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Abstract—Examination and categorization of high-

band pictures are used to describe the process of analysing and 

classifying photos that have been taken in many bands. Deep 

learning networks are known for their capacity to extract 

intricate information from images with a high bandwidth. The 

novelty lies in the integration of adaptive motion optimization, 

spectral-spatial transformer for categorization, and CNN-based 

feature extraction, enhancing high-band picture search efficiency 

and accuracy. The three primary parts of the technique are 

adaptive motion for optimization, spectral-spatial transformer 

for categorization, and CNN-based feature extraction. 

Initially, hierarchical characteristics from high-band pictures 

using a CNN. The CNN method enables precise feature 

representation and does a good job of matching the image's high 

and low features. This transformer module modifies the spectral 

and spatial properties of pictures intended for usage, enabling 

more careful categorization. This method performs better when 

processing complicated and variable picture data by integrating 

spectral and spatial information. Additionally, it is preferable to 

incorporate adaptive motion algorithms into offering the deep 

learning network training set. During training, this optimization 

technique dynamically modifies the motion parameter for 

quicker convergence and better generalization performance. The 

usefulness of the suggested strategy is demonstrated by 

researchers through numerous implementations on real-world 

high-band picture datasets. The challenges of hyperspectral 

imaging (HSI) classification, driven by high dimensionality and 

complex spectral-spatial relationships, demand innovative 

solutions. Current methodologies, including CNNs and 

transformer-based networks, suffer from resource demands and 

interpretability issues, necessitating exploration of combined 

approaches for enhanced accuracy. In high-band image 

evaluation and classification applications, the approach delivers 

state-of-the-art performance and python-implemented model has 

a 97.8% accuracy rate exceeding previous methods. 

Keywords—Deep learning networks; Convolutional Neural 

Network (CNN); spectral-spatial transformer; adaptive motion 
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I. INTRODUCTION 

Hundreds of consecutive spectrum bands that have 
elevated resolutions make up the remotely sensed 
hyperspectral data that is gathered by hyperspectral sensors 
[1]. Hyperspectral images (HSIs) are being effectively utilized 
in precision farming, development, monitoring of the 
environment, and many other disciplines, according to recent 

research in the field of remote identifying. Among the 
common features of an HSI is its ability to capture high-
resolution one-dimensional spectrum data that describes the 
physical property in addition to scenario data within the target 
image's two-dimensional space [2]. Numerous dimensionality 
reduction techniques are now being used with hyperspectral 
imagery. Existing approaches can be categorized in two 
classes based on how much the physical importance of the 
initial information has been preserved, extraction of features 
and choosing features (also known as band selection). 
Through combining several initial characteristics into a single 
feature, feature extraction finishes the transformation of the 
initial information from high-dimensional space to low-
dimensional space. As everyone is aware, extraction of 
features works effectively for reducing dimensions, but 
because spectral architecture is destroyed, it is unable to 
preserve the physical meaning of each band [3]. The goal of 
band selection is to maximize given performance indices by 
selecting a band subset after the unique band set. Band 
selection, as opposed to feature extraction, can produce a band 
subset that more accurately captures the original data of the 
different types of land cover [4].The two main kinds of current 
band selection techniques are supervised band selection and 
unsupervised band selection, which involves the application of 
priori-label data. A great deal of label details is typically 
needed for supervised band selection, yet in most instances, 
getting labels for hyperspectral data can be exceedingly 
challenging [5]. Thus, uncontrolled remote sensing 
encompasses the majority of current effort. To be more 
precise, there are three types of current unsupervised band 
selection techniques: clustering-based, heuristics search-based, 
and ranking-based [6]. 

