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Abstract—Optimizing maintenance procedures is essential in 

today's industrial settings to reduce downtime and increase 

operational effectiveness. To improve predictive maintenance in 

industrial settings, this article investigates the combination of 

machine learning (ML) techniques and the Industrial Internet of 

Things (IIoT). The goal of this research is to advance predictive 

maintenance in industrial settings by integrating ML with IIoT 

in a seamless manner. Addressing the complexities of industrial 

systems and limitations of traditional maintenance methods, this 

study presents a methodology leveraging four distinct ML 

models. The technique includes a thorough assessment of these 

models' correctness, revealing differences that highlight the 

significance of a careful model selection procedure. The current 

investigation analysis finds the most effective model for 

predictive maintenance activities using thorough data analysis 

and visualization. Our work offers a potential path forward for 

the industrial sector and provides insights into the complex 

interactions between IIoT and ML. This study lays the 

groundwork for future developments in predictive maintenance, 

which will reduce downtime and extend the life of industrial 

equipment. 
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I. INTRODUCTION 

The industrial sector is always searching for methods to 
save expenses, increase productivity, and decrease downtime. 
Maintenance of machinery particularly that used in the textile 
sector is one area that might be improved. Reactive techniques 
have formed the foundation of traditional maintenance 
practices, where equipment is fixed following a failure [1]. 
Predictive maintenance, on the other hand, has become a more 
proactive and economical option by utilizing data analytics and 
ML approaches [2].  

Predictive maintenance is a proactive approach that 
foresees equipment faults before they happen by using ML and 
data analytics. Organizations may schedule maintenance just in 
time to avert failures by identifying trends and abnormalities 
through continuous equipment condition monitoring and data 
analysis. This strategy increases the longevity of industrial 
assets, reduces downtime, and optimizes maintenance tasks. 
Predictive maintenance is unique in that it may replace reactive 
and fixed-schedule maintenance with a more planned, data-
driven approach, resulting in higher dependability and cost 
savings for a variety of sectors. Productivity and operational 
efficiency are significantly impacted by the efficient 
management of maintenance procedures in the quickly 
changing industrial operations environment. This article, which 

embraces technological developments, explores how ML 
techniques and the IIoT might be used to improve the 
predictive maintenance paradigm in industrial settings.  

In industrial settings, predictive maintenance is a data-
driven, strategic strategy that maximizes equipment durability 
and reduces unscheduled downtime. Organizations can prevent 
equipment failures by using ML and advanced analytics to 
predict possible problems before they arise. Through the use of 
sensors and data-gathering tools, this approach continuously 
monitors the state of the equipment, allowing for the 
examination of several characteristics. After the collection of 
data, advanced algorithms are employed to detect patterns, 
trends, and abnormalities, therefore offering significant insights 
into the condition of industrial machinery. Organizations may 
go from a more reactive or fixed-schedule maintenance 
approach to one that is more proactive and efficient with the 
help of predictive maintenance. Organizations may maximize 
the operating lifespan of their assets and minimize expensive 
failures by precisely forecasting when maintenance is required 
and scheduling interventions just in time. 

Predictive maintenance, or PdM, seeks to lower expenses 
so that businesses may compete more fiercely. It optimizes the 
maintenance intervention plan by combining sensor data with 
analytical methods. Optimizing maintenance methods is critical 
to maintaining operational efficiency and reducing downtime 
in the complex web of industrial processes. A key tactic that 
replaces conventional reactive methods with proactive, data-
driven ones is predictive maintenance. In the end, this 
paradigm aims to improve the lifetime and dependability of 
industrial assets by anticipating breakdowns and facilitating 
prompt interventions and resource optimization. Predictive 
maintenance is essential to preventing machine breakdowns 
and maintaining a high level of production line productivity. 
The suggested IIoT architecture uses ML techniques to achieve 
predictive maintenance. 

Amidst this paradigm shift, a new age for predictive 
maintenance in industrial settings has been brought about by 
the combination of two technical pillars: ML and the IIoT [36]. 

The symbiotic integration of IIoT technologies makes it 
possible to monitor equipment continuously and in real-time, 
producing copious amounts of data that are essential to the 
development of predictive models. At the same time, ML 
algorithms that can identify patterns in large datasets raise the 
bar for predictive maintenance above rule-based systems by 
providing more detailed insights and improving failure 
prediction accuracy. There are several layers in the IIoT 
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architecture, including those for business connection, device 
connectivity, and data analytics. Wireless sensor networks 
provide flexible communication between external and internal 
equipment, which makes it possible to create effective 
preventative maintenance plans. One of the key advantages of 
IIoT is its ability to decrease data transfer to the cloud, which 
will cut energy consumption and increase forecast accuracy. 
IIoT architecture is essential for industries where continuous 
monitoring is necessary since it simplifies data processing and 
analysis [3,4,5]. 

Device connectivity, data analytics, and business 
connectivity make up its three levels. This sophisticated 
approach promotes a more accurate and efficient maintenance 
plan by making it easier to identify probable defects and to 
distinguish between typical changes and important 
abnormalities. Where human eyes or ears can no longer detect 
and gather sensitive information from equipment, primarily 
motors, automated technologies offer a workable option for 
many sectors [6]. The basis for predictive maintenance 
schedules is gathered data from sensors and analytical 
algorithms [7]. 

The IIoT is a network of smart devices, sensors, and 
machines that uses the connection to generate a revolutionary 
change in how industries function. Data-driven decision-
making is made possible by the unparalleled volume of data 
generated by this networked environment. With companies 
becoming increasingly instrumented and networked, the 
difficulty is in efficiently utilizing and analyzing this massive 
amount of data to extract valuable insights. 

A key component of the IoT and IIoT environment is 
Artificial intelligence (AI), which provides the capacity to 
process, analyze, and understand large datasets at speeds that 
are not possible with conventional techniques. AI systems are 
very good at finding trends, abnormalities, and connections in 
data, turning unprocessed input into useful knowledge. This 
capacity is especially important in situations when making 
decisions quickly is required, such as demand forecasting, 
resource allocation, and manufacturing process optimization. 
In addition, in order to fulfill consumer requests and keep up 
with market competitiveness, industrial systems and processes 
must be regularly monitored and overseen in order to meet the 
short product lifecycle demands of today's market. 

