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Abstract—In the quality control of multi-variety and small-

batch products, the calculation of the process capability index is 

particularly important. However, when the sample size is not 

enough, the process distribution cannot be judged, if the 

traditional method is still used to calculate the process capability 

index; there will be misapplication or misuse. In this paper, the 

Bootstrap method is introduced into the estimation of process 

capability index and the calculation of its confidence interval by 

using Standard Bootstrap (SB), Percentile Bootstrap (PB), 

Percentile-t Bootstrap (PTB) and Biased-corrected Percentile 

Bootstrap (BCPB) methods were used to analyze and compare 

the process capability index. It is found that in symmetric 

distribution, only the sample size has a significant effect on the 

length of the confidence interval；but in asymmetric distribution, 

sample size and Bootstrap methods are both significant factors 

affecting the length of confidence interval. 

Keywords—Process capability indices; bootstrap; confidence 

interval; small samples 

I. INTRODUCTION 

Process capability analysis is an important part of statistical 
process control activities for continuous improvement. Process 
Capability Index (PCI) is designed to provide a general 
language for quantifying its performance; it is a dimensionless 
function of the process parameters and specifications. PCI is 
widely used in traditional manufacturing industries, but with 
the production mode has changed from single variety and large 
batch to multi-variety and small batch, and the number of parts 
of the same specification produced under the same process and 
similar production conditions has become less and less, which 
brings difficulties to the process capability analysis and the 
calculation of indicators and statistical inference. When the 
sample size is insufficient, the central limit theorem cannot be 
used to calculate the process capability index because it is 
impossible to judge the distribution of process data. If the 
traditional method is still used for calculation, it is easy to 
misunderstand and misuse. 

Process Capability Indices (PCIs) are considered as a 
practical tool by many advocates of statistical process control 
in industry. They are used to determine whether a 
manufacturing process is capable of producing with 
dimensions within a specified tolerance range. The process 
indices Cp and Cpk [1] are used for unit-less measures that 
relate the natural process tolerance (6 σ ), upper and lower 

specification limits. Chan et al. [2] developed Cpm that 
incorporates a target value for the process. Taguchi [3] and 
Chou et al. [4] provided tables for constructing 95 percent 
lower confidence limits for both Cp and Cpk. Their tables for 

limits on Cpk, however, are conservative and an approximation 
presented by Bissel [5] is recommended instead. Boyles [6] 
provided an approximate method for finding lower confidence 
limits for Cpm. The calculation of all these lower confidence 
limits assume a normally distributed process and many real 
world processes are not normally distributed and this departure 
from normality may be hard to detect. This could potentially 
affect both the estimates of the indices and the confidence 
limits based on these estimates. Efron [7] introduced and 
developed the non-parametric, but computer intensive 
estimation method called Bootstrap. Bootstrap method [8] 
replaces theoretical analysis with computer simulation 
technology, and replaces real distribution with statistical 
empirical distribution. It is effective for statistical analysis and 
process capability analysis under small sample conditions. 
Therefore, Bootstrap method can be introduced into point 
estimation and confidence interval calculation of Cp and Cpk 
under small sample conditions. 

The rest of this paper is consisted of as: Section II presents 
the related works. Section Ⅲ and Ⅳ realizes the estimation of 
Cp and Cpk based on Bootstrap method, and then experimental 
results are discussed in Section Ⅳ. Finally, this paper 
concludes in Section Ⅵ. Our study shows that in symmetric 
distribution, only the sample size has a significant effect on the 
length of the confidence interval, Bootstrap methods has no 
significant effect on the length of confidence interval. But in 
the skewed distribution, sample size and Bootstrap methods are 
both significant factors affecting the length of confidence 
interval. 

II. RELATED WORK 

Bootstrap method is very popular in modern statistics. 
Especially after the rise of big data, the effect of estimating the 
mean or variance of statistics with small samples is ideal. Its 
simulation result is very close to the real result, and it is often 
used to solve some situations that cannot be broken through in 
theory. The core idea of Bootstrap method is to replace 
theoretical analysis with computer simulation technology, that 
is, to extract the same number of samples from the original 
samples by repeated sampling technology, and replace the real 
distribution with its statistics. Bootstrap method can be used for 
the hypothesis testing and interval estimation problems of 
location parameter with unknown scale parameter and 
skewness parameter, it provides the satisfactory performances 
under the senses of Type I error probability and power in most 
cases regardless of the moment estimator or ML estimator [9]. 
By repeating the above process and calculating its mean or 
variance, the empirical distribution of statistics is substituted 
for the real distribution. 

