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Abstract—This study investigates the potential enhancement 

of classification accuracy in timber defect identification through 

the utilization of deep learning, specifically residual networks. By 

exploring the refinement of these networks via increased depth 

and multi-level feature incorporation, the goal is to develop a 

framework capable of distinguishing various defect classes. A 

sequence of ablation experiments was conducted, comparing our 

proposed framework's performance (R1, R2 and R3) with the 

original ResNet50 architecture. Furthermore, the framework’s 

classification accuracy was evaluated across different timber 

species and statistical analyses such as independent t-tests and 

one-way ANOVA tests were conducted to identify the significant 

differences. Results showed that while the R1 architecture 

demonstrated slight improvement over ResNet50, particularly 

with the addition of an extra layer ("ConvG"), the latter still 

maintained superior overall performance in defect identification. 

Similarly, the R2 architecture, despite achieving notable 

accuracy improvements, slightly lagged behind R1. Integration of 

fully pre-activation activation functions in the R3 architecture 

yielded significant enhancements, with a 14.18% increase in 

classification accuracy compared to ResNet50. The R3 

architecture showcased commendable defect identification 

performance across various timber species, though with slightly 

lower accuracy in Rubberwood. Nonetheless, its performance 

surpassed both ResNet50 and other proposed architectures, 

suggesting its suitability for timber defect identification. 

Statistical analysis confirmed the superiority of the R3 

architecture across multiple timber species and this underscores 

the significance of integrating network depth and fully pre-

activation activation functions in improving classification 

performance. In conclusion, while the wood industry has made 

strides towards automation in timber grading, significant 

challenges remain. Overcoming these challenges will require 

innovative approaches and advancements in image processing 

and artificial intelligence to realize the full potential of 

automated grading systems. 
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I. INTRODUCTION 

Timber grading and defect identification are important in 
wood industries as it serve as cornerstone for the decision 
made by operators. In the past, these tasks were executed 
manually requiring careful assessment of the timber to 
determine their quality and economic value. This procedure 
involved classifying each log relative to their grade by 
assessing a number of factors such as geometry and typed of 
defect presence. Nevertheless, manual grading methods are 

often prone to subjectivity, time consumption, and human error 
[1]. In light of current state of the industry, a notable concern 
arises regarding the consistent or potentially declining number 
of qualified inspectors in comparison to the steadily growing 
market [2]. Additionally, timber grading process would usually 
involve a complex classification procedure such as sorting by 
defects, species and texture which require a versatile algorithm 
that are capable of handling diverse tasks on the same machine. 
Moreover, timber defects that resulted from environment and 
natural growth processes might have an impact on the timber 
strength, durability and aesthetic appeal, thereby affecting its 
economic value. The current methods of timber defect 
detection rely heavily on visual inspection which is subjective 
and lack of precision, to overcome these challenges. 

In recent years, there has been a rise in quality control 
using automated vision inspection (AVI) among the 
manufacturer, particularly in the secondary timber industry 
with the objective to overcome present issues [3]. Although 
AVI has been applied in the timber industry to address these 
challenges, ongoing research endeavors persist in enhancing 
the inspection process across various domains, including defect 
detection and identification, characterizing defect, grading 
timber, and integrating sensors into hardware components for 
optimizing cutting processes [4]. A number of methods have 
been proposed [5][6][7][8][9] to streamline the grading 
process, yet they still encounter several obstacles especially in 
the scope of detection and identification of timber defects. To 
address these challenges, there is a growing interest in 
leveraging statistical classifier methods such as machine 
learning and deep learning algorithms in AVI for the 
identification of timber defects as these technologies offer the 
potential expedited, reproducible and reliable grading 
processes [10][11][12][13]. A 2020 study suggests that 
employing deep learning for automated feature extraction 
could yield higher precision while enhancing accuracy by at 
least 4% compared to other timber feature extraction and 
recognition methods [14]. In [15], they employed a  DenseNet 
network along with a single-shot multi-box detector (SSD) and 
a target detection algorithm to develop an enhanced SSD 
algorithm for detecting defects in solid wood panels. Despite 
facing challenges in accurately identifying active knots due to 
their similarity to background features, the proposed method 
achieved an improved accuracy rate of 96.1% compared to 
earlier version. However, such autonomy come with the trade-
off where it requires a significantly greater amount of data to 
train the deep learning architecture compared to the machine 
learning approaches. As deep learning advances swiftly, 
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numerous Convolutional Neural Network (CNN) architectures 
have surfaced over time to address issues across various 
domains of defect identification such as AlexNet [16], 
MobileNetV2 [17], GoogLeNet [18] and ResNet [19]. In this 
research, our emphasis will be on employing Residual Neural 
Network (ResNet) as our deep learning network architecture 
given its notable achievements in numerous image 
classification tasks in recent years [20]. 

