dispatch results of the 

output power i
P , variable i

B , and incremental cost i
IC  of 

the smart grid D2OCA. In Fig. 5(a), different generators can 
converge to stable values in a short period of time at different 

time periods. The output power of each generator during low, 
peak, and off peak periods is consistent with the actual 
electricity consumption. There are significant differences in 
the output power of different generators. In Fig. 5(b), the 

stable values of variable i
B  for different generators during 

the same time period are the same, which are (-2.3816, 
-2.3715, -3.5029). In Fig. 5(c), the incremental cost of the 
generator gradually converges with the output power, and the 
incremental cost of power generation during the low, peak, 
and flat peak periods is consistent, with values of 6.0874, 
9.4528, and 7.7068, respectively. 

TABLE III.  POWER GENERATION COST PARAMETERS OF ENERGY 

STORAGE UNITS 

Energy storage unit 1b  2b  3b  
mS  

MS  

1,1 1,2 1,3
, ,S S S

 
0.7 -1 0 0 30 

2,1 2,2 2,3
, ,S S S

 
0.5 -2 0 0 20 

3,1 3,2 3,3
, ,P P P

 
0.2 1 0 0 20 

Fig. 6(a) to 6(b) respectively refer to the iterative results of 

variables a  and b . Both variables a  and b  converge to 

a value of 0 in a relatively short period of time. The 
convergence speed during low valley periods is moderate, the 
convergence speed during peak periods is the slowest, and the 
convergence speed during off peak periods is the fastest. 

Based on Fig. 5, when the two variables a  and b  reach 

convergence values, the output power of the generator 
gradually tends towards the optimal economic dispatch result. 
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Fig. 5. Economic dispatch results of D2OCA for smart grid. 
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Fig. 6. Iteration results of two variables. 

This study then conducts economic dispatch simulation 

analysis on the output power and variable i
U  of the ESU. 

Fig. 7(a) and 7(b) respectively refer to the optimal scheduling 
results of the output power and variables of the ESU. In Fig. 7 
(a), at the beginning of each gap, the output of renewable 
energy leads to the output power of the ESU, and reaches the 
optimal value at each time slot. There is no significant 
variation pattern between the output power of the ESU and the 
electricity consumption period and the type of ESU. The 
optimal scheduling results for ESUs in the first time slot are 
(0.747, 2.0424, 5.2028, 0.8419, 2.1896, 5.9849, 1.5867, 
3.2635, 10.968). In the second time slot, the optimal 

scheduling result of the ESU decreases, with values of (0.6279, 
1.8568, 4.4679, 0.7356, 2.0356, 5.2132, 1.3758, 2.8965, 
9.5689). When the time increases to the third time slot, the 
optimal scheduling result of the ESU is lower than that of the 
second gap, but the magnitude of the decrease does not show a 

clear pattern of change. In Fig. 7(b), the variable i
U  for each 

time slot reaches a convergence value. As the time slot 
increases, the numerical value of convergence also gradually 
increases. In the third time slot, the convergence values of 

variable i
U  are (0.1087, 0.1087, 0.1185, -0.1582, -0.1582, 

-0.1583, -0.3660, -0.3659, -0.3660). 
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Fig. 7. Optimal scheduling results for output power and variables of ESUs. 

Fig. 8 shows the simulation results of the actual total 
output at different time periods. The actual total output 
reaches SDB in a short period of time with changes in 
renewable energy, while remaining in SDB during the 
scheduling process. The actual total output during low, peak, 
and off peak periods is 99MW, 147MW, and 120MW, 
respectively. 

Finally, this study validates the results of D2OCA in 
EDoSG by comparing it with the classic 1OCA. Fig. 9(a) and 

9(b) respectively refer to the output power and incremental 
cost of each generator. In Fig. 9(a), the variation pattern is 
similar to that in Fig. 5(a), but there are still differences, 
mainly reflected in the convergence speed and stable values. 
Different generators can converge to stable values in a short 
period of time at different time periods. There are certain 
differences between the output power and actual electricity 
consumption of each generator during low, peak, and off peak 
periods, and there are also significant differences in the output 
power of different generators during the same electricity 
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consumption period. The optimal scheduling result for output 
power is (46.5, 29.4, 17.4, 69.5, 28.1, 37.6, 58.0, 24.6, 28.5) 
MW. In Fig. 9(b), the incremental cost of the generator 
gradually converges with the output power, and the 
incremental cost of power generation during the low, peak, 
and flat peak periods is consistent, with values of (7.456, 
9.251, 5.621). 

Table IV shows the total cost of two consistency 
algorithms in EDoSG. Compared to 1OCA, D2OCA has better 
optimal scheduling results. The generator costs of D2OCA in 
the first, second, and third time periods are 2.2475 million 
yuan, 5.8236 million yuan, and 3.7932 million yuan, 
respectively, which increases by 10.23%, 11.36%, and 13.36% 
compared to the corresponding time periods of 1OCA. 
Therefore, the proposed D2OCA application in the EDoSG 
problem model solving process can reduce the total cost of the 

generator. Therefore, D2OCA is effective and has higher 
convergence accuracy and speed compared to 1OCA. 
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Fig. 8. Simulation results of actual total output in different time periods. 
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Fig. 9. Output power and incremental cost of each generator. 

TABLE IV.  THE TOTAL COST OF TWO CONSISTENCY ALGORITHMS IN 

SMART GRID ECONOMIC DISPATCH (106YUAN) 

algorithm varIable Period 1 Period 2 Period 3 Total 

1OCA 

 

1
P

 
75.362 185.368 126.375 387.105 

2
P

 
76.465 176.341 119.351 372.157 

3
P

 
81.268 191.361 119.829 392.458 

D2OCA 

1
P

 
75.359 185.363 126.372 387.094 

2
P

 
76.463 176.337 119.349 372.149 

3
P

 
81.265 191.357 119.826 392.448 

V. CONCLUSION 

To achieve low-cost control of generators in EDoSG 
problems, this study innovatively proposed D2OCA based on 
the introduction of multi-agent consensus algorithms. The 
simulation of D2OCA showed that different generators could 
converge to a stable value in a short period of time at different 
time periods, and there were significant differences in the 
output power of different generators. The stable values of 

variable i
B  for different generators during the same time 

period were the same, which were (-2.3816, -2.3715, -3.5029). 
The incremental cost of generators was consistent in the three 
time periods of low valley, high peak, and off peak, with a 
total cost of 6.0874, 9.4528, and 7.7068, respectively. Both a  

and b  variables converged to a value of 0 in a relatively 

short period of time. The convergence speed during low valley 
periods was moderate, the convergence speed during peak 
periods was the slowest, and the convergence speed during off 
peak periods was the fastest. 1OCA could converge to a stable 
value in a short period of time for different generators at 
different time periods. There was a certain difference between 
the output power and actual electricity consumption of each 
generator during low, peak, and off peak periods. The 
application of D2OCA in the EDoSG problem model solving 
process could reduce the total cost of generators. The 
proposed EDoSG model still has limitations, such as the 
communication topology of the smart grid being connected 
and undirected, and the capacity constraints of the generator 
and ESU being able to find the optimal solution internally. The 
study did not take into account the charging and discharging 
limitations of the energy storage device. Instead, it was treated 
as a regular power source, which is not consistent with the 
actual system. Subsequent research on the economic 
scheduling problem of non-convex smart grids with energy 
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storage device charging and discharging restrictions has 
certain practical significance. 
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