IIoT framework permeates all facets of the automotive 
industry for predictive maintenance by strategically installing 
smart sensor devices to perform sensitive operations, with 
tracking and monitoring playing a major role [23,24,25]. In the 
context of industry, IoT is known as IIoT and it has gained 
significant research attention recently [26], [27]. Several 
sensors are used in IIoT to keep an eye on the operation of 
machinery or even whole production processes [28]. The goal 
of the IoT is to simplify our lives. Since its beginning, every 
industry has made use of it in some way. Traditionally, data 
collection in IIoT has involved streaming data from sensing 
devices to the cloud, where it is analyzed and modeled. 
Sensing equipment produces massive volumes of data, 

frequently during a short period, either constantly or 
sporadically. For instance, a machine may produce thousands 
of records in a second [29]. Computing is revolutionized by 
ML, which gives computers the ability to see patterns in data 
and make wise judgments. Models for tasks like classification 
are trained on labeled data in supervised learning. 

Patterns in unlabeled data can be found using unsupervised 
learning. ML influences day-to-day living through tailored 
suggestions and virtual assistants. The requirement for labeled 
data and resolving moral issues with algorithmic biases present 
challenges. The future of ML will be shaped by developments 
in fields like ethical issues and reinforcement learning. The 
cognitive engine that drives IIoT smart systems is ML, a subset 
of AI. 

Because ML algorithms can learn and adapt from past data, 
they are a good fit for dynamic industrial situations, in contrast 
to traditional programming. ML has significant uses in real-
time decision support, anomaly detection, and predictive 
maintenance within the IIoT. A paradigm change made 
possible by ML is predictive maintenance. ML is a cutting-
edge application in the field of predictive maintenance in 
industrial settings. When it comes to managing the complex 
linkages and varied datasets found in industrial systems, 
traditional methods frequently fall short. However, ML 
algorithms are adept at navigating this complexity by noticing 
trends in data and adjusting to improve their prediction power. 
The predictive framework integrated with the notions of 
adaptive structuration theory is shown in Fig. 1. In the 
structural idea, the maintenance technician watches a facility 
asset in use. As seen in Fig. 2, it anticipates faults and conducts 
repairs on the machinery or equipment before they arise. The 
only machines or components that can be replaced are those 
that will shortly fail. It prolongs the equipment's lifespan. But 
usually, they consider the systems viewpoint [30], technical 
[31], architecture [32], security [33], and [34], or concentrate 
on the analytics side [35] within the framework of IIoT. 

Through the integration of ML techniques and the IIoT, this 
research aims to enhance the field of predictive maintenance in 
industrial contexts. Our approach is based on a careful 
investigation and use of four different Python programs, each 
carefully designed to maximize the capabilities of different ML 
models. Because these models' accuracy varies, it is critical to 
conduct a careful selection process in order to choose the best 
predictive maintenance plan. Our methodology highlights the 
subtle nuances of model performance while also demonstrating 
the revolutionary potential of IIoT and ML in enhancing 
industrial maintenance. There are several advantages 
mentioned in [8,9,10]. 

The rest of this paper is organized as follows: Section I 
presents a general introduction to Predictive maintenance,  IIoT 
and ML. Section II is about the literature review and Section III 
details how the system works. Section IV Experimentation, 
dataset, implementation, and evaluation Metrix. And the last 
Section we discuss results and comparisons between 
algorithms. 
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Fig. 1. Predictive maintenance framework. 

 
Fig. 2. Predictive maintenance overview. 

II. LITERATURE REVIEW 

Recent developments in maintenance techniques for 
manufacturing sectors were examined by Lee et al. [11], who 
emphasized the move in the era of smart manufacturing from 
reliability enhancement to flexible and adjustable maintenance 
scheduling. F. Ribeiro et al. [12] have automatically classified 
the flaws in rotatory machinery using non-ML approaches like 
similarity-based models (SBM). In a different research, A. 
Alzghoul et al. [13] used artificial neural networks (ANNs) to 
classify rotatory defects with a 97.1 percent accuracy rate. 
Consequently, their accuracy rate in classifying the defects is 
96.43 percent. Singha et al. [14] examined the use of ML and 
AI in the knitting sector, emphasizing the revolutionary effects 
of these technologies. The research emphasized the thorough 
implementation of these technologies at several phases, 
including product sourcing, design, manufacture, distribution, 
and sales. Advances in fiber classification, thread prediction, 
defect diagnosis, and dye recipe prediction are made possible 

by the integration of AI and ML, which benefits the knitting 
industry's predictive maintenance. 

A mechanism for making fuzzy decisions is devised by et 
al. [15]. The use of a case study on sewing machine needles, it 
illustrates how successful it is in planning predictive 
maintenance. Predictive maintenance was aided by the 
introduction of an IoT and ML-based online monitoring system 
for knitting machines by Elkateb et al. [16], [17]. Real-time 
tracking, statistical analysis, and problem-solving are made 
easier by this technology. As so, it makes precise productivity 
monitoring and preventative maintenance possible. 

The usefulness of ML-based condition monitoring was the 
subject of a thorough assessment by Surucu et al. [18], who 
emphasized the models' major contributions to predictive 
maintenance. The research employed a Deep Belief Network 
(DBN) for feature extraction and a Gaussian process (GP) for 
optimizing DBN hyper-parameters in order to evaluate models 
utilizing deep learning and Bayesian optimization. Empirical 
findings outperformed traditional ML techniques in terms of 
accuracy in predicting machine failure times. Consequently, 
because of the complexity and distinct contextual elements, 
cross-case performance comparisons are inadequate. A 
different study examined an intelligent PdM system for 
industrial machinery using ML, Message Queuing Telemetry 
Transport (MQTT), and IIoT [19]. 

Electrical motors employ vibration, current, and 
temperature sensors to gather real-time data. Five ML models 
k-nearest neighbor (KNN), Support Vector Machines (SVM), 
random forest (RF), linear regression (LR), and Naïve Bayes 
(NB) are then used to evaluate the data and anticipate failures. 
Effective communication between sensors, gateways, and the 
cloud server is made possible via the MQTT protocol. When it 
comes to functioning motors,  RF displays the best accuracy 
and optimizes maintenance plans to save costs and downtime 
[19]. 
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A deep learning-based defect diagnostic technique for 
circular knitting machines was presented by Gao et al. [20]. 
Their approach classifies the different sorts of faults using a 
SoftMax classifier after automatically extracting features from 
vibration signals using a Convolutional Neural Network 
(CNN). The outcomes of the trial showed that their approach 
was able to diagnose faults in circular knitting machines with a 
promising level of accuracy. But for CNN to work well 
enough, a lot of training data is required. A predictive 
maintenance system for wind turbines was presented by Udo 
and Muhammad et al. [21] utilizing SCADA data and Long 
Short-Term Memory (LSTM) and XGBoost models for 
gearbox and generator monitoring. Six wind turbine faults were 
successfully detected using statistical process control (SPC), 
which evaluates anomalies and helps with early intervention 
and economical dynamic maintenance plans. Knitting 
machines are not used in the testing of this system, 
nevertheless. 

