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Abstract—Urban patrols can detect emergencies in a timely 

manner and collect information, which helps to improve the 

quality of services in the city and enhance the comfort of 

residents. This study proposes the use of IoT-based drones for 

urban patrol tasks, aiming to explore the potential applications of 

drones in smart city governance. The main technical challenge in 

the process of urban patrols by drones is how to plan a flight 

path for them. Therefore, this article first designs a smart patrol 

system based on drones and Internet of Things (IoT). Meanwhile, 

as information collection is an important aspect of urban patrol 

tasks, a mathematical model with the goal of maximizing 

information collection has been established to provide cost-

effective patrol services. On this basis, in order to improve the 

accuracy of crow search algorithm (CSA), differential crow 

search strategy and variable flight step size are designed. In 

addition, the Levy flight strategy is introduced into the 

traditional CSA algorithm, and an improved crow search 

algorithm (ICSA) is proposed. Finally, a corresponding 

simulation environment was established based on the actual 

urban scene and compared with other algorithms. The numerical 

results indicate that compared with the other three swarm 

intelligence algorithms, the algorithm designed in this paper has 

more superiority. 
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I. INTRODUCTION 

With the development of cutting-edge technologies in the 
field of artificial intelligence such as the Internet of Things 
(IoT), digital twins (DT), and swarm intelligence, a foundation 
has been provided for the implementation of smart cities. 
Smart social/cities governance (also known as smart 
social/cities management), as an important application scenario 
of smart cities, is a potential goal for urban managers and 
related researchers [2]. As an advanced intelligent robot, 
unmanned aerial vehicles (UAVs) can provide many reliable 
services for smart city scenarios, helping to achieve smart city 
goals at low cost and low energy consumption [3]. In addition 
to using drones [1] to provide reliable communication services 
for smart city scenarios in [4], drones can be used to 
comprehensively monitor urban facilities, transportation, and 
the environment. For example, in [5], drones are used to 
monitor roads in cities, while in [6], drones are used to monitor 
the environment of cities. Another potential application of 
drones in smart city scenarios is patrol missions [7]-[8]. During 

the patrol process, drones are equipped with various sensors 
and cameras, which can collect relevant data of the city and 
provide timely feedback to the management department, 
providing decision-making support for urban managers, 
thereby improving the quality of the urban environment and the 
quality of life of residents. 

 

Fig. 1. IoT-based UAV patrol framework. 

When deployed in the real world, drones typically require 
the use of technologies such as IoT to interact with the human 
world. Therefore, Fig. 1 shows the IoT based unmanned aerial 
vehicle patrol framework designed by this study. Within this 
framework, before conducting patrols, the trajectory planner 
needs to first plan a global trajectory for the drone based on the 
patrol range, the three-dimensional environment, and 
geometric model of the UAV. However, in [9], a trajectory 
planning model for drones in two-dimensional space was 
developed with the goal of minimizing the length of the drone's 
trajectory, without considering the pitch angle constraint of the 
drone. In [10], a trajectory planning model for unmanned aerial 
vehicles in a three-dimensional mountainous environment was 
established, but it did not take into account the requirements of 
patrol tasks for information collection. The above 
mathematical models are not applicable to the problem of 
drone patrol trajectory planning in urban market environments. 
Therefore, this study pays special attention to the trajectory 
planning problem of patrol drones, establishes an accurate 
mathematical model for patrol drones in smart city scenarios, 
and designs an improved swarm intelligence algorithm based 

*Corresponding Author. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

648 | P a g e  

www.ijacsa.thesai.org 

on CSA algorithm. The main contributions of this study are 
summarized as follows: 

 This study introduces IoT and DT into smart city patrol 
scenarios, designs an IoT based UAV patrol framework, 
and describes the working mechanism of the DT based 
UAV patrol platform, aiming to embed the drone city 
patrol platform into smart city scenes. 

 Based on the operational mechanism of the digital twin 
patrol platform, a geometric model of patrol drones and 
a multi-objective mathematical model of urban patrol 
tasks were established, and a digital twin drone for 
urban patrol tasks was constructed. 

 Based on the DE algorithm and CSA algorithm, 
corresponding improvement strategies were designed, 
and a novel differential evolution-based crow search 
algorithm (DE-CSA) was designed to improve the 
performance of the patrol drone trajectory planner. 