He et al. [21] introduced the Residual Neural Network 
(ResNet), a Convolutional Neural Network (CNN) architecture 
inspired by the structure of pyramidal cells in the cerebral 
cortex. ResNet key innovation was residual learning, enabling 
more efficient training of deep networks through skip 
connections that bypass multiple layers while incorporating 
ReLU and batch normalization [21]. Additionally, there exist 
model such as HighwayNets that further facilitate training deep 
networks by using an additional weight matrix to learn skip 
weights [22]. The fundamental unit of the ResNet network is 
the residual building block, which constitutes the majority of 
its architecture. These blocks incorporate skip connections to 
bypass convolutional layers, mitigating issues such as gradient 
disappearance or explosion with increasing network depth [19]. 
Comprised of convolutional layers, batch normalizations, 
ReLU activation functions, and skip connections, the residual 
building block forms the backbone of ResNet's structure. 
Although augmenting the depth of a neural network enhances 
its feature extraction capabilities as highlighted by [23], 
however, adding more layers to a current deep model such as 
ResNet also lead to higher training error [21]. To tackle the 
issue of vanishing gradient, [22] proposed skip connections 
within residual neural networks where these connections 
diminish the shortest path from lower layer parameters to the 
output, mitigating the vanishing gradient problem. 
Furthermore, by employing fewer layers during the initial 
training phase, this skipping strategy simplifies the network 
architecture effectively. Fig. 1 illustrates the layout of 
fundamental residual block. The output of the residual building 
block can be expressed using Eq. (1), where F represents the 
residual function, and x and y denote the input and output of 
the residual function, respectively. 

 

Fig. 1. Basic residual block. 

𝑦 = 𝐹(𝑥) + 𝑥 (1) 

ResNet stands out for its significantly deeper network 
compared to its competitors, yet it maintains fewer parameters 

(weights) than other models. A comparative analysis of 
ResNet50 and other CNN architectures for timber species 
identification by Oktaria et al. [24] in 2019, demonstrated that 
residual network outperforms its counterparts in terms of F1 
Score, precision, and accuracy. Similarly, [25] proposed a 
transfer learning approach using the ResNet50 architecture for 
plant disease identification, achieving a remarkable training 
accuracy of 99.80%. On the contrary, Ahmed et al. [26] 
utilized ResNet50 for the purposes of crack detection by 
training the model with dataset of 48000 images and achieve 
remarkable accuracy rate of 99.8%. Inspired by the 
aforementioned factors, we expanded our research on using 
residual neural network (ResNet) for identifying defects in 
Malaysian timber species, aiming for outcomes that could 
prove advantageous to the local timber product industries. 