In summary, recent research in predictive maintenance for 
industrial environments has shown hopeful results in 
improving maintenance efficiency and reducing costs. These 
studies have applied a variety of algorithms and different 
attributes to predict Remaining Useful Life (RUL) and to 
diagnose various faults in the machine. However, there is still a 
need for further research to develop more accurate, 
comprehensive, and efficient predictive maintenance systems 
for circular knitting machines. Diagnosis of different machine 
faults to achieve comprehensive predictive maintenance 
systems was not well covered in the literature. Moreover, 
applications of the developed methods on real working 
machines outside the laboratory environment were not well 
covered to prove their applicability in real conditions. To 
prevent lengthy machine breakdowns, the proposed work 
offers a predictive maintenance approach that anticipates 
machine halt and the cause of stoppage (failure).  

A comprehensive maintenance approach considers many 
reasons for failure by utilizing multiple sensing devices. These 
devices' readings may be accessed by an ML-based classifier 
via an IoT system. Its distinctive features such as a powerful 
ML model, real-time monitoring, and an extensive database 
indicate a shift from traditional methods to contemporary, 
useful ways. To demonstrate the practicality of the suggested 
predictive maintenance system, it is put into operation on an 
actual circular knitting machine. The device performs well and 
has good precision. It also has a lot of potential to improve 
machine availability, reduce downtime, and maximize 
production in the textile sector. 

III. METHODOLOGY 

Prognostics is the subject of this study, with a focus on 
estimating an asset's RUL and determining if it is inside its 
final fifteen cycles. Using a NASA dataset, the research 
includes engine deterioration simulations in a range of 
operating scenarios and modes. Fig. 3 presents the overview of 
the of the entire system. The approach that was selected is 
based on time-series analysis, using several ML algorithms, 
and considering each time point as a separate unit. The 
Random Forest Regressor, Elastic Net GLM, SVM, and 
Gradient Boosting Regressor are the main models used. The 

first step is to use a NASA dataset that is kindly shared, which 
simulates engine deterioration under various operating 
situations and modes. This dataset captures the subtle 
progression of problems by recording many sensor channels. 
Utilizing ML techniques, the selected methodology predicts 
RUL and identifies assets in the past fifteen cycles by 
managing each time point individually. 

 
Fig. 3. Workflow of the present investigation. 

The procedure starts with the dataset being explored, which 
includes loading the required packages, reviewing the data that 
is already accessible, and creating a reproducibility seed. 
Important stages after importing the data include sensor 
readings, operational settings, and goal variable structure. 
Feature engineering becomes essential when the Random 
Forest Regressor is used to determine which characteristics are 
most crucial. The code structure and how each phase advances 
the broader predictive analytics process are delineated in more 
detail in the Fig. 4. Loading the required packages, reviewing 
the available data, and establishing seeds for repeatability are 
all part of the first stage. The NASA dataset is well organized, 
with distinct column names designating sensor readings, cycle 
information, and operating parameters. 
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Fig. 4. Linear regression. 

A. Linear Regression 

Visualizing the correlations between goal variables RUL 
and Last 15 Cycles) and other attributes is done using 
exploratory data analysis (EDA). A Random Forest repressor 
[22] is used in a noteworthy feature selection stage to find 
important predictors that will impact the next data preparation 
RUL for each cycle is calculated using the T-minus notation 
approach. Pair plots and seaborne visualizations offer a 
comprehensive comprehension of the data distribution. Target 
leakage management, removing superfluous columns, and 
getting the data ready for model training are the next steps. To 
determine feature relevance and enable the elimination of 
sensors with lower levels of information, the Random Forest 
repressor is utilized. Identification of numeric and categorical 
fields is done, with the creation of dummy variables for the 
former. Any NULL values that remain in numerical columns 
are addressed by imputation. For training and evaluating the 
model, the dataset is then divided into training and testing sets. 

For regression problems, three different ML models are 
used: Random Forest, Elastic Net GLM, and SVM. To pick the 
best hyperparameters, grid search and cross-validation are 
applied to each model during optimization. Grid search is also 
utilized for the Gradient Boosting Repressors optimization, 
which was selected because of its capacity for group learning. 
Model performance is evaluated using evaluation metrics 
including R-squared values, Mean Absolute Error, and Mean 
Squared Error. To determine when an asset is inside its Last 15 
Cycles, the regression job must be transformed into a 
classification issue in the last phase. Recall, precision, and 
ROC-AUC scores are used in the training and assessment of a 
Random Forest Classifier. ROC curve visualizations offer 
more information on classification performance. Fig. 4 shows 
Linear regression. 

B. Decision Tree Regression 

Decision Tree Regression (DTR) [22] and LR. The yellow-
colored LR illustrates the linear links that exist between RUL 
and input characteristics. DTR, shown in green, uses a 
structure akin to a tree and is particularly good at identifying 
complicated decision boundaries and non-linear patterns in the 
input characteristics used to forecast RUL. 

Within your code, the RUL of engines is predicted using a 
basic approach called LR. The foundation of linear regression 
is the creation of a linear connection between the input 
characteristics and the target variable in this example, the 
number of operational cycles left until failure. In order to 
develop a linear model that best represents the connection 
between these characteristics and the RUL, the algorithm 
makes use of a collection of input data, such as operational 
settings and sensor readings. The training data that is supplied, 
where the real RUL values are known, is used to train the 
model. The method modifies its parameters during training in 
order to reduce the discrepancy between the genuine RUL 
values from the training set and the projected RUL values. 
Once trained, the RUL of engines not seen during training may 
be predicted using test data that has not yet been observed. This 
is known as the Linear Regression model. The model's efficacy 
is then assessed by comparing the predictions to the actual 
RUL values using a variety of metrics, such as Mean Squared 
Error (MSE), Mean Absolute Error (MAE), and R-squared 
(R²). 

Using an ensemble technique, Random Forest Regression 
builds many decision trees and combines their predictions. This 
method reduces overfitting problems and improves accuracy. 
The fourth method, Gradient Boosting Regression, is the last 
one. It creates consecutive decision trees to repair the mistakes 
of the previous ones and can achieve high predicted accuracy. 