 Six test functions were used to test the GWO, GA, 
CSA, and DE-CSA algorithms. From the two indicators 
of mean and standard deviation, the DE-CSA algorithm 
performed the best; Furthermore, based on real urban 
scenarios, relevant computational experiments were 
conducted, and the data results showed that compared 
with GWO, GA, and CSA algorithms, the DE-CSA 
algorithm has higher convergence accuracy. 

The remaining parts of this study are arranged as follows. 
In Section II, research related to patrol drones is reviewed; 
Section III establishes a mathematical model for UAV used for 
smart city patrol task; In Section IV, an improved CSA 
algorithm is designed; Section V presents the simulation 
experiment results. Finally, the full text is summarized in 
Section VI. 

II. LITERATURE REVIEW 

When using drones to perform patrol tasks in smart city 
scenarios, it mainly includes two parts. The first part is to 
allocate drones based on all patrol areas, ensuring that each 
area can be covered. This is the previous stage of patrol drone 
trajectory planning [7]. The other step is to plan a flight 
trajectory for the patrol drone based on the three-dimensional 
environment of the area it needs to patrol, which needs to meet 
the goals of collision free and patrol tasks. Therefore, this 
article reviews relevant research from three aspects: urban 
patrols, drone trajectory planning, and the application of swarm 
intelligence algorithms in drone trajectory planning. The aim is 
to summarize and summarize the goals of urban patrols, 
mathematical models of drones, and trajectory planning 
algorithms. 

A. The Application of UAV in Urban Patrol 

As previously mentioned, relevant researchers have 
explored the application of drones in smart city communication 
[4], road or environmental monitoring [5]-[6], disaster 
management [11], and distribution [12]. It should be pointed 
out that when using drones to detect roads and environments, 
the main objective of mathematical models is to collect or 
organize information [13]. For example, in [14], drones were 

used to collect environmental information at the dock, and the 
mathematical model required drones to fly over all detection 
nodes and use the shortest flight distance. In [15], UAVs were 
used to patrol transmission lines in a city with the goal of 
maximizing the coverage of the patrol area. Reference [16], on 
the other hand, uses ground vehicles in conjunction with UAVs 
to patrol roads, and similar to [14], the mathematical model 
requires the UAVs to fly over all patrol nodes. In [17], a drone 
scheduling model for scenic spot patrols was established, 
which aims to minimize the flight length of drones while 
minimizing the number of drones, similar to the drone 
scheduling problem in [7]. From the above research, it can be 
concluded that the main goal of UAVs during patrol missions 
is to collect ground information to the maximum extent 
possible. However, so far, no research has been conducted on 
community patrol tasks. In addition, the above research on 
drone patrols cannot be extended to three-dimensional space. 

B. A Mathematical Model for UAV Trajectory Planning 

Specifically, the establishment of a mathematical model for 
inspection drones can be divided into two parts: geometric 
modeling and problem modeling, based on the working 
mechanism of the digital twin patrol platform. The geometric 
model is mainly based on the physical performance and flight 
environment of drones, including obstacle modeling, drone 
dynamics modeling, and route constraints [18]. The problem 
model is an objective function composed of one or several 
objectives, including the shortest path, minimum energy 
consumption, or minimum flight time [19]. Geometric 
modeling includes three parts: mathematical model 
construction of drones, environmental perception, and map 
construction. In order to plan safe and effective trajectories, 
drones need to perceive the environment and construct maps, 
mainly using advanced sensor technology and data fusion 
technology [20]. Due to the development of digital twin cities, 
high-precision three-dimensional maps of cities have been 
established. Therefore, this study focuses on the construction of 
mathematical models for drones. 