Choosing the type of data has an important effect on the 
outcomes in the feature classification area. Not every band in 
the hyperspectral photo has data; certain bands, such as ones 
impacted by different atmospheric conditions, are meaningless 
and reduce the efficacy of the classification. Additionally, 
redundant bands are present, which might impede the process 
of learning and lead to inaccurate predictions [7]. If the size of 
space pictures becomes so great it takes numerous instances to 
identify the connections among each band to the scene, even 
those bands, which carry sufficient information regarding the 
situation, might not be able to accurately forecast the 
categories .The findings in the field of features categorization 
are greatly affected by the kind of data selected. Each of the 
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groups in the hyperspectral image have data; certain bands are 
useless and lessen the effectiveness of the classification, 
which include those affected by various conditions in the 
atmosphere [8]. Furthermore, duplicate bands exist, which 
could hinder training and result in wrong projections. When 
space photos are so big that it requires multiple views to 
discern the relationships between every band as well as the 
scene, especially bands that contain sufficient details about the 
circumstances aren't always able to predict the category with 
any degree of accuracy (Hughes phenomenon). With the goal 
to reflect the initial hyperspectral data contained in the raw 
data, the choice of features algorithms seek to choose an 
appropriate amount of spectral band information [9]. The goal 
of feature extraction techniques, as opposed to feature 
selection techniques, is to use the unprocessed information to 
create an entirely novel low-dimension descriptors. Like 
previously said, selecting features techniques outperform 
extraction of features techniques within the subsequent area. 
Hyperspectral analysis of images needs entire unprocessed 
information from the spectrum bands whenever extraction of 
features techniques is used. When compared with feature 
extraction techniques, methods for selecting features only use 
a portion of the raw data's spectrum bands, and by employing 
those chosen bands rather than every one of the originally 
selected bands, the expense of acquiring hyperspectral 
information is further decreased [10]. 

Even while such methods can yield positive outcomes, the 
modification of HSIs data can occasionally destroy crucial 
details, resulting in data degradation. As such, these 
techniques are not necessarily the best options for reducing 
dimensionality as compared to conventional band selection 
procedures. Regarding the band selection approach, given the 
initial band space of the HSIs, the one that is most useful and 
unique band subgroup is selected by itself [11]. In a nutshell, 
the searching method and the assessment of the criteria 
function are both of the main components of band selection 
technologies. Although the latter assesses an evaluation for 
every band subset chosen using the initial selection of bands 
using a suitable criteria function, the earlier method uses an 
effective search technique to find an especially prejudiced 
band subset out of all possible subsets [12].Finding the most 
effective spectrum combination among all band possibilities 
might occur at a very high computational expense. Using 
algorithms to haphazardly hunt for the minimal reduction was 
a different approach. The two types of band selection 
techniques that are now in use include supervised band 
selection and unsupervised band selection [13]. The training 
information for the previous method must be labelled. It 
appears that the majority of the time there's a lack of labelled 
information accessible, which raises the significance of 
unsupervised band selection for implementations. A new and 
efficient technique for hyperspectral band selection is 
presented by the clustering-based techniques. Nonetheless, the 
primary challenge in the hyperspectral band selecting process 
is determining whether to determine the separation among the 
bands and how to choose relevant bands [14]. 

High-band visuals are essential for environmental 
monitoring and precision farming, but they can be difficult to 
interpret because of their redundant bands and complexity. 

Conventional methods such as band selection and feature 
extraction are not as good at successfully lowering 
dimensionality while maintaining spectral information. This 
research presents a novel method to improve high-band 
picture processing using spectral-spatial transformers, deep 
learning networks, and adaptive motion optimization. This 
methodology seeks to achieve much better classification 
accuracy than current approaches by merging spectral and 
geographical data. Real-world applications confirm its 
effectiveness, employing a Python-based model to achieve 
accuracy rate. This work offers useful solutions for remote 
sensing applications and related sectors, making a significant 
contribution to the advancement of high-band image 

processing. 

Key contributions are as follows, 

 Novel integration of convolutional neural networks for 
hierarchical feature extraction from high-band pictures, 
enhancing categorization precision and knowledge. 

 Introduction of a spectral-spatial converter, augmenting 
categorization accuracy by leveraging both spectral and 
spatial information. 

 Implementation of adaptive motion algorithms to 
improve generalization performance and convergence 
speed, advancing efficiency in image processing. 

 Demonstrates state-of-the-art capabilities in image 
processing and categorization, surpassing existing 
techniques in precision and computational 
effectiveness. 

 Addresses limitations of conventional approaches, 
propelling forward the field of remote sensing image 
analysis, with potential applications in agriculture, 
urban planning, and environmental monitoring. 

The remaining section of this work is structured as 
follows: Section II covers similar work and a full evaluation of 
it. Section III offers details on the problem statement. Section 
IV provides a detailed discussion of the suggested method. 
Section V presents and examines the results of the tests, as 
well as a comprehensive comparison of the proposed 
technique to current standard procedures. Section VI, the last 
section, represents where the paper is finished. 