C. Remaining Useful Life (RUL) 

In the given system, Random Forest Regression (RFR) [22] 
and Gradient Boosting Regression (GBR) are essential for 
forecasting RUL. RFR uses a group of individual decision trees 
in its ensemble representation to provide predictions. By 
adding to the final forecast, each tree improves its resilience 
and accuracy. In contrast, GBR makes use of a series of 
succeeding decision trees, each of which steadily improves 
forecast accuracy by fixing the mistakes of its predecessor. 
Both techniques increase the predictive model's overall 
efficacy by using input information (referred to as "Input 
Features") to forecast the engine's RUL in a range of 
operational circumstances. Fig. 5 shows the actual RUL with 
prediction. 

 
Fig. 5. Remaining useful life. 
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RFR and GBR are essential for forecasting RUL. RFR uses 
a group of individual decision trees in its ensemble 
representation to provide predictions. By adding to the final 
forecast, each tree improves its resilience and accuracy. In 
contrast, GBR makes use of a series of succeeding decision 
trees, each of which steadily improves forecast accuracy by 
fixing the mistakes of its predecessor. Both techniques increase 
the predictive model's overall efficacy by using input 
information (referred to as "Input Features") to forecast the 
engine's RUL in a range of operational circumstances [22]. 

The RFR algorithm functions as an ensemble learning 
technique, as illustrated by the "Random Forest Regression" 
box. It generates a large number of decision trees, which come 
together to build a strong and varied model known as the 
"Ensemble of Decision Trees." The "Input Features" ellipse 
represents the input characteristics that each tree in the 
ensemble individually processes and produces a forecast for. 
Combining the distinct results from each decision tree yields 
the final forecast. This ensemble method is useful for assessing 
the engine's RUL in the given system since it reduces 
overfitting and improves forecast accuracy. Every algorithm 
offers distinct advantages to the process of predictive 
modeling. While Decision Tree Regression excels at 
addressing non-linear patterns, Linear Regression is simple and 
easy to understand. While Gradient Boosting Regression 
concentrates on progressively lowering prediction errors, 
Random Forest Regression provides resilience and control over 
variance. These methods' diversity guarantees a thorough 
examination of the dataset and provides insights into how well 
each algorithm performs in various scenarios. 

IV. EXPERIMENTATION 

A. Dataset 

The four separate subsets of the dataset [23] that were 
employed in this investigation are designated as FD001, 
FD002, FD003, and FD004. These subsets depict various 
failure mechanisms and operating settings. Four independent 
subsets comprise the dataset used in this study: FD001, FD002, 
FD003, and FD004. Each of these subsets has its own unique 
configurations and failure modes. 

1) FD001: There are one hundred test and one hundred 

train trajectories in FD001. There is just one operational state, 

which is called "Sea Level." The dataset models a failure 

mode centered around the degradation of high-pressure 

compressors (HPCs). 

2) FD002: There are 259 test and 260 train trajectories in 

the FD002 subgroup. With six different operational scenarios, 

the conditions are more varied. The failure mode addressed is 

HPC Degradation, much like in FD001. 

3) FD003: FD003 has one hundred test and one hundred 

train trajectories and operates under the same "Sea Level" 

circumstances as FD001. However, by including two fault 

modes—HPC Degradation and Fan Degradation—FD003 

presents a more complicated scenario. 

4) FD004: With six different operational circumstances, 

the FD004 subset consists of 248 train trajectories and 249 test 

trajectories. Similar to FD003, FD004 deals with HPC 

Degradation and Fan Degradation as two failure scenarios. 

To put it briefly, the goal of these subgroups is to represent 
various engine fleet operational conditions and failure types. 
FD003 and FD004 add more complexity by considering many 
failure modes under various operational circumstances, 
whereas FD001 and FD002 concentrate on unique operating 
conditions with HPC Degradation. The variety of datasets 
available makes it possible to thoroughly examine engine 
performance and behavior in various scenarios. 

The multivariate time series datasets are separated into 
training and test trajectories for each subgroup. Every time 
series relates to a different engine in a fleet of similar engines. 
The engines show various levels of wear at startup and 
variance in manufacture that is not communicated to the user. 
This fluctuation is seen as typical and does not point to a 
problem. The data includes operational parameters, which have 
a significant effect on engine performance. Furthermore, noise 
from the sensors might contaminate the data. Each engine 
starts in a normal state in the operating context, acquires a 
defect during the series, and, in the training set, experiences an 
increasing fault size that results in system failure. The time 
series in the test set ends before a system failure. Predicting the 
number of operating cycles left in the test set before failure 
also known as the RUL is the competition's principal goal. The 
dataset, which captures different operating parameters and 
sensor readings during each cycle, is supplied as a 26-column 
text file that has been compressed using zip. 

B. Implementation 

Continuing with the implementation, several datasets, 
including FD001, FD002, FD003, and FD004, each 
representing distinct operational situations and failure modes, 
are subjected to iterative applications of the Random Forest 
Regression method. By training on a variety of datasets, the 
system takes beginning circumstances and engine wear into 
consideration. This variety adds to the resilience of the model 
by improving its capacity to respond to various conditions. The 
model notices the patterns of engine deterioration that result in 
system failure during the training phase. The model can 
capture the complex interactions between operational 
parameters and sensor readings since the training trajectories 
imitate both the engine's fault and normal circumstances. To 
guarantee convergence and avoid overfitting, the number of 
training epochs and batch size are adjusted. 

During the testing phase, the RUL of the engines is 
predicted by applying the trained Random Forest Regression 
model to data that has never been seen before. Planning 
maintenance tasks and predicting breakdowns depend on this 
predictive capacity. By contrasting the model's projected RUL 
values with the dataset's ground truth RUL values, the efficacy 
of the model is thoroughly assessed. The model's accuracy and 
generalizability to new and varied circumstances are measured 
using metrics like MSE, MAE, and R-squared. A key factor in 
determining the model's capacity for generalization is the 
separation of training and testing trajectories. With its 
numerous trajectories, the training set replicates the typical 
wear and fault development patterns of the engines over time. 
The model can understand complicated correlations between 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

633 | P a g e  

www.ijacsa.thesai.org 

operating parameters and sensor readings because of the 
variety of training data, which helps it capture the nuanced 
dynamics of engine health. Conversely, the test set includes 
trajectories where the engines are nearing the end of their 
useful lives but are still working. This intentional separation 
guarantees that the model can produce precise forecasts on 
brand-new, untested data, proving its dependability in practical 
situations. 

To sum up, the implementation takes a methodical 
approach to ML, with special emphasis on careful parameter 
tweaking and reliable assessment techniques. The objective is 
to develop a predictive model that will be an invaluable 
resource for predictive maintenance plans in the field of engine 
health management. This model will not only accurately 
estimate the Remaining Useful Life of engines but also exhibit 
resilience and adaptability across a range of operating 
conditions and fault modes.  