The author in [21] studied the trajectory planning problem 
of ground drones in a two-dimensional environment, which 
aimed to plan a set of trajectories for a drone cluster. However, 
the geometric model of the ground drones established did not 
consider all the physical performance of the drones. In 
addition, the problem model established in [21] only focuses 
on the shortest trajectory and cannot be applied to patrol tasks 
based on drones. The author in [22] proposed a trajectory 
planning method in three-dimensional space, but it sets the Z-
coordinate of the drone trajectory point as a fixed value, which 
is essentially still trajectory planning in two-dimensional space. 
The established mathematical model still does not consider the 
pitch angle constraint of the drone. In addition, it only focuses 
on the single target of the shortest trajectory. In [23], a 
trajectory planning scheme for UAV in two-dimensional space 
was proposed, and the established problem model also aimed 
to minimize the trajectory. The author in [24] focuses on UAV-
based power grid inspection tasks. Similar to [15], there are 
fewer obstacles during the process of patrolling the power grid, 
and the mathematical model established is also not applicable 
to urban patrol tasks. Therefore, it is necessary to establish a 
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mathematical model that simultaneously focuses on 
information collection and trajectory length. 

C. A Swarm Intelligence Algorithm-Based Trajectory Planner 

The algorithms used for UAV trajectory planners can be 
specifically divided into three categories based on their 
functions: static obstacle avoidance algorithms, dynamic 
trajectory planning algorithms, and global trajectory planning 
algorithms [25]. During flight, UAVs may encounter various 
obstacles such as buildings and trees. How to effectively avoid 
these static obstacles is an important issue in drone trajectory 
planning [26]. In addition, in practical applications, UAVs may 
also encounter dynamic obstacles during flight, such as birds or 
pedestrians, which requires drones to be able to plan new 
trajectories in real time to cope with environmental changes 
[27]. In addition, the global trajectory planning algorithm for 
drones is to plan a trajectory from the starting point to the 
endpoint based on the global map using the algorithm [28]. 
This article focuses on the global trajectory planning algorithm 
considering static obstacles. 

The global trajectory planning algorithm is the core of the 
drone trajectory planner, and common trajectory planning 
algorithms include graph search-based algorithms, 
optimization-based algorithms, sampling-based algorithms, etc. 
[29]. A trajectory planning model based on graph search: This 
model discretizes the environmental space into a series of 
nodes and uses graph search algorithms (such as A * algorithm, 
Dijkstra algorithm, etc.) to find the optimal path between these 
nodes. This model is simple and easy to implement, but it has 
lower computational efficiency when dealing with complex 
environments or high-dimensional spaces [30]. The sampling-
based trajectory planning model randomly samples in the 
environmental space, constructs paths between sampling 
points, and finally optimizes the path to obtain the optimal 
trajectory. This model can handle complex environments and 
has high computational efficiency, but it cannot guarantee 
finding the global optimal solution [10]. The learning-based 
trajectory planning model learns trajectory planning strategies 
through machine learning methods. This model can handle 
complex environments and high-dimensional spaces, and can 
continuously improve trajectory planning strategies through 
learning, but it requires a large amount of training data and 
computational resources [31]. 

Unlike the above three methods, the trajectory planning 
model based on swarm intelligence transforms the trajectory 
planning problem into an optimization problem, and obtains 
the optimal trajectory by solving the optimization problem 
[32]. When solving optimization problems, swarm intelligence 
algorithms can not only consider multiple objectives but also 
find the optimal solution in large-scale complex problems. 
Representative algorithms include genetic algorithm (GA) [33] 
and grey wolf optimizer (GWO) [34]. Therefore, at present, 
more and more swarm intelligence algorithms are being 
applied to UAV trajectory planning problems. In [35], an 
improved differential evolution (DE) algorithm was designed 
and applied to the mathematical model of unmanned aerial 
vehicle trajectory planning, aiming to improve the convergence 
accuracy of the DE algorithm. Similarly, an improved DE 
algorithm in [36] was used for the deployment of multiple 
drones and achieved good results. This is because the 

differential strategy in the DE algorithm can help the DE 
algorithm escape from local optima. 

The GWO algorithm has also been applied in the field of 
drone trajectory planning. In [37], a reinforcement learning 
strategy based GWO algorithm was designed and applied to 
drone trajectory planning problems. In [38], the GWO 
algorithm is applied to the trajectory planning problem for 
transmission line inspection tasks. The above two studies have 
successfully applied the GWO algorithm to the trajectory 
planning problem of unmanned aerial vehicles. Reference [39] 
proposed an improved GA algorithm and applied it to the 
target coverage problem. The performance of GA algorithm 
and Particle Swarm Optimization (PSO) algorithm in solving 
trajectory planning problems was compared in [27], and 
experimental results showed that GA algorithm has more 
potential compared to PSO algorithm. In addition, as a novel 
swarm intelligence algorithm, there is currently no research 
testing the performance of CSA in solving unmanned aerial 
vehicle trajectory planning problems. Therefore, this article 
improves the CSA algorithm and successfully applies the 
improved CSA algorithm (ICSA, also known as DE-CSA) to 
the trajectory planning problem of unmanned aerial vehicles. 