II. RELATED WORKS 

Bera and Shrivastava [15] suggest that owing to the special 
qualities of HSI data, HIS organization is unique of the most 
difficult tasks in the hyperspectral remote sensing sector. This 
is made up of a huge amount of bands that exhibit robust 
interactions in both the spatially and spectrum realms. In 
addition, it becomes challenging with fewer training 
examples. To try to tackle these issues, researchers developed 
a deep convolutional neural network (CNN) based spatially 
extraction of features method for HSI classification below. 
They demonstrated the impact of seven distinct optimizers on 
the deep neural network model through the field of 
classification using HSI since optimization techniques are 
crucial for the deep CNN model's development. The study 
employed seven distinct optimization techniques, the better 
performance of the deep CNN algorithm using the the Adam 
optimizer for HSI classification was demonstrated by 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

697 | P a g e  

www.ijacsa.thesai.org 

comprehensive research results on four hyperspectral remote 
sensing data sets. This endeavour will eventually compare the 
effectiveness of several optimization techniques classification 
include increased computational complexity due to processing 
volumetric data, which may require substantial computational 
resources and time for training and inference. Features in 3D 
CNNs may be challenging compared to 2D CNNs, making it 
harder to understand how the model. The limitations of 
employing 3D CNN models for hyperspectral image (HSI) 
classification include increased computational complexity due 
to processing volumetric data, which may require substantial 
computational resources and time for training and inference. 
Additionally, the interpretability of the learned features in 3D 
CNNs may be challenging compared to 2D CNNs, making it 
harder to understand how the model is making decisions based 
on both spectral and spatial information. 

Hong et al. [16] explains that the ability to capture tiny 
spectrum variations, hyperspectral (HS) images allow for 
accurate recognition of substances. They have been defined by 
roughly contiguous spectral data. Convolutional neural 
networks (CNNs) have demonstrated their outstanding 
capacity for analysing locally contextual data, making them a 
potent feature extractor in high-spatiality picture 
categorization. Yet, because of the constraints of their built-in 
network backbone, CNNs are unable to efficiently extract and 
record the ordered properties of spectrum signatures. They 
suggest a unique backbone network named Spectral Former or 
approach HS image classification via a sequence viewpoint 
using transformers to address this problem. Spectral Former 
can acquire spectral localized sequence data from adjacent 
bands of high-spatiality pictures, going above band-wise 
depictions seen in traditional transformers, or producing 
group-wise spectral embedded data. Additionally, researchers 
develop a cross-layer skip link by continually acquiring the 
ability to fuse "soft" residues between layers, therefore 
minimizing the risk of missing crucial data during the layer-
wise propagating procedure. This allows researchers to 
transfer memory-like elements through shallow to deep layers. 
It is important to note that what was suggested Spectral 
Former is a very adaptable backbone networks which may be 
used with input which are patch- or pixel-wise. Through 
comprehensive trials, researchers assess the suggested 
Spectral Former’s ability to classify on three HS datasets, 
demonstrating its advantages beyond traditional transformer 
and attaining significant improvements above state-of-the-art 
backbone networking. To continue to make the transformers-
based design more useful for the HS image classification task, 
it will look into ways to further improve the system in the 
future. For instance, they may use attention or autonomous 
learning. It may also try to create a lightweight transformers-
based networks in order to lower the network's complexity 
without sacrificing effectiveness. To create deeper models that 
are easier to understand, researchers are also interested to 
incorporate additional spectral band physical properties and 
previous understanding about HS pictures into the suggested 
structure. Further study ought to concentrate on increasing the 
amount of ignored and linked encoders in the CAF module 
since it is a significant factor that might potentially improve 
the suggested Spectral Former’s classification accuracy. 