C. Evaluation Metrics 

In this section, we discuss evaluation metrics that are used 
in this study [35].  

1) Mean Squared error 

a) Definition: MSE is the average squared difference 

between the projected and actual remaining useful life (RUL) 

values. The dispersion of prediction errors is quantified. 

b) Accuracy Measure: By punishing greater errors more 

severely, the Mean Squared Error (MSE) offers a thorough 

assessment of the total forecast accuracy. It works well with 

models when accurate RUL prediction is essential. 

Formula: 𝑀𝑆𝐸 =  
1

𝑛
 ∑ | 𝑌𝑖 − Ý𝑖

𝑛
𝑖=1 |                   (1) 

n: Number of data points 

𝑌𝑖 : Actual RUL for data point i 

Ý𝑖: Predicted RUL for data point i 

2) Mean Absolute Error 

a) Definition: The average absolute deviations between 

the actual and anticipated RUL values are determined by the 

MAE. It calculates the typical error magnitude. 

b) Accuracy Measure: Because MAE is less susceptible 

to outliers, it offers a reliable way to quantify average 

prediction error. It works well with models in which the 

absolute error is more important than the mistake's particular 

direction.  

Formula: 𝑀𝐴𝐸 =  
1

𝑛
 ∑ | 𝑌𝑖 −  Ý𝑖

𝑛
𝑖=1 |                 (2) 

n: Number of data points 

𝑌𝑖 : Actual RUL for data point i 

Ý𝑖: Predicted RUL for data point i 

3) R-Squered  

a) Definition: 𝑅2   is the percentage that the model 

explains of the variation in the actual RUL values. It gauges 

how well the model fits the data. 

b)  Measure of Accuracy:  𝑅2 has a range of 0 to 1, with 

1 denoting a perfect match. It's a helpful measure of how well 

the model predicts the variability in the data as it really occurs. 

 

Formula: 𝑅2 = 1 −  
∑ ( 𝑌𝑖 − Ý𝑖

𝑛
𝑖=1 )2

∑ | 𝑌𝑖 − ȳ𝑖
𝑛
𝑖=1 )2                    (3) 

n: Number of data points 

𝑌𝑖 : Actual RUL for data point i 

Ý𝑖: Predicted RUL for data point i 

ȳ: Mean of the actual RUL values 

V. RESULTS AND DISCUSSION 

This study leverages ML algorithms, including Random 
Forest Regressor, Elastic Net GLM, SVM, and Gradient 
Boosting Regressor, to predict an asset's RUL using a NASA 
dataset. Through systematic data exploration, feature 
engineering, and model optimization, the methodology yields 
accurate RUL predictions. Importantly, the model's 
effectiveness and generalizability are substantiated by rigorous 
evaluation metrics like MSE, MAE, and R-squared values 
across diverse operational scenarios. This demonstrates the 
model's robustness and adaptability, positioning it as a reliable 
tool for enhancing predictive maintenance strategies in 
industrial settings. 

1) FD001 Dataset: Notable outcomes were obtained from 

the study of the FD001 dataset, which consisted of one 

hundred trains and one hundred test trajectories with a single 

fault mode (HPC Degradation) and a condition of ONE (Sea 

Level). The Random Forest Regression model with the 

configuration of (mention configuration details) showed an R-

squared of.89, an MAE of 29.89, and an MSE of 1772.26. 

0.625 is the value of 𝑅2 . These metrics provide important 

information about how well the model predicts the RUL in 

these particular circumstances. Furthermore, a confusion 

matrix was created in order to have a deeper understanding of 

the model's performance. A more thorough assessment is 

made 9possible by this matrix, which offers a full picture of 

true positive, true negative, false positive, and false negative 

forecasts. Additionally, several curves, such as the learning 

curve and validation curve, were used throughout the training 

phase. These curves assist in uncovering any overfitting or 

underfitting problems by showing the model's convergence 

and performance over epochs. 

2) FD002 Dataset: The applied model was shown using 

the FD002 dataset, which has 259 test and 260 train 

trajectories under SIX distinct circumstances and a single fault 

mode (HPC Degradation) (mention results). This dataset's 

confusion matrix made it possible to thoroughly assess the 

model's prediction skills, especially about differentiating 

between various failure types. The study was deepened by 

curves produced during training, such as the Precision-Recall 

and Receiver Operating Characteristic (ROC) curves. These 

curves shed light on the trade-off between recall and accuracy, 

respectively, as well as the true positive rate and false positive 
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rate. With 260 train and 259 test trajectories, the FD002 

dataset represents a more complex operating scenario that 

includes a wider range of SIX different circumstances, all of 

which are shared by a Fault Mode HPC Degradation. The 

model's capacity to adapt to various operating situations, each 

with its own set of obstacles for predictive maintenance, is 

critically tested by this dataset. Operating Diversity: 

Compared to the FD001 dataset, there are SIX different 

operating situations, which adds a higher degree of 

complexity. The circumstances encompass changes in engine 

loads, temperatures, or other crucial elements, so rendering the 

dataset an all-encompassing depiction of actual operational 

scenarios. Thus, the model's capacity to identify trends and 

modify its predictions over this range of circumstances is put 

to the test. Common Fault Mode: HPC Degradation: The 

dataset maintains consistency about the prevalent fault mode, 

HPC Degradation, even in the face of diverse operational 

situations. This consistency allows for a targeted assessment 

of the model's capacity to recognize and forecast a particular 

fault mode in a range of operating scenarios. 

3) FD003 Dataset: Compared to the earlier datasets, the 

FD003 dataset adds a layer of complexity with its one hundred 

train and one hundred test trajectories. In this instance, a 

single operating condition known as Sea Level is applied to all 

paths. The dataset deviates, though, in that it includes TWO 

different fault modes: fan degradation and HPC degradation. 

Singular Operational Condition: Sea Level is the one 

operational condition that is the focus of the FD003 dataset, as 

opposed to the SIX operational conditions of the FD002 

dataset. This intentional decision isolates the effect of fault 

modes in a particular operational context, offering information 

on the model's capacity to identify and anticipate failures in a 

typical environment. Presenting Several Fault Modes: The 

model is presented with a more complex task with the addition 

of TWO failure modes: HPC Degradation and Fan 

Degradation. This dataset simulates conditions in which 

several engine components may deteriorate simultaneously or 

sequentially.  