III. MODEL 

A. Problem Definition 

Before establishing the model, we first describe the patrol 
problem in smart cities. This study uses quadcopter drones to 
patrol communities within cities, aiming to detect emergencies 
(such as accidental injuries) and ensure the safety of 
community residents, while providing timely information. 
According to [13]-[16], UAVs have two main targets during 
patrol: maximizing information collection and minimizing the 
length of flight trajectories. Before flying, the trajectory 
planner for patrolling UAVs needs to determine the optimal 
patrol trajectory based on camera constraints. In addition, the 
trajectory of UAV needs to meet physical performance 
constraints such as the maximum rotation angle, maximum tilt 
angle, and maximum flight distance of the drone. 

According to the smart city framework established based 
on digital twin (DT) technology in, this study describes the 
working mechanism of the DT-based smart patrol platform, as 
shown in Fig. 2. In the operation process of the DT-based 
intelligent patrol platform, a large number of sensors need to be 
used to collect information, and the collected information 
needs to be collected, classified, and organized. Furthermore, 
based on the requirements of smart city patrol tasks and the 
physical performance of patrol drones, a corresponding digital 
twin model is established. Finally, design experiments and 
simulation simulations are conducted to feedback the trajectory 
of patrol drones to the real world. In this study, the data 
perception, data modeling (geometric model and problem 
model), and data simulation of DT-based patrol platforms in 
smart cities were demonstrated. Intended to further explain the 
operating mechanism of the smart patrol platform, and also to 
further demonstrate the application of advanced artificial 
intelligence technologies such as swarm intelligence 
algorithms in the smart patrol platform. 
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Fig. 2. The working mechanism of smart patrol platform based on digital 

twins. 

B. Data-Aware 

In order to plan a safe and effective trajectory, the smart 
patrol platform based on drones needs to perceive the 
environment and build maps, mainly using advanced sensor 
technology and data fusion technology. Fig. 3 shows a map of 
digital twins in the context of a smart city. 

 
Fig. 3. The map of smart cities. 

C. Mathematical Model 

1) Geometric model: Geometric modeling includes the 

establishment of a drone flight space map model, the 

establishment of a drone mathematical model, and the 

establishment of an airborne camera model, as shown below: 


 1 2 1 2 1 2, , , , ,b cb cb cb cb cb cbC x x y y z z

 

Eq. (1) shows the establishment of building maps in 

smart cities, where b B  represents the set of obstacles in 

the map. 


,a qa qa qaQ x y z     

Eq. (2) is the coordinates that make up urban road grid

a A . 

 maxk kl T v
 


maxk

k K

T T



 


     

2 2 2

1 1 1k k k k k k kl x x y y z z       
 

Eq. (3)-(5) together constitutes the digital twin model of 

unmanned aerial vehicles. Eq. (3) is the maximum flight 

speed constraint of the drone, where 
maxv is the maximum 

flight speed of the drone; 
kl is the distance from the drone's 

track point k to the drone's track point 1k  ; 
kT is the flight 

time of the drone from the waypoint to the drone's 

waypoint. Eq. (4) is the battery capacity constraint of the 

drone, and
maxT is the maximum flight time of the drone. 


     

2 2 2

maxqa k qa k qa kx x y y x z L     
 

Eq. (6) forms a digital twin model for airborne cameras, 

and constrains the maximum shooting distance of the 

camera, where
maxL is the maximum shooting distance of the 

camera.  