Hong et al. [17] states that because convolutional neural 
networks (CNNs) can record spatial-spectral feature 
representations, they have gained significant interest in the 
field of hyperspectral (HS) picture categorization. However, 
they are still not very good at modelling connections among 
samples and evaluation, going above the constraints of grid 
sampling. Throughout this research, researchers conduct a 
detailed both qualitative and quantitative investigation on 
CNNs and GCNs with respect to HS image classification. 
Traditional GCNs are typically quite computationally 
expensive because they need building an adjacency matrix for 
each of information, especially for large-scale remote sensing 
(RS) situations. To accomplish that, researchers create a novel 
mini-batch GCN (henceforth referred to as miniGCN) that 
enables mini-batch training of large-scale GCNs. Additionally, 
this miniGCN can improve the ability to classify and infer 
information from data that is not sampled with no re-training 
networks. Moreover, fusing CNNs and GCNs is a natural way 
to overcome a single model's effectiveness barrier because 
they may retrieve distinct kind’s unique HS features. because 
miniGCNs may execute batch-wise training of networks 
(allowing the integration of CNNs and GCNs). 
Comprehensive tests, carried out on three HS datasets, show 
that miniGCNs are superior to GCNs and that the tried fusion 
procedures outperform the single CNN or GCN models. In the 
years to come, to fully utilize the rich spectrum information 
found in high-resolution photos, researchers will explore the 
potential combinations of various deep neural networks with 
the miniGCNs as well as create more sophisticated fusion 
modules, such as balanced fusion. 

Roy et al. [18] suggest that because of numerous 
contiguous narrowband built on top of one another, 
hyperspectral images (HSIs) offer extensive spectral-spatial 
data. The decision-making process of useful spectral-spatial 
kernel features can be challenging because of band 
correlations and disturbance. CNN using fixed-size receptive 
fields (RFs) are frequently used to overcome issue. Forward 
and reverse propagations are employed to maximize the 
network's performance, these techniques cannot allow neurons 
to efficiently modify RF sizes and cross-channel connections. 
In order to collect discriminatory spectrum-spatial 
characteristics for the classification of HSI using an entire 
training way, researchers describe within this paper an 
attention-based adaptable spectrum-spatial kernel enhanced 
residual networks (A2S2K-ResNet) using spectrum focus. 
Specifically, the suggested network employs a successful 
feature recalibration (EFR) strategy to enhance the accuracy of 
classification and trains specific 3-D convolutional kernels in 
order to simultaneously retrieve spectral–spatial 
characteristics utilizing enhanced 3-D ResBlocks. In 
comparison to the current approaches under investigation, , the 
suggested A2S2K-ResNet tackles the problem of choosing 
useful spectral-spatial kernel features in hyperspectral image 
classification. However, significant sensitivity to hyper 
parameters adjustment and computing burden throughout 
training could be constraints. 

Fu et al. [19] discusses that, since hyperspectral imagery 
(HSI) contains a wealth of spectrum and spatial information, 
an entirely novel principal component evaluation (PCA) and 
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segmented-PCA (SPCA)-based multiscale 2-D-singular 
spectrum analysis (2-D-SSA) combining look at is offered for 
paired spectrum–spatial HSI extraction of features as well as 
grouping. At first, the overall spectrum of the items and the 
relationships between nearby bands are all taken into 
consideration when applying the PCA and SPCA methods for 
dimensional spectra reductions. After extracting a wealth of 
spatial characteristics at various scales from the SPCA 
dimension-reduced visuals, multiscale 2-D-SSA is used, and 
PCA is utilized once more to decrease the number of 
dimensions. Multiscale spectrum–spatial features (MSF-PCs) 
are created by fusing the acquired multiscale spatial 
characteristics into the world spectral characteristics obtained 
by PCA. The support vector machine (SVM) classification is 
used to assess the obtained MSF-PCs' performance. Tests 
conducted on four standard HSI data sets showed that, in 
situations whenever a limited quantity of sample training 
specimens are accessible, the suggested technique works 
better than other cutting-edge feature extraction techniques, 
such as multiple deep learning techniques. Super pixel-alike 
segmentation may be used in subsequent research to increase 
the effectiveness of the suggested strategy. 

Uddin, Mamun, and Hossain [20] explains along narrow 
spectral wavelength ranges are employed to capture the 
hyperspectral remote sensing pictures (HSIs), which are 
intended to record the most important details of terrestrial 
objects. Regarding real-world uses, classification accuracy is 
frequently not cost-effectively acceptable when utilizing the 
complete original HSI. Band reduction strategies—which may 
be further subdivided into extraction of features and feature 
selection methods—are used to improve the classification 
outcome of high-strength images. The linear unsupervised 
statistical transformation known as Principal Component 
Analysis, or PCA, is often used for obtaining characteristics 
from HSIs. In this article, nonlinear variations of PCA such as 
Kernel Entropy Component Analysis (KECA) and Kernel-
PCA (KPCA) are being studied alongside linear variations. 
For this aim, KECA uses Renyi quadratic entropy 
measurement The research study shows that methods for 
extracting features may be better in classification than 
utilizing the complete original dataset, even though they are 
more expensive. While FPCA provides a decent categorization 
outcome using the least amount of time and space complexity, 
MNF delivers the best precision in classifying. Future 
evaluations of the aforementioned PCA-based feature 
extraction techniques may lead to the proposal of certain 
likely hybrids techniques, including fusing MNF with SPCA 
and SSPCA in a manner that executes traditional MNF in 
place of PCA in SPCA and SSPCA. Additionally, PCA-based 
methods for extracting features may be used in conjunction 
with additional information mining techniques like deep 
extraction of features and spectral-spatial feature extraction to 
analyse 