4) FD004 Dataset: The FD004 dataset incorporated 248 

train and 249 test trajectories under SIX distinct circumstances 

with TWO fault modes (HPC Degradation, Fan Degradation), 

concluding the individual dataset studies. The model's 

robustness in managing a range of operating situations and 

fault scenarios is demonstrated by the outcomes (mention 

results). The model has shown strong prediction skills in the 

examination of the FD004 dataset, which contains 248 

training trajectories and 249 test trajectories under SIX 

different operating circumstances with TWO fault modes 

(HPC Degradation, Fan Degradation). The assessment metrics 

that provide light on the model's ability to adapt to a variety of 

fault scenarios and operational settings include MSE, MAE, 

and R-squared. The thorough comprehension that these 

measurements provide highlights the model's capacity to 

manage the complexity brought forth by several fault types. 

Because of its flexibility, the model may be used to provide 

accurate prognostic evaluations in situations when many 

engine deterioration modes could occur at the same time. This 

dataset provides subtle insights that are useful for the overall 

assessment and for comparing the models' performance across 

various datasets and fault scenarios. 

The first. algorithm which is RFR has the result of sixty-
two for the first data set and fifty-eight for the second and 
sixty-seven for the third and fifty-nine for the fourth. Similarly, 
if the other algorithms are also compared, JLM's algorithm also 
gives the result of the first data set fifty-six and the result of the 
second data set is fifty-six and the result of the third data set is 
fifty-eight. Similarly, if the third algorithm support vector 
mechanism is also compared then the result of the first data set 
is sixty and the second data set is twenty and the third data set 
is also sixty and the fourth data set is twenty-four. And if the 
fourth algorithm Grant Boston is compared with each other, the 
first data set gives the result sixty-two and the second data set 
gives the result fifty-eight and the third data set gives the result 
sixty-seven which is the highest and then the fourth one. The 
result of the data set is fifty-nine. Table I represents the 
accuracy of Random Forest Regression. Table II represents the 
accuracy of elastic net glm Table III represents the accuracy of 
the support vector machine and Table IV represents the 
accuracy of gradient boosting all these techniques are applied 
to four codes. In Table III, we have compared the result of the 
SVM classifier with previously published works [37] and in 
Table IV, we have compared the result of the Gradient 
Boosting classifier with previously published works [37]. 

TABLE I. RESULTS OF THE RANDOM FOREST MODEL 

Dataset Algorithm 
RF Mean 

Squared Error 
RF Mean 

Absolute Error 
Accuracy 

FD001 
Random Forest 

Regression 
17772.26 29.89 0.62 

FD002 
Random Forest 
Regression 

1945.94 32.475 0.58 

FD003 
Random Forest 

Regression 
3160.17 38.51 0.67 

FD004 
Random Forest 
Regression 

3209.63 40.68 0.59 

TABLE II. RESULT OF ELASTIC NET GLM  MODEL 

Dataset Algorithm 
GLM Mean 

Squared Error 

GLM Mean 

Absolute Error 
Accuracy 

FD001 GLM 2043.03 34.560 0.56 

FD002 GLM 2043.03 34.60 0.56 

FD003 GLM 4083.08 47.16 0.58 

FD004 GLM 4503.76 51.59 0.43 

TABLE III. RESULT SUPPORT VECTOR MACHINE MODEL 

Dataset Algorithm 

SVM 

Mean 

Squared 
Error 

SVM 

Mean 

Absolute 
Error 

Accuracy 
In past 

research[37] 

Accuracy 

FD001 SVM 1860.48 30.28 0.60 0.893 

FD002 SVM 3774.31 48.79 0.20 0.894 

FD003 SVM 3846.14 41.04 0.60 0.893 

FD004 SVM 6052.88 58.43 0.24 0.106 
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TABLE IV. RESULT OF GRADIENT BOOSTING MODEL  

Dataset Algorithm 

GB 

Mean 

Squared 

Error 

GB Mean 

Absolute 

Error 

Accuracy 

In past 

research 

[37] 

Accuracy 

FD001 
Gradient 
Boosting 

1768.62 29.92 0.62 0.899 

FD002 
Gradient 

Boosting 
1970.56 33.03 0.68 0.908 

FD003 
Gradient 
Boosting 

3190.07 38.68 0.67 0.903 

FD004 
Gradient 

Boosting 
3214.30 41.08 0.59 0.097 

A thorough examination and explanation of the outcomes 
of applying ML models to a variety of engine datasets to 
forecast Remaining Useful Life (RUL). MSE, MAE, and R-
squared are three quantitative measures of the model's 
performance under different operating settings and failure 
types that are part of the assessment metrics. Analyzing the 
FD001, FD002, FD003, and FD004 datasets separately 
exposed unique difficulties and intricacies. The model showed 
adequate prediction skills in the case of FD001, where 
conditions were comparatively simpler with a single failure 
mode (HPC Degradation). After switching to FD002, which 
included six operating conditions under the same fault mode, 
the model performed admirably, demonstrating its flexibility in 
a variety of situations. 

The prediction work became more challenging in FD003 
due to the addition of additional failure modes. We closely 
examined the model's capacity to manage both HPC 
Degradation and Fan Degradation situations. Even with this 
extra complexity, the model demonstrated proficiency in 
capturing the subtleties brought forth by numerous failure 
types. Finally, the robustness of the model was demonstrated 
by the assessment of FD004, which included two failure modes 
(HPC Degradation and Fan Degradation) and six different 
operational situations. The outcomes demonstrated its ability to 
handle a wider range of fault states and operating scenarios, 
which makes it a flexible tool for prognostic evaluations. 

The comparative study of the models across datasets is also 
covered in detail in the discussion, with a focus on the differing 
levels of complexity brought about by various operational 
situations and failure mechanisms. The comparison study 
yielded insights that help comprehend the flexibility and 
generalization capabilities of the models, offering useful 
information for potential future applications in engine health 
prognostics. The limits of the study, probable causes of bias, 
and possibilities for development are also covered in the 
discussion. There are opportunities for more study and 
improvement of the prediction models because of the models' 
resilience and performance in real-world situations in various 
areas [38-42]. The discussion part, which provides a nuanced 
view of the models' strengths, limits, and potential implications 
in the field of engine system prognostics, summarizes the 
findings overall. 

VI. CONCLUSION 

This research presents a pivotal advancement in the realm 
of ML  applied to industrial maintenance through its 
integration with the IIoT. Practically, the study equips 

industries with an advanced, data-driven methodology for 
equipment maintenance, leading to reduced downtime, cost 
savings, and heightened operational efficiency. Theoretically, it 
enriches our understanding of ML's efficacy in predictive 
maintenance, facilitating the refinement of algorithms and 
informing more judicious model selections. Using a variety of 
datasets (FD001, FD002, FD003, and FD004), this study 
concludes with a thorough examination of the use of ML 
models for forecasting RUL of engines. The study effectively 
illustrates how well the models handle various operating 
situations and failure types, providing insightful information 
about engine health prognostics. The models' prediction ability 
is quantified using assessment metrics such as MSE, MAE, and 
R-squared. fault mode (HPC Degradation) and more 
straightforward conditions. After switching to FD002 with 
various operating circumstances, the model keeps performing 
admirably, highlighting its adaptability. 