*Corresponding Author. 
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Owing to these benefits, application of Bootstrap method in 
the process capability index includes:Bootstrap confidence 
intervals for indices such as Cp [10-13], Cpk [14, 15], Cpm 
[15], and Cpmk [16] are established for PCIs. Its applications 
can also be divided into: Using Bootstrap sampling to estimate 
the multivariate [17] or multiple process streams [13] process 
capability indices; using different methods of estimation to 
construct Bootstrap confidence intervals of generalized process 
capability index Cpyk [18]. Especially when data is non-normal, 
the Bootstrap confidence intervals of different distribution 
types of non-normal data were studied: such as the Modified 
Process Capability Index for Wei-bull distribution [19], 
Parametric and non-parametric bootstrap confidence intervals 
of CNpk for exponential [20] and exponential power distribution 
[21], and so on. In addition, its application can also be seen in 
the case of small samples [22, 23]. Bootstrap method replaces 
theoretical analysis with computer simulation technology, and 
replaces real distribution with statistical empirical distribution. 
It is effective for statistical analysis and process capability 
analysis under small sample conditions. Therefore, Bootstrap 
method can be introduced into point estimation and confidence 
interval calculation of Cp and Cpk under small samples. 

III. ESTIMATION OF CP AND CPK 

A. Definition and Estimation of PCIs 

The capability of a process is frequently measured by a 
process capability index (PCI) which is designed to provide a 
common and easily understood language for quantifying its 
performance, and is a dimensionless function of process 
parameters and specifications. Let USL and LSL be the upper 
and lower specification limits, respectively. If the process 
follows or approximately follows a normal distribution, the 
statistical characteristics of the traditional process capability 
index can be calculated, including point estimation, confidence 
interval, and estimated distribution characteristics. 

If the process follows or approximately follows a normal 
distribution, using the above two sample statistics, point 
estimates of PCIs such as Cp & Cpk [1] , and Cpm [2] can be 
calculated. 

The definition of Cp is: 

σ

LSLUSL
C p

6


                             (1) 

The estimation of Cp is: 
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Wherein, USL and LSL are the upper and lower 
specification limits of the process. 

Since the index Cp does not take into account the location 
of the process mean ( μ ), the index Cpk is defined: 

}
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If the sample size is large and the data follows a normal 
distribution, a point estimate of the process capability indicator 

can be obtained by calculating the mean and standard deviation 
of the sample. They can be represented by the following 
statistics: 

μ is represented by the sample mean X ： 
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2σ is represented by the sample variance S2 : 
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Wherein, Xi is the i-th observation value, X is the sample 

mean, and n is the sample size. X and S2 are unbiased 

estimators of population mean μ  and population variance 2σ . 

The expected value for obtaining the estimated value of the 

exponent Cp by calculating its r-th moment pĈ  is: 
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So when r=1, the mean of the estimated value of the index 
Cp [24] is: 
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And bf is the correction coefficient, 
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So when r=2, the variance of the estimated value of the 
index Cp [24] is : 
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Therefore, based on (6), it can be obtained that if the 
process follows or approximately follows a normal distribution, 

then for n samples in the population, the statistic 
2

21

σ

s)n( 

follows 2χ distribution with n-1 degrees of freedom, denoted as: 
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When the significance level is α , the )%α( 1100  

confidence interval for Cp [25] is: 
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The same is true of the )%α( 1100  confidence interval 

for Cpk [25]: 
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B. Analysis of the Influence of Sample Size 

It can be seen from Eq. (6) to Eq. (11) that sample size n 
has an impact on the statistical estimator of the process 
capability index. 

1) Impact of sample size on the correction coefficient bf : 

As shown in Table I: With the increase of sample size n, the 

closer the value of 1/bf is to 1, the closer the point estimate is to 

the true value of Cp. When n=400, bf value loses significance, 

and the corresponding PCI estimation is also meaningless. It 

follows that the appropriate sample size is usually 100 or 200. 