2) Problem modeling: When drones patrol in a smart city 

environment, they aim to complete patrols of all areas with the 

shortest possible cost. According to [35]-[39], the cost of 

drone trajectory planning includes two types: time cost and 

path length cost. Therefore, this article selects path length cost 

as one of the objectives in the multi-objective function. In 

order to reduce the difficulty of solving the problem, the goal 

of maximizing the collection of information in the patrol area 

is established as the corresponding penalty function. When 

there is a road grid that is not patrolled, the value of the 

penalty function will increase, otherwise the value of the 

penalty function will decrease. The modeling of the problem is 

as follows. 


 maxmin k B b

k K

f l N E


   
 


 0,1bE 

 

Eq. (7) is the objective function of the problem, where

 maxB bN E is the penalty function and
maxBN  is the 

number of grids that make up the road. As shown in Eq. (8), 

bE is a 0-1 variable. When the camera can capture the road 

grid b B  , 1bE  ; Otherwise, 0bE  . 

IV. ALGORITHM DESIGN 

A. Algorithm Introduction 

The origin of swarm intelligence technology originated 
from Reynolds' research on the Bodies project, and after 
continuous evolution and development, swarm intelligence 
algorithms including GWO, GA, and CSA have emerged [33]-
[34]. The swarm intelligence algorithm is a cluster of 
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algorithms based on group behavior and intelligence, which 
simulates the interaction and cooperation between individuals 
in a group to achieve the ability to solve problems 
collaboratively. These algorithms draw inspiration from 
collaborative behaviors in biological populations, such as bird 
colonies, ant colonies, fish colonies, etc., and achieve the 
overall intelligence of the population through information 
exchange, interaction, and division of labor among individuals. 
This technology has shown excellent performance in solving 
the large-scale multi-objective problem. Therefore it is widely 
used in unmanned aerial vehicle trajectory planning. 

 
Fig. 4. The flowchart of the DE-CSA algorithm. 

The CSA algorithm is a novel swarm intelligence algorithm 
proposed in 2016, which mimics the hidden food, tracking, and 
deceptive behavior among crow individuals in a crow 
population. It performs global search by perceiving probability 
and flight distance. The CSA algorithm has the advantages of 
simple search strategy and fewer parameters. In addition, CSA 
algorithm is a global search algorithm that can find the optimal 
solution throughout the entire search space. At the same time, 
CSA algorithm has high search efficiency and can find better 
solutions in a short time. Although CSA algorithm can perform 
global optimization, it is determined by perceptual probability. 
Therefore, when the parameter selection is not appropriate, 
CSA may fall into local optima and cannot find the global 
optimal solution. At the same time, this also leads to CSA 
being unable to optimize in local space, resulting in low 
convergence accuracy. 

B. DE-CSA Algorithm 

Due to the concise search method of CSA, it is easy to fall 
into local optima and other problems when solving large-scale 
and complex problems. However, differential evolution (DE) 
algorithms optimize problems through mutation, crossover, and 
selection operations [14]-[15]. Therefore, it is possible to 
combine the DE algorithm and CSA algorithm to design a DE 
based CSA algorithm (DE-CSA) for solving the trajectory 
planning problem of patrol drones. In the DE-CSA algorithm 
developed in this study, a flight step size that changes with the 
number of iterations, a difference-based crow search strategy, 
and a wanderer-based search strategy were designed to 
improve the convergence accuracy of the CSA algorithm. 
Fig. 4 illustrates the flowchart of the DE-CSA algorithm, 
which (also known as the ICSA algorithm) has the following 
specific steps. 

1) Initialize the location of the crow population: To 

change the default, adjust the template as follows. Initialize 

population size maxR . Use traditional trajectory planning 

methods to plan the several trajectories of UAV, making them 

equal to the population size. Each track represents a crow 

individual  ,Track r j . Initialize the maximum number of 

iterations maxJ . Initialize the differential scaling factor F . 

Initialize crow population position GC . 

The definition of the crow individual  ,Track r j is shown 

in Eq. (9). 

        
1 2

, , , , , , ,
D

Track r j T r j T r j T r j


where r represents the r -th individual, and j  represents the 

j -th iteration process, D represents the individual's 

dimension. 

The definition of the crow population position GC  is 

shown in Eq. (10). 

      1 , 2 , , maxGC Track Track Track R





where 

   ,Track r Track r j


2) Population assessment: Evaluate the objective function 

values of each crow of individual in the crow population and 

find the optimal solution to the optimization problem 

according to Eq. (11). The specific process of this step is 

shown in Algorithm 1. Among them, fbest is the optimal fitness 

function value in the crow population. Trackbest is the best 

crow individual in the population. 