II. METHODOLOGY 

A. Overview of Approach 

Driven by the significance of network depth where deep 
convolutional neural networks have achieved remarkable 
progress in image classification [27] as well as the significant 
achievement of Resnet50 from studies related to identification 
of timber defects [28]. Therefore, we investigate the potential 
of enhancing better class representation thus achieving higher 
accuracy by employing a residual network as the base 
architecture for this study. Hence, our goal is to explore the 
refinement of residual network layer by incorporating multi-
level features that can be enhanced through increased the 
number of stacked layer (depth). This study conducted a 
sequence of ablation experiments based on residual network 
architecture that were implemented to facilitate the 
development of timber defect identification framework with 
ability to distinguish different type of defect classes. 
Additionally, we compared the performance of our timber 
defect identification frameworks to the original ResNet50, 
which is based on the concept of residual networks. 
Furthermore, we evaluated the classification performance of 
our proposed timber defect identification framework across 
various timber species. Finally, we expanded the validation of 
our defect identification approach by conducting statistical 
analyses which include independent t-tests and one-way 
ANOVA tests to identify significant differences. 

B. Residual Neural Network (ResNet) Architecture 

Recent studies in timber defect identification have seen the 
development of several architectures based on the Residual 
Neural Network (ResNet) design, renowned for its efficiency 
in depth-based CNN architecture [29][30][31][32]. This 
research involves reformulating the layers of the residual 
network specifically for classification of timber defects by 
altering the residual block based on ResNet50 architecture as 
shown in Fig. 2. The ResNet50 architecture is a cutting-edge 
convolutional network comprising 50 layers, featuring skip 
connections. These skip connections which operate in parallel 
with standard convolutional layers, serve as shortcuts to aid the 
network in capturing global features while addressing the 
challenge of vanishing gradients encountered in deeper 
network layers [33]. Besides, the architecture is made up of 
7x7 convolutional layer with 65 kernels, succeeded by a 3x4 
max-pooling layer with a stride of 2, followed by 16 residual 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

667 | P a g e  

www.ijacsa.thesai.org 

building blocks, 7x7 average-pooling layer with a stride of 7, 
and a fully connected layer preceding the softmax output layer 
[25]. The inclusion of residual blocks helps diminishing the 
output size while simultaneously increasing the network’s 
depth. 

 
Fig. 2. ResNet50 architecture. 

In this research, we systematically formulated three 
variations of residual network architecture with each 
employing different number and sizes of convolutional layers. 
This iterative approach was undertaken to explore the most 
appropriate configuration for timber defect identification 
framework. The experiment is performed on three proposed 
residual network architectures referred to as R1, R2, and R3. 
These variants draw inspiration from the architecture of 
ResNet50 as well as earlier research conducted by [21] in the 
field of deep residual learning. Each of the three devised 
versions of the residual network possesses its own unique 
architecture where R1 comprises 51 parameter layers, while the 
other variants exhibit a greater number of parameter layers, 
with R2 featuring 53 layers and R3 consisting of 54 layers. 
Additionally, within the architecture of both R1 and R2, we 
integrated "ConvG" and "ConvC+1" layers by introducing 
additional new residual blocks containing convolutional 
networks of different sizes into the proposed architectures. 
Table I illustrate the line-up of formulated residual network 
architectures employed for performance evaluation in this 
study.   