Although FD003 presents a difficulty due to the addition of 
new failure modes, the model can handle cases when there is 
both HPC Degradation and Fan Degradation. The assessment 
of FD004 under various circumstances and fault types 
demonstrates the adaptability and efficiency of the models in a 
range of operational contexts. The models' generalization skills 
are illuminated by the comparison study between datasets, 
which provides important information about their advantages 
and disadvantages. Even while the results are encouraging, it is 
important to recognize some limitations and potential topics for 
more research. Further investigation is needed on the models' 
susceptibility to biases and variances in sensor data. To sum 
up, this study establishes the foundation for further 
developments in prognostic modeling and highlights the value 
of strong ML methods for improving the precision and 
dependability of forecasts in various areas[43-46]. 

REFERENCES 

[1] W. Lee, H. Wu, H. Yun, H. Kim, M. Jun, J. Sutheralnd 
T. Zonta, C.André da Costa, R. da Rosa Righi, M. de Lima, E. da 
Trindade, G. Li 

[2] J. Guth, U. Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp et al., 
"A detailed analysis of IoT platform architectures: Concepts, 
similarities, and differences," In Internet of Everything: Springer, pp. 
81–101, 2018. 

[3] C. Federico, B. Stefano, S. Claudio, R. Enrico, M. Luca et al., 
"Industrial internet of things monitoring solution for advanced predictive 
maintenance applications," Journal of Industrial Information Integration, 
vol. 7, pp. 4–12, 2017. 

[4] J. Wang, L. Zhang, L. Duan and R. X. Gao, "A new paradigm of cloud-
based predictive maintenance for intelligent manufacturing," Journal of 
Intelligent Manufacturing, vol. 28, no. 5, pp. 1125–1137, 2017. 

[5] H. M. Hashemian and W. C. Bean, “State-of-the-art predictive 
maintenance techniques,” IEEE Transactions on Instrumentation and 
measurement, vol. 60, no. 10, pp. 3480–3492, 2011. 

[6] S.-j. Wu, N. Gebraeel, M. A. Lawley, and Y. Yih, “A neural network 
integrated decision support system for condition-based optimal predic 
tive maintenance policy,” IEEE Transactions on Systems, Man, and 
Cybernetics-Part A: Systems and Humans, vol. 37, no. 2, pp. 226–236, 
2007. 

[7] “What Are Benefits and Drawbacks of Preventive Maintenance?” 
https://www.onupkeep.com/answers/preventive-maintenance/benefits-
of-preventive-maintenance (accessed Jun. 29, 2021). 

[8] “What is Predictive Maintenance? [Benefits & Examples],” Fiix. 
https://www.fiixsoftware.com/maintenance-strategies/predictive-
maintenance/ (accessed Apr. 7, 2021). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

636 | P a g e  

www.ijacsa.thesai.org 

[9] Y. Ageeva, “Predictive Maintenance Scheduling with AI and Decision 
Optimization,” Medium, May 15, 2020. 

[10] J. Lee, J. Ni, J. Singh, B. Jiang, M. Azamfar, J. Feng J. Manuf. Sci. 
Eng., 142 (2020), pp. 1-40, 10.1115/1.4047856 

[11] F. Ribeiro, M. Marins, S. Netto, and E. Silva, “Rotating machinery fault 
diagnosis using similaritybased models,” presented at the XXXV 
Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, 
2017. doi: 10.14209/sbrt.2017.133. 

[12] A. Alzghoul, A. Jarndal, I. Alsyouf, A. A. Bingamil, M. A. Ali, and S. 
AlBaiti, “On the Usefulness of Pre-processing Methods in Rotating 
Machines Faults Classification using Artificial Neural Network,” 
Journal of Applied and Computational Mechanics, Jan. 2021, doi: 
10.22055/jacm.2020.35354.2639. 

[13] K. Singha, S. Maity, P. Pandit Use of AI and machine learning 
techniques in knitting  10.1016/B978-0-323-85534-1.00021-0 

[14] C. Baban, M. Baban, S. Darius Using a fuzzy logic approach for the 
predictive maintenance of textile machines  10.3233/IFS-151822 

[15] S. Elkateb, A. Métwalli, A. Shendy, An Innovative Online Monitoring 
System in Knitting Industry, The 16th Textile Bioengineering and 
Informatics Symposium; Blended Conference. 412–419, August 22–
25(2023). DOI: TBIS 10.3993/tbis (2023). 

[16] S. Elkateb, A. Métwalli, A. Shendy, K. Moussa, A. Abu-Elanien Online 
monitoring-based prediction model of knitting machine productivity 
Fibres 10.2478/ftee-2023-0035 

[17] O. Surucu, S.Andrew Gadsden, J. Yawney Condition monitoring using 
machine learning: a review of theory, applications, and recent advances 
ExpertSyst.Appl 10.1016/j.eswa.2023.119738 

[18] N. Mohammed, O. Abdulateef, A. Hamad An IoT and machine learning-
based predictive maintenance system for electrical motors J. Eur. Des. 
Systèmes Autom., 56 (4) (2023), pp. 651-656, 10.18280/jesa.560414 

[19] Y. Gao, C. Chai, H. Li, W. Fu. A deep learning framework for 
intelligent fault diagnosis using automl-cnn and image-like data fusion 
Machines, 11 (10) (2023),p. 932, 10.3390/machines11100932. 

[20] W. Udo, Y. Muhammad Data-driven predictive maintenance of wind 
turbine based on SCADA data IEEE Access, 9 (2021), pp. 162370-
162388, 10.1109/ACCESS.2021.3132684 

[21] https://www.infoq.com/articles/machine-learning-techniques-predictive-
maintenance/  

[22] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage Propagation 
Modeling for Aircraft Engine Run-to-Failure Simulation”, in the 
Proceedings of the Ist International Conference on Prognostics and 
Health Management (PHM08), Denver CO, Oct 2008. 

[23] Y. He, C. Gu, Z. Chen and X. Han, “Integrated predictive maintenance 
strategy for manufacturing systems by combining quality control and 
mission reliability analysis,” International Journal of Production 
Research, vol. 55, no. 19, pp. 5841–5862, 2017. 