Algorithm 1 
For r=1 to Rmax do 

 Fitness = f (track(r,j)) 

   if Fitness<f best Then 

      f best = Fitness 

      Track best = track(r,j) 

End for 
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 
       

 

, ,  , , 1
,

, 1 ,

Track r j if f Track r j f Track r j
m r j

m r j Otherwise

  
 





The definition of the MC is shown in Eq. (12). 

      1, , 2, , , max,MC m j m j m R j


 

where MC  is the memory matrix of the crow population. 

3) Calculate search step size: Calculate the flight step size

flyo of individual crows according to Eq. (13). 



1
2

2.5
max

j
flyo

J

 
   

 


4) A difference-based crow search strategy: Randomly 

generate a random number P in the [0,1] interval, and if 

0.5P  , generate a random number O in the [0,1] interval, 

and perform a differential crow search operation based on 

Eq. (14)-(15). 

If 0.5O  , perform differential operation according to 

Eq. (14). 

 
        , 1 1, 2, 3,

d d d d
T r j T r j F T r j T r j    



where  1,
d

T r j ,  2,
d

T r j ,and  3,
d

T r j are the d-th 

dimension of randomly selected individuals. 

If 0.5O  , perform crow search operation according to 

equation (15). 

         , 1 , , ,
d d d d

T r j T r j Rand flyo m best j T r j     



where Rand is a random number in the [0,1] interval. 

 ,
d

m best j is the d-th dimension of the individual with the 

best fitness function value in matrix MC . 

5) A wanderer-based search strategy: If 0.5P  , perform 

a wanderer-based search operation based on  Eq. (16)-(17). 

   , 1 ,
d d

T r j T r j Rand flyo a     

( 1)a Rand D  

6) Reevaluate the population: Reevaluate the population 

based on Algorithm 1. 

7) Output result: Calculate and determine whether the 

maximum number of iterations has been reached. If so, end 

the iteration and output the result; Otherwise, return to 3) 

Calculate search step size. 

V. PRESENTATION OF EXPERIMENTAL RESULTS 

In order to further demonstrate the performance of the DE-
CSA algorithm designed in this study, the performance of the 
algorithm was demonstrated from two aspects. Firstly, 
according to [33], this study tested the DE-CSA algorithm 
using six test functions. In addition, this study established a 
corresponding simulation environment based on the map 
shown in Fig. 3 and used the DE-CSA algorithm to plan the 
trajectory of patrol drones. All the above simulation 
experiments were conducted on the MATLAB 2022a platform. 

A. Benchmark Functions 

This study used unimodal test functions (F05-F07) and 
multimodal test functions (F08-F10) to test the developed 
algorithm. Among them, F05 is called the Rosenbrock 
function, also known as the Valley or Banana function, with its 
global minimum located in a narrow parabolic valley. 
However, although the valley is easy to find, it is difficult to 
converge to the minimum. F07 is a multidimensional unimodal 
flat-bottomed function with random interference, and the 
algorithm is prone to getting stuck in local optima during 
operation. F08-F10 are both multimodal test functions. Among 
them, F09 is the Rastigin function, which has many local 
minima and is highly multimodal. In the two-dimensional 
form, the characteristic of the function image of F10 is that the 
external region is very flat and there is a large hole in the 
center. This function can also easily trap optimization 
algorithms into local optima. Therefore, the above test 
functions can test not only the local search ability of the 
algorithm, but also the global search ability of the algorithm. 