TABLE I. FORMULATED RESIDUAL NETWORK ARCHITECTURE 

Layer Output Size R1 R2 R3 

ConvA 112x112 7x7, 64, stride 2 

ConvB 56x56 3x3 max pool, stride 2 

ConvC+1 56x56  [
1𝑥1,32
3𝑥3,32

1𝑥1,128
] 𝑥3  

ConvC 56x56 [
1𝑥1,64
3𝑥3,64

1𝑥1,256
] 𝑥3 [

1𝑥1,64
3𝑥3,64

1𝑥1,256
] 𝑥3 [

1𝑥1,64
3𝑥3,64

1𝑥1,256
] 𝑥5 

ConvD 28x28 [
1𝑥1,128
3𝑥3,128
1𝑥1,512

] 𝑥4 [
1𝑥1,128
3𝑥3,128
1𝑥1,512

] 𝑥4 [
1𝑥1,128
3𝑥3,128
1𝑥1,512

] 𝑥6 

ConvE 14x14 [
1𝑥1,256
3𝑥3,256

1𝑥1,1024
] 𝑥6 [

1𝑥1,256
3𝑥3,256

1𝑥1,1024
] 𝑥6 [

1𝑥1,256
3𝑥3,256

1𝑥1,1024
] 𝑥6 

ConvF 7x7 [
1𝑥1,512
3𝑥3,512

1𝑥1,2048
] 𝑥3 [

1𝑥1,512
3𝑥3,512

1𝑥1,2048
] 𝑥3 [

1𝑥1,512
3𝑥3,512

1𝑥1,2048
] 𝑥3 

ConvG 4x4 [
1𝑥1, 1024
3𝑥3,1024
1𝑥1,4096

] 𝑥1   

 1x1 Average Pool, Fc, Softmax 
 

In addition to utilizing the original residual block, we 
investigated a revised version of the residual network 
architecture by integrating fully pre-activation activation 
functions in R3 where both Batch Normalization (BN) and 
Rectified Linear Unit (ReLU) layers precede the weight layer 
as illustrated in Fig. 3(b). The approach was introduced by He 
et al. [34] as a departure from the traditional “post-activation” 
paradigm which lead to a new residual block design that is 
easier to train and demonstrated enhanced generalization 
capabilities compared to the original ResNet architecture. 
Fig. 3(a) depicts the original ResNet residual block, where BN 

is applied after each weight layer, and ReLU is impemented 
after BN with the exception of the final ReLU within a 
Residual Unit which occurs after the element-wise addition. In 
reformulating the residual block for the R3 architecture, we 
implemented an asymmetric structure described by [34] which 
allow the new after-addition activation becomes an identity 
mapping. This new asymmetric form can be represented by the 
following equation: 

𝑋𝑙+1 =  𝑋𝑙 + 𝐹(𝑓(𝑋𝑙), 𝑊𝑙),. (2) 
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The design of the revised residual block allows for the 

adoption of a new after-addition activation 𝑓 in an 

asymmetrical manner, effectively treating 𝑓 as the pre-
activation of the subsequent residual block.  

 
Fig. 3. ResNet50 residual block (a) Original (b) Full pre-activation. 

C. Hyperparameter Optimization 

To ensure the optimal performance of the three proposed 
residual network architecture, we conducted a further 
assessment of the appropriate CNN hyperparameter 
configuration focusing on both learning rate and epochs. The 
proposed architectures were trained using SGD optimizer with 
learning rate set at 0.001 and 0.0001. Throughout this 
experiment, the maximum number of epochs ranged from 50 to 
200, with variations of 50, 100, and 200. The models 
underwent training on timber defect dataset encompassing 
various timber species (Meranti, Merbau, KSK, and 
Rubberwood) sourced from Universiti Teknikal Melaka 
Malaysia (UTeM) [35]. The experimental samples were then 
generated using 1600 augmented images of timber defect, 
comprises of eight timber defect categories (brown stain, blue 
stain, knot, borer holes, rot, bark pocket, wane, and split), as 
well as a set of clear timber specimens. The performance 
classification of each proposed architecture was assessed and 
compared with the transfer learning ResNet50 model to 
determine the most effective framework for identifying timber 
defects.  

III. RESULT AND DISCUSSION 

In this section, we will present the experimental outcomes 
of the three formulated residual network architectures to 
evaluate the efficacy of the proposed approaches in term of 
their performance in identification. The results are illustrated 
across three dimensions throughout the proposed residual 
network architecture where the first dimension explores 
different hyperparameter configurations encompassing both 
learning rate and epochs in pursuit of achieving highest 
classification performance for the proposed architecture (R1, 