There is no need to adopt full sampling method or blindly 

increase sample size. 

2) Impact of sample size on the confidence interval of Cp: 

The confidence interval of Cp is shown in Table II, when it 

follows or approximately follows a normal distribution at a 

given value. As shown in the Table II, with a given value pĈ , 

the width of the confidence interval becomes shorter as the 

sample size n increases. When the sample size n is specified, 

the larger the pĈ value is, the longer the confidence interval 

length is. Therefore, when the data follows or approximately 

follows a normal distribution, in order to obtain a tighter 

confidence interval for Cp, it is necessary to consider both the 

pĈ value and the sample size n in order to obtain a more 

stringent Cp confidence interval. 

Wherein，Lc and Uc are the lower and upper confidence 

limits. 

3) Impact of sample size on the confidence interval length 

of Cpk: As shown in Table III: With reference to the 

conclusions of the above Table I and Table II, considering the 

economy of sampling and the accuracy of parameter 

confidence intervals, we only analyzed the influence of sample 

size within 200 on the confidence intervals and interval widths 

of Cpk. 

Similar to the point estimation and interval estimation of 
Cp, when the data obey or approximate obey the normal 
distribution, the confidence interval and interval width of Cpk 
are affected by both the sample size n and the Cpk estimator. 

When pkĈ  is specified, the larger the sample size is, the more 

accurate the interval estimation and the shorter the width of the 
confidence interval are. When the sample size is specified, the 

larger the pkĈ
 
value is, the longer the corresponding 

confidence interval width is. Here CIL indicates the confidence 
interval length. 

Based on the analysis shown in Table I to Table III, we can 
find that the traditional process capability analysis is based on 
the process obeying or approximately obeying the normal 
distribution. In order to ensure the reliability of parameter 
estimation, a sufficient sample size is usually required, i.e., 
n=100 or 200. This means that in traditional analysis we need a 
large sample. In other words, when the sample size is small, it 
is impossible to accurately judge the type of distribution of the 
data. At this point, if the traditional parameter estimation 
method is still used to analyze the process capability, the 
calculated PCI is not accurate and the CIL is longer. We'll get 
the wrong conclusions. To solve these problems, we can use 
the Bootstrap method to calculate the confidence interval of the 
process capability indicator. 

TABLE I. IMPACTS OF SAMPLE SIZE ON BF  

n 5 6 7 8 9 10 20 30 40 

bf 1.253314 1.189416 1.151243 1.125869 1.107784 1.094242 1.041764 1.026826 1.019759 

n 50 60 70 80 90 100 200 300 400 

bf 1.015639 1.01294 1.011036 1.009621 1.008527 1.007656 1.003789 1.002517 --- 

TABLE II. CONFIDENCE INTERVALS OF 
p

Ĉ  

n 
[Lc,Uc] pĈ

=1 pĈ
=1.33 pĈ

=1.5 pĈ
=1.67 pĈ

=2.0 

5 [0.3480, 1.6691] [0.4628, 2.2199] [0.5220, 2.5037] [0.5812, 2.7874] [0.6960, 3.3382] 

10 [0.5478, 1.4538] [0.7286, 1.9336] [0.8217, 2.1807] [0.9148, 2.4279] [1.0956, 2.9076] 

50 [0.8025, 1.1971] [1.0673, 1.5921] [1.2037, 1.7957] [1.3402, 1.9992] [1.0050, 2.3942] 

100 [0.8608, 1.1389] [1.1449, 1.5147] [1.2912, 1.7084] [1.4375, 1.9020] [1.7216, 2.2778 

200 [0.9018, 1.0981] [1.1994, 1.4605] [1.3527, 1.6472] [1.5060, 1.8338] [1.8036, 2.1962] 

500 [0.9380, 1.0620] [1.2235, 1.4365] [1.4070, 1.5930] [1.5665, 1.7735] [1.8760, 2.1240] 