TABLE I.  TEST FUNCTIONS 

Functions Expressions of Functions Domian Optimal 

F05 
2 2 2

05 1( ) 100 [( ) ( 1) ]i i ii
F x x x x      [-30,30] 0 

F06 
2

06 ( ) [( 0.5) ]ii
F x x   [-100,100] 0 

F07 
4

07 ( ) [ [01)],ii
F x i x Random    [-1.28,1.28] 0 

F08 08 [ sin( )]i ii
F x x   [-500,500] -837.966 

F09 
2

09 ( ) [ 10 (2 ) 10]i ii
F x x cos x     [-5.12,5.12] 10 

F10 
2

10 ( ) 20 ( 0.2 ((1/ ) )) (1/ (2 )) 20i ii
F x exp n x exp ncox x e       [-32,32] 0 
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TABLE II.  THE GRAPH OF THE TEST FUNCTION AND THE ITERATION CURVES OF THE FOUR ALGORITHMS ( maxR =30) 

F05 F06 

    

F07 F08 

    

F09 F10 

    

TABLE III.  THE FITNESS FUNCTION VALUES OF THE TEST FUNCTION FOR FOUR ALGORITHMS RUNNING 30 TIMES ( maxR =30) 

Functions F05 F06 F07 F08 F09 F10 

Algorithms Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

GWO 1.9E-06 5.1E-07 1.7E-07 2.4E-08 1.6E-04 2.2E-05 -823.430 09.62 12.15 1.61 0.614 0.041 

CSA 1.8E-07 1.5E-08 6.4E-09 1.9E-10 3.9E-04 6.3E-05 -719.527 16.02 10.19 0.94 0.471 0.106 

GA 4.0E-07 3.6E-08 3.8E-06 1.8E-07 1.6E-04 5.2E-05 -766.749 92.47 10.16 0.56 0.959 0.797 

DE-CSA 5.6E-17 0.6E-18 00E+00 00E+00 4.6E-15 2.5E-16 -837.965 00E+00 10.00 00E+00 8.1E-16 1.6E-17 

The CSA, GA, GWO, and DE-CSA algorithms were run 30 
times in each test function. Table I shows the mathematical 
formulas, variable ranges, and minimum values of the six test 
functions F05-F10. Table II shows the convergence curves of 
the fitness functions during the running process of CSA, GA, 
GWO, and DE-CSA algorithms using each test function as the 
fitness function. Table III presents the operational results of 
CSA, GA, GWO, and DE-CSA methods. 

B. Trajectory Planning Results 

On this basis, in order to verify the effectiveness of the 
smart patrol platform designed in this study, a corresponding 
simulation environment was established based on the map 
shown in Fig. 3 and the DE-CSA algorithm was used to plan 
the trajectory of the patrol drone. Fig. 5 shows the patrol 
trajectory planned by the DE-CSA algorithm for unmanned 

aerial vehicles. Fig. 6, and Fig. 7, respectively shows the 
optimal fitness function curves, and average fitness function 
curves of the four algorithms during 30 runs. 

As shown in Fig. 6, during the 30 runs of GWO, GA, CSA, 
and DE-CSA algorithms, the optimal fitness function value of 
DE-CSA is 5180.07, while the optimal fitness function values 
of GWO, GA, and CSA algorithms are 5641.16, 5624.49, and 
5781.13, respectively. As shown in Fig. 7, during 30 runs of 
GWO, GA, CSA, and DE-CSA algorithms, the average fitness 
function value of DE-CSA is 5179.53, while the average 
fitness function values of GWO, GA, and CSA algorithms are 
5674.75, 5691.29, and 5727.05, respectively. Therefore, it can 
be concluded that the optimal fitness function, worst fitness 
function, and average fitness function solved by the DE-CSA 
algorithm have the best results in 30 runs, fully proving the 
effectiveness of the smart patrol platform. 
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Fig. 5. The trajectory planning results of the DE-CSA. 

 

Fig. 6. The optimal fitness function curves of the four algorithms. 

 

Fig. 7. The average fitness function curves of the four algorithms. 

VI. CONCLUSIONS 

This study constructed a smart patrol platform for smart 
cities and developed an improved CSA algorithm. This study 
expands the application of drones in smart cities, aiming to 

improve the service quality of cities. The effectiveness of the 
platform and algorithm was demonstrated through the use of 
six test functions and a simulation experiment in a real 
scenario. The simulation results show that the DE-CSA 
algorithm can achieve the best results in all six test functions, 
whether it is the mean and standard deviation. In the 
experiment of drone trajectory planning, the optimal, and 
average values of the DE-CSA algorithm were better than the 
other three algorithms in 30 runs of GWO, GA, CSA, and DE-
CSA algorithms. In the future research process, the focus will 
be on the trajectory planning problem of patrol drones in 
dynamic environments. 
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