[24] S. Landset, T. M. Khoshgoftaar, A. N. Richter and T. Hasanin, “A 
survey of open-source tools for machine learning with big data in the 
hadoop ecosystem,” Journal of Big Data, vol. 2, no. 1, pp. 24, 2015. 

[25] Y. Lu, “Industry 4.0: A survey on technologies, applications and open 
research issues,” Journal of Industrial Information Integration, vol. 6, no. 
1, pp. 1–10, 2017. 

[26] E. Oztemel and S. Gursev, ‘‘Literature review of industry 4.0 and related 
technologies,’’ J. Intell. Manuf., vol. 31, no. 1, pp. 127–182, Jan. 2020. 

[27] W. Z. Khan, M. H. Rehman, H. M. Zangoti, M. K. Afzal, N. Armi, and 
K. Salah, ‘‘Industrial Internet of Things: Recent advances, enabling 
technologies and open challenges,’’ Comput. Electr. Eng., vol. 81, Jan. 
2020, Art. no. 106522. 

[28] D. Sehrawat and N. S. Gill, ‘‘Smart sensors: Analysis of different types 
of IoT sensors,’’ in Proc. 3rd Int. Conf. Trends Electron. Informat. 
(ICOEI), Apr. 2019, pp. 523–528. 

[29] L. D. Xu and L. Duan, ‘‘Big data for cyber physical systems in industry 
4.0: A survey,’’ Enterprise Inf. Syst., vol. 13, no. 2, pp. 148–169, Feb. 
2019. 

[30] H. Xu, W. Yu, D. Griffith, and N. Golmie, ‘‘A survey on industrial 
Internet of Things: A cyber-physical systems perspective,’’ IEEE 
Access, vol. 6, pp. 78238–78259, 2018. 

[31] Aceto, V. Persico, and A. Pescape, ‘‘A survey on information and 
communication technologies for industry 4.0: State-of-the-art, 
taxonomies, perspectives, and challenges,’’ IEEE Commun. Surveys 
Tuts., vol. 21, no. 4, pp. 3467–3501, Aug. 2019. 

[32] I. Sittón-Candanedo, R. S. Alonso, S. Rodríguez-González, J. A. G. 
Coria, and F. De La Prieta, ‘‘Edge computing architectures in industry 
4.0: A general survey and comparison,’’ in Proc. Int. Workshop Soft 
Comput. Models Ind. Environ. Appl., 2019, pp. 121–131. 

[33] .Zhang, H. Huang, L.-X. Yang, Y. Xiang, and M. Li, ‘‘Serious 
challenges and potential solutions for the industrial Internet of Things 
with edge intelligence,’’ IEEE Netw., vol. 33, no. 5, pp. 41–45, Sep. 
2019. 

[34] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, 
‘‘Industrial Internet of Things: Challenges, opportunities, and 
directions,’’ IEEE Trans. Ind. Informat., vol. 14, no. 11, pp. 4724–4734, 
Nov. 2018. 

[35] C. Krupitzer, T. Wagenhals, M. Züfle, V. Lesch, D. Schäfer, A. 
Mozaffarin, J. Edinger, C. Becker, and S. Kounev, ‘‘A survey on 
predictive maintenance for industry 4.0,’’ 2020, arXiv:2002.08224. 
[Online]. Available: http://arxiv.org/abs/2002.08224. 

[36] S. Gopalakrishnan and M. Senthil Kumaran, "Iiot framework based ml 
model to improve automobile industry product," Intelligent Automation 
& Soft Computing, vol. 31, no.3, pp. 1435–1449, 2022. 

[37] Nangia, S., Makkar, S., & Hassan, R. (2020, March). IoT based 
predictive maintenance in manufacturing sector. In Proceedings of the 
International Conference on Innovative Computing & Communications 
(ICICC). 

[38] M. Anul Haq, “CDLSTM: A Novel Model for Climate Change 
Forecasting,” Comput. Mater. Contin., vol. 71, no. 2, pp. 2363–2381, 
2022, doi: 10.32604/cmc.2022.023059. 

[39] M. A. Haq, “SMOTEDNN: A Novel Model for Air Pollution 
Forecasting and AQI Classification,” Comput. Mater. Contin., vol. 71, 
no. 1, pp. 1403–1425, 2022, doi: 10.32604/cmc.2022.021968. 

[40] M. A. Haq et al., “Analysis of environmental factors using AI and ML 
methods,” Sci. Rep., vol. 12, no. 1, pp. 1–16, 2022, doi: 
10.1038/s41598-022-16665-7. 

[41] M. A. Haq, “DBoTPM : A Deep Neural Network-Based Botnet,” 
Electronics, vol. 12, no. 1159, pp. 1–14, 2023, [Online]. Available: 
https://www.mdpi.com/2079-9292/12/5/1159 

[42] M. A. Haq and M. A. R. Khan, “Dnnbot: Deep neural network-based 
botnet detection and classification,” Comput. Mater. Contin., vol. 71, no. 
1, pp. 1729–1750, 2022, doi: 10.32604/cmc.2022.020938. 

[43] C. S. Yadav et al., “Malware Analysis in IoT & Android Systems with 
Defensive Mechanism,” Electronics, vol. 11, no. 15, p. 2354, 2022, 
[Online]. Available: https://www.mdpi.com/2079-9292/11/17/2799 

[44] A. Kumar, S. A. Alghamdi, A. Mehbodniya, M. anul haq, J. L. Webber, 
and S. N. Shavkatovich, “Smart power consumption management and 
alert system using IoT on big data,” Sustain. Energy Technol. 
Assessments, pp. 1–7, 2022. 

[45] Lakshmanna, K.; Kaluri, R.; Gundluru, N.; Alzamil, Z.S.; Rajput, D.S.; 
Khan, A.A.; Haq, M.A.; Alhussen, A. A Review on Deep Learning 
Techniques for IoT Data. Electronics 2022, 11, 1604. 
https://doi.org/10.3390/electronics11101604 

[46] S. S. P. D. M. A. H. A. K. Sathishkumar Karupusamy J. Refonaa, 
“Effective energy usage and data compression approach using data 
mining algorithms for IoT data,” Expert Syst., vol. 12997, pp. 1–10, 
2022. 

https://doi.org/10.1115/1.4047856
https://doi.org/10.1016/B978-0-323-85534-1.00021-0
https://doi.org/10.3233/IFS-151822
https://doi.org/10.2478/ftee-2023-0035
https://doi.org/10.1016/j.eswa.2023.119738
https://doi.org/10.18280/jesa.560414
https://doi.org/10.3390/machines11100932
https://doi.org/10.1109/ACCESS.2021.3132684