1000 [0.9561, 1.0438] [1.2716, 1.3883] [1.4341, 1.5657] [1.5967, 1.7432] [1.9122, 2.0876] 
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TABLE III. IMPACTS OF SAMPLE SIZE ON CONFIDENCE INTERVALS LENGTH OF CPK 

n 

[Lc,Uc] pk
Ĉ

=1 
CIL pk

Ĉ
=1.5 

CIL 
pk

Ĉ
=1.67 

CIL 

5 [0.2480, 1.7520] 1.5041 [0.4203, 2.5797] 2.1595 
[0.6231 

,2.8577] 
2.2346 

10 [0.4939, 1.5061] 1.0121 [0.7769, 2.2231] 1.4462 
[0.9308 

2.3932] 
1.4623 

50 [0.7815, 1.2185] 0.4370 [1.1890, 1.8110] 0.6221 
[1.3560, 

2.0195] 
0.6635 

100 [0.8461, 1.1539] 0.3077 [1.2811, 1.7189] 0.4378 
[1.4502, 

1.8985] 
0.4483 

200 [0.8914, 1.1086] 0.2171 [1.3456, 1.6544] 0.3089 
[1.4976, 

1.8145] 
0.3168 

IV. ESTIMATION OF CP AND CPK BASED ON BOOTSTRAP 

METHOD 

A. Introduction of Bootstrap 

The Bootstrap method is to repeatedly resample the original 
sample, extract B replacement samples with random (RSWR) 

with sample size n from sample S0, and express them with 

iS  

(subscript i represents the i-th time resampling). Where, 

}x,...,x{S ni

  1
 represents a simple RSWR extracted from S0, 



iS  is called Bootstrap sample. For each subsample 

iS , its T 

statistic is calculated and expressed by }t,t,t{ B

 21
 

respectively. 

Assuming there is a random sampling sequence S0={x1,..., 
xn} with a length of n from a completely uncertain distribution. 
Where xi is the independent random sampling of the 
distribution, where ti represents the value of a specific sample 
statistic T . 

The distribution of the statistic T is called the Empirical 
Bootstrap Distribution (EBD), where B is the sample size. 
When B is large enough, an approximation of the statistic T can 
be obtained by repeated sampling from S0. In this way, the 
Bootstrap method can be used for statistical simulation of small 
samples, so as to obtain statistical estimation of unknown 
distribution and unknown parameters. Generally, we assumed 
B = 1000 bootstrap re-samples. 

Bootstrap methods include Standard Bootstrap (SB), 
Percentile Bootstrap (PB), Biased corrected Percentile 
Bootstrap (BCPB), Percentile T Bootstrap (PTB), and Biased 
corrected and accelerated Bootstrap (BCa). Scholars [10-19, 21] 
mostly used the two of four methods and compared the 
Bootstrap confidence interval of PCIs. It is difficult to 
implement the BCa method [20], so its application is less. 
Therefore, this paper also uses the first four Bootstrap methods. 

B. Bootstrap Confidence Intervals with Four Methods 

Based on the original random samples x1, x2,..., xn with 

sample size n, construct B new Bootstrap samples 

1x , 

2x ,..., 

nx , 

i.e. }x,...,x{S ni

  1
. Calculate the Cpvalues for each sub 

sample 

iS , denoted by }C,,C,C{ B

 21
 respectively. By 

arranging the values in ascending order, the empirical 
probability distribution of B T-values can be obtained, which is 
called the Bootstrap Empirical Distribution (EBD). Taking 
B=1000 and using the Bootstrap method to repeat sampling 

from small sample S0, statistical estimates of Cp can be 
obtained. 

Here pĈ  and pkĈ  represents the estimate of Cp and Cpk, 

)i(Ĉp

 and )i(Ĉ kp

  represent the sequential estimator of the 

process capability index calculated from 1000 Bootstrap 
random replacement samples. The sample mean calculated 
from these 1000 Bootstrap estimators are: 
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The standard deviation of the samples are: 
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999

S                 (14) 

 


 
1000

1

21

i

pkpkkpc C)i(Ĉ
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When the distribution of pĈ  and pkĈ
 
follows or 

approximates the normal distribution, the statistics calculated 
in Eq. (14) and Eq. (15) are essentially estimators of the 
standard deviations of Cp and Cpk . 