R2, R3). Subsequently, a comparison of performance is 
conducted between the standard ResNet50 and the proposed 
architectures, with the goal of evaluating their classification 
performance in terms of improved representation of the defect 
class and accuracy. Finally, the identification performance is 
summarized across various timber species to gauge the 
consistency of performance of the proposed approach across 
multiple timber species. The experimental result for all three 
formulated architectures (R1, R2 and R3) across the timber 
species are presented in Table II with highest classification 
performance achieved using specific hyperparameter settings 
are highlighted in red. The data presented in Table II clearly 
indicates that the R1 architecture demonstrates commendable 
classification performance across all timber species datasets, 
achieving the highest identification accuracy for each species 
within the range of 89.85% to 94.44%. In R1, the Rubberwood 
dataset attains the highest classification accuracy of 94.44% 
with hyperparameter settings of 0.001 learning rate and 100 
epochs. Following this, R1 achieves the second-highest 
classification performance reaching 93.48% in the Meranti 
dataset. Subsequently, KSK follows with an accuracy of 
92.52%, and finally, the Merbau dataset records the lowest 
accuracy of 89.85%. On the contrary, the R2 architecture 
achieves the highest classification accuracy of 94.07% across 
all timber species with optimized hyperparameters (LR = 
0.001, Epoch = 100) in rubber timber species. It was succeeded 
by Meranti (93.04%), Merbau (92.74%), and KSK (91.93%). 
It's noteworthy that the R2 highest classification accuracy 
across the timber species is achieved with a learning rate of 
0.001, coupled with varying numbers of epochs: 100 for 
Rubberwood, 200 for Meranti, and 50 for both Merbau and 
KSK. By incorporating fully pre-activation functions into the 
R3 residual block, we achieved the highest classification 
performance of 99.11% in the Merbau dataset, utilizing a 
learning rate of 0.0001 and 200 epochs as the training 
hyperparameter settings. In the case of the remaining three 
timber species, the classification performance of R3 was as 
follows: Meranti (97.7%) with LR = 0.001 and Epoch = 100, 
KSK (98.59%) with LR = 0.0001 and Epoch = 200, and 
Rubberwood (96.59%) with LR = 0.001 and Epoch = 50. 

As depicted in Fig. 4, the classification accuracy of the R1 
architecture demonstrates a roughly 0.7% improvement 
compared to the original ResNet50 under different 
hyperparameter configurations across timber species. The 
improvement in performance stems from integrating an 
additional layer, denoted as "ConvG," into the network 
architecture of R1. Nonetheless, despite the noted rise in 
classification accuracy for R1 in contrast to ResNet50, the 
ResNet50 architecture still predominantly leads in overall 
performance concerning defect identification where highest 
classification accuracy achieved by R1 still falls short when 
compared to ResNet50 architecture. Similar to earlier R1 
architecture, we evaluated the classification performance of the 
R2 architecture alongside the original ResNet50. The findings 
indicate that with 100 epochs and a learning rate of 0.001, the 
R2 architecture surpassed the original ResNet50 in the Merbau 
dataset, achieving an accuracy improvement of 6.92%. This 
implies that increasing the depth of the CNN architecture does 
enhance its classification accuracy. However, in comparison to 
R1, despite the inclusion of a new residual block ("ConvC+1") 
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with smaller convolutional layer sizes in the proposed 
architecture of R2, it was noted that R2's highest classification 
performance still slightly lags behind R1 by a marginal 
difference of 0.37%. Nevertheless, despite some improvement 
in classification performance, the ResNet50 architecture 
continues to dominate the overall performance in defect 
identification. Within the R3 architecture, we delve into fully 
pre-activation activation functions by incorporating both BN 
and ReLu layers prior to the weights in addition to the depth of 
CNN network architecture. Illustrated in Fig. 4., the proposed 
R3 architecture, integrated with both network depth and fully 
pre-activation activation functions does improves the 
architecture's classification performance in the Merbau species 
by 14.18% compared to the original ResNet50 while using a 
learning rate of 0.001 and 50 epochs. The performance of the 
R3 architecture is clearly commendable across different timber 