1) Confidence interval based on SB[8,14]: When the 

significance level is α, the standard Bootstrap confidence 

intervals for )%α( 1100  of the process capability index Cp 

and Cpk are respectively: 
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Wherein, 
2

1
αZ


is the 1-α/2 percentile of the standard 

normal distribution. 

2) Confidence interval based on PB [8,14] 
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Wherein, α/2 and (1-α/2) are the upper and lower bounds of 
the confidence intervals for the statistics Cp and Cpk at the 
(1−α) confidence level, respectively, i.e. 

3) Confidence interval based on BCPB[8,15] 
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4) Confidence interval based on PTB [8,14] 
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Wherein，Scp∗is the sample standard deviation of { ）（i
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C. Calculation of CIL of Cp and Cpk under Bootstrap 

Methods 

Based on the above principles, enough samples are 
obtained by repeated sampling from small samples, assuming 
that they obey different distributions; date should be 
transformed to normal firstly before calculating PCI. 

For comparison, the original distribution is transformed so 
that the different types of distributions have the same mean and 
variance. To be more general, the data generated by the 
simulation is processed centrally, that is, standard normal 
processing. Assuming that different data distributions have the 
same mean and variance, the data can be transformed 
accordingly: 

0

0

σ

μX

σ

μY 







                    (24) 

where, μ , σ , 0μ  and 0σ  are the mean and standard 

deviation of the expected output distribution and the original 
distribution, respectively. Table IV summarizes the means and 
variances of some common distributions. These parameters 
will be used in the data normal transformation. 

To be more general, we choose several typical distributions, 
including symmetric distributions such as the normal 
distribution and the heavy-tailed distribution t5, and 
asymmetric distributions such as the moderately right-skewed 

distribution 2

5χ  and the slightly skewed distribution logn(0, 

0.4). 

TABLE IV. MEAN AND VARIANCE OF DIFFERENT DISTRIBUTION 

Distributions Mean Variance Statistics 

Normal distribution 
 

2  

 ：Mean 
2 ：variance 

Exponential distribution 1/λ 1/λ2 λ：Threshold 

χ2 distribution n 2n n：Freedom 

T distribution 0 n/(n-2) n：Freedom 

F distribution v/(v-2) 

 

u&v：first & second degree of freedom 

Log-normal distribution e(μ+σ^2)/2 е2μ+σ^2(еσ^2-1) 

 ：Mean 
2 ：variance 

  

4
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Firstly, to obtain a different distribution type with a mean 
of 0 and a standard deviation of 1, you can transform the data 
based on Eq. (24) as follows: 

1151
5

3
XYt~X 

                     

(25) 

10

5

10

1
22

2

52  XYχ~X                (26)  

1

1

1

1
400

160
3

160080
33







... e
X

ee
Y).,(Logn~X     (27) 

Secondly, based on the new distribution generated by the 
above three transformations, using four Bootstrap methods, the 
confidence interval and CIL value at α=0.1 can be obtained 
through simulation. The simulation results and analysis are 
shown in Section Ⅳ. 

V. EXPERIMENTAL ANALYSIS  

Based on the calculation results in Section Ⅳ, the influence 
of sample size n and different Bootstrap methods on the length 
of confidence interval is analyzed. 

A. When the Data Follows Symmetrical Distribution 

In order to analyze the factors affecting CIL, we first 
carried out ANOVA and drew images to compare the 
difference of CIL under different Bootstrap methods. 

Through ANOVA, we found that only the sample size n 
had a significant effect on CIL (its P value less than 0.05), 
while the Bootstrap method had no significant effect on CIL 
(its P value greater than 0.05). In addition, combined with 
comparison graph analysis in Fig. 1, regardless of which 
Bootstrap method is used, CIL decreases as the sample size n 
increases. 

TABLE V. SIMULATION RESULT UNDER DISTRIBUTION WITH FOUR BOOTSTRAP METHOD 

Distribution 
Symmetrical Distribution Asymmetrical Distribution 

Normal distribution t5 
2χ
 

logn(0, 0.4) 

Method n [Lc ,Uc] CIL [Lc, Uc] CIL [Lc, Uc] CIL [Lc, Uc] CIL 

SB 

10 
[0.4489, 
1.5213] 

1.0724 
[0.3602, 
1.7573] 

1.3971 
[0.2552, 
1.7442] 

1.789 
[0.3655, 
1.7383] 

1.3728 

20 
[0.5335, 

1.3548] 
0.8213 

[0.5136, 

1.7206] 
1.207 

[0.7303, 

1.7342] 
1.0039 

[0.5773, 

1.7379] 
1.1606 

30 
[0.7335, 
1.3346] 

0.6011 
[0.7523, 
1.7125] 

0.9602 
[0.8902, 
1.6979] 

0.8077 
[0.7562, 
1.7293] 

0.9731 

50 
[0.7402, 

1.2963] 
0.5561 

[0.7563, 

1.2112] 
0.4549 

[0.9103, 

1.3302] 
0.4799 

[0.7623, 

1.3194] 
0.5571 

PB 

10 
[0.7256, 

1.6432] 
0.9176 

[0.6887, 

1.8730] 
1.1843 

[0.7443, 

1.9936] 
1.2493 

[0.6933, 

1.8432] 
1.1499 

20 
[0.7312, 

1.6324] 
0.9012 

[0.7809, 

1.8566] 
1.0757 

[0.7892, 

1.8952] 
1.106 

[0.8012, 

1.8979] 
1.0967 

30 
[0.7418, 

1.6330] 
0.8912 

[0.7942, 

1.5653] 
0.8711 

[0.7902, 

1.8146] 
1.0244 

[0.7995, 

1.35669] 
0.8674 

50 
[0.7561, 

1.5744] 
0.8183 

[0.8051, 

1.26519] 
0.8468 

[0.7912, 

1.5135] 
0.7223 

[0.8089, 

1.5601] 
0.7512 

BCPB 

10 
[0.7220, 

1.6042] 
0.8822 

[0.7523, 

1.7325] 
0.9802 

[0.7902, 

1.8979] 
1.1077 

[0.7562, 

1.8283] 
1.0721* 

20 
[0.7524, 

1.5761] 
0.8237 

[0.763, 

1.8073] 
1.0443 

[0.8298, 

1.8939] 
1.0641 

[0.7883, 

1.7122] 
0.9239* 

30 
[0.7732, 

1.5636] 
0.7904 

[0.7803, 

1.6314] 
0.8511 

[0.8973, 

1.8103] 
0.913 

[0.7903, 

1.6832] 
0.8929 

50 
[0.7768, 

1.5592] 
0.7824 

[0.7959, 

1.5351] 
0.7392 

[0.9312, 

1.7527] 
0.8215 

[0.7991, 

1.6403] 
0.8412* 

PTB 

10 
[0.8851, 

1.7562] 
0.8711 

[0.8023, 

1.8962] 
1.0939 

[0.7776, 

1.8792] 
1.1016* 

[0.7370, 

1.8662] 
1.1292 

20 
[0.9213, 

1.7175] 
0.7962 

[0.8532, 

1.7308] 
0.8776 

0.8232, 

1.7957] 
0.9725* 

[0.8109, 

1.7892] 
0.9783 

30 
[0.9343, 

1.708] 
0.7737 

[0.8832, 

1.6998] 
0.8166 

[0.8454, 

1.7379] 
0.8925* 

[0.8216, 

1.6979] 
0.8763 

50 
[0.9580, 

1.7078] 
0.7498 

[0.9052, 

1.6881] 
0.7829 

[0.8523, 

1.7159] 
0.8636* 

[0.8581, 

1.6475] 
0.7894 
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TABLE VI. ANOVA TABLE UNDER NORMAL DISTRIBUTION 

Sources Degree of freedom SS MS F P 

n 3 1.68907 0.563023 10.62 0.003 

Method 3 0.07372 0.024574 0.46 0.175 

Error 9 0.47715 0.053017   

Total error 15 2.23994    

S = 0.2303 R-Sq = 78.70% R-Sq(adjust) = 64.50% 

TABLE VII. ANOVA TABLE UNDER T5 DISTRIBUTION 

Sources Degree of freedom SS MS F P 

n 3 0.85628 0.285428 17.93 0.000 

Method 3 0.09789 0.032631 2.05 0.177 

Error 9 0.14327 0.015918   

Total error 15 1.09744    

S = 0.1262 R-Sq = 86.95% R-Sq(adjust)= 78.24% 

 

Fig. 1. CIL of Cpk under symmetrical distribution. 