species, attaining defect identification accuracies ranging from 
96.59% to 99.11%. Although it appears that the R3 architecture 
still exhibits lower performance in the Rubberwood species 
with a defect identification accuracy of 96.59% which marking 
the lowest R3 classification performance among the timber 
species. However, it's notable that the performance of the 
proposed R3 architecture has not only shown significant 
improvement across timber species and on average but has also 
outperform the classification performance of original ResNet50 
and other proposed architectures (R1 and R2). This suggests 
that integrating both network depth and fully pre-activation 
activation functions into the R3 architecture improves the 
CNN's classification performance in distinguishing classes of 
timber defects and making it well-suited for implementation as 
our timber defect identification framework.  

TABLE II. CLASSIFICATION PERFORMANCE OF R1, R2, R3 AND RESNET50 ACROSS TIMBER SPECIES USING MULTIPLE HYPERPARAMETERS SETTINGS. THE 

HIGHEST CLASSIFICATION ACCURACY ACROSS TIMBER SPECIES ARE HIGHLIGHTED IN RED 

Architectures 
Hyperparameters 

Rubberwood Merbau Meranti KSK 
Learning rate Epoch 

R1 

0.001 

50 94.15 83.41 92.15 88.89 

100 94.44 87.19 90.96 92.3 

200 94.15 88.15 93.48 92.52 

0.0001 

50 93.33 87.63 91.63 86.96 

100 93.04 87.56 90.96 89.56 

200 93.7 89.85 92.96 90.15 

R2 

0.001 

50 92.59 92.74 88.59 91.93 

100 94.07 87.33 89.85 86.81 

200 92.96 88.96 93.04 91.33 

0.0001 

50 93.33 82.67 91.33 88 

100 92.89 86.59 91.56 91.56 

200 93.48 89.63 92.15 86.37 

R3 

0.001 

50 96.59 99.04 97.48 97.85 

100 96.3 98.96 97.33 97.85 

200 96.52 98.89 97.7 98.52 

0.0001 

50 95.85 98.07 96.81 96.67 

100 95.93 98.74 96.37 97.7 

200 96.44 99.11 97.04 98.59 

ResNet50 

0.001 

50 94.00 86.74 92.52 92.30 

100 94.59 90.07 93.56 91.41 

200 94.22 88.89 94.07 92.22 

0.0001 

50 93.33 88.52 92.74 92.67 

100 92.89 87.48 91.85 93.26 

200 93.70 89.19 92.15 91.85 
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Fig. 4. Overall performance of proposed architectures and ResNet50. 

To conduct further assessment, the classification 
performance of the R3 architecture was compared with 
ResNet50 and other proposed architectures using a one-way 
ANOVA test to identify any statistically significant differences 
in accuracy between the independent groups. The findings 
indicate that the classification performance of the proposed R3 
architecture is statistically significantly superior compared to 
other architectures across multiple timber species. This implies 
the acceptance of the alternative hypothesis (HA) which 
indicate that there are at least two group means that are 
statistically significantly different from each other. 

IV. CONCLUSION 

 This study presents an overview of the proposed timber 
defect identification framework based on the concept of 
residual neural network (ResNet) that mitigates the subjectivity 
and lack of precision associated with current timber defect 
identification methods, offering a more robust and reliable 
approach for the timber industry. It explores the evaluation of 
the approach concerning the number of stacked layers (depth) 
in the residual network architecture, as well as the integration 
of fully pre-activation activation functions within the residual 
block. Experiment are first conducted on the three proposed 
architectures (R1, R2, and R3) using various combinations of 
hyperparameters, including epochs and learning rates. The 
results from these experiments show that the R3 architecture 
which is formulated based on both stacked layers and fully pre-
activation activation functions significantly contributes to 
satisfactory defect identification performance across all defect 
types and with consistently high accuracy observed across 
multiple timber species.  
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