B. When the Data Follows Asymmetric Distribution 

The ANOVA and image results are as follows: sample size 
n and Bootstrap methods are both significant factors affecting 
CIL (their P value are both less than 0.05). That is to say, the 
larger of sample size n is, the shorter of the CIL is. 

Combined with Fig. 2, it can be found that the CIL under 
different Bootstrap methods are different but when the data 

follows 2

5χ  distribution, and the CIL of the later two Bootstrap 

methods is more stable, but the CIL of PTB is the shortest. 
While When the data follows logn(0,0.4) distribution (which is 

slightly skewed), the ANOVA and image results are a little 
different, the CIL of the BCPB methods is more stable and 
shorter. That is to say: 

 In skew distribution, PTB method and BCPB method 
are better than SB and PB method in estimating CIL. 

 In the slightly skewed distribution, such as log-normal 
(0, 0.4) distribution, BCPB method is recommended. 

For moderately skewed distributions, such as 2

5χ

distributions, the PTB method is recommended. 

TABLE VIII.  TWO FACTORS OF ANOVA TABLE UNDER CHI-SQUARE DISTRIBUTION 

Sources Degree of freedom SS MS F P 

n 3 0.52345 0.174482 6.77 0.011 

Method 3 0.32737 0.109124 4.23 0.040 

Error 9 0.23212 0.025792   

Total error 15 1.08294    

S = 0.1606 R-Sq = 78.57% R-Sq(adjust) = 64.28% 
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TABLE IX. TWO FACTORS ANOVA TABLE UNDER LOG-NORMAL(0,0.4) DISTRIBUTION 

Sources Degree of freedom SS MS F P 

n 3 1.66676 0.555587 54.54 0.000 

Method 3 0.15233 0.050778 4.98 0.026 

Error 9 0.09168 0.010187   

Total error 15 1.91078    

S = 0.1009 R-Sq = 95.20% R-Sq(adjust)= 92.00% 

C. Findings 

1) In symmetric distribution: Based on all the above 

ANOVA (see Tables VI-VII) and combined with Fig. 1, the 

following findings can be drawn: 

Take normal distribution and T distribution as examples, 
only the sample size has a significant effect on the length of the 
confidence interval: the larger the sample size n is, the shorter 
the CIL is. In the symmetric distribution, the four Bootstrap 
methods had no significant effect on the length of confidence 
interval, that is, there was no significant difference between the 
four methods. 

2) In asymmetric distribution: Based on all the above 

ANOVA (see Tables VIII-IX) and combined with Fig. 2, the 

following findings can be drawn: 

Take chi-square distributions and log-normal distributions 
as examples, both the sample size n and the Bootstrap method 
are important factors affecting CIL. The CIL gets shorter as the 
sample size n increases. In addition, the confidence intervals 
calculated under the four Bootstrap methods are significantly 
different. 

 
Fig. 2. CIL of Cpk under asymmetric distribution. 

VI. CONCLUSION 

This paper mainly studies the process capability index in 
the case of small samples. After analyzing the influence of 
sample size on the confidence interval of traditional process 
capability analysis index, we introduced Bootstrap method to 
solve and compare the confidence interval of process capability 
index Cp and Cpk in the case of small samples. ANOVA was 
used to verify the significant effects of sample size and 
different Bootstrap methods on confidence intervals. Some 
valuable findings were made: 

1) In symmetric distributions, such as normal and T-

distributions, only the sample size has a significant effect on 

the length of the confidence interval: the larger the sample size, 

the shorter the CIL. The Bootstrap method has no significant 

effect on the length of the confidence interval, that is, there is 

no significant difference between the four methods. 

2) In asymmetric distributions, such as chi-square and 

lognormal distributions, both sample size and Bootstrap 

method are important factors affecting CIL. Combined with the 

variation of distribution skewness, the user can choose the 

appropriate Bootstrap method. 

The above simulation and analysis only focus on the 
calculation and comparison of confidence intervals and their 
interval lengths, while the interval coverage ratio and standard 
difference of confidence intervals of PCI under these four 
methods have not been involved, and further in-depth research 
is needed. 
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