Researchers have proposed various approaches to address 
the challenges of hyperspectral image (HSI) classification. 
One approach involves the use of deep convolutional neural 
networks (CNNs) with different optimization techniques to 

extract spatial features efficiently. Another method utilizes 
transformers, such as the Spectral Former, to capture spectral 
features sequentially, achieving significant improvements in 
classification accuracy. Additionally, graph convolutional 
networks (GCNs) and their fusion with CNNs have been 
explored to model connections among samples, with 
miniGCNs demonstrating superior performance. Attention-
based adaptable spectrum-spatial kernel enhanced residual 
networks (A2S2K-ResNet) have been introduced to capture 
discriminatory spectrum-spatial characteristics effectively. 
Furthermore, a PCA-based multiscale 2-D-singular spectrum 
analysis fusion approach has been proposed for feature 
extraction and classification, showing promising results, 
particularly in scenarios with limited training samples. 
Overall, these approaches aim to enhance classification 
accuracy by leveraging spectral and spatial information 
effectively while addressing computational complexities and 
interpretability challenges. 

III. PROBLEM STATEMENT 

Due to the unique properties of hyperspectral imaging 
(HSI) data, such as the high dimensionality of spectral bands 
and the intricate relationships between spectral and spatial 
information, the area of HSI classification faces several 
difficulties [19] [15]. To overcome these obstacles and 
increase classification accuracy, researchers have looked at a 
number of methodologies, such as deep convolutional neural 
networks (CNNs), transformer-based networks, attention 
processes, and fusion procedures [17]. All approaches, 
however, have their drawbacks, including the requirement for 
significant processing resources, interpretability problems, 
sensitivity to hyperparameters, and computational complexity. 
Furthermore, a key factor in classification effectiveness is the 
selection of feature extraction methods, such as Principal 
Component Analysis (PCA) including its nonlinear variants. 
To create better HSI classification solutions, further study is 
required to examine combination methods and incorporate 
them alongside other information mining techniques, even if 
these techniques show promise for improving classification 
accuracy. 

IV. PROPOSED SPECTRAL-SPATIAL CNN WITH ADAPTIVE 

MOMENTUM FOR HIGH BAND IMAGE CLASSIFICATION 

The proposed Spectral-Spatial CNN with Adaptive 
Momentum integrates spectral and spatial features for high-
band image classification, leveraging adaptive momentum 
optimization for efficient training and improved performance. 
This method aims to enhance high-bandwidth image analysis 
and classification using deep learning techniques. It uses 
Convolutional Neural Networks (CNNs) for feature 
extraction, incorporates spectral spatial transformer to capture 
both spectral and spatial information Furthermore, it uses 
Adaptive Momentum Optimization Algorithm to enhance the 
training algorithm to improve performance and efficiency. 
Overall, this technique optimizes the type of excessive-
bandwidth pictures through advanced feature extraction and 
green optimization strategies. Proposed method framework is 
shown in Fig. 1. 
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Fig. 1. Proposed spectral-spatial CNN with adaptive momentum for high band image classification. 

A. Data Collection 

The initial high-resolution images were taken in 1992 over 
North-Western Indiana, USA, utilizing the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) sensors. The 
HS images possesses 145 145 pixels during an average ground 
sampled distances (GSD) of 20 m and 220 spectral bands 
having a 10 m spectroscopic resolution, covering its 
wavelength range of 400 nm to 2500 nm. There are 200 
spectral bands remaining, or 1–103, 109–149, and 1642–219, 
after 20 noise and water absorption bands are uninvolved.16 
important groupings in the region beneath investigation were 
recently looked at. Table II provides a listing of this class 
names & overall quantity of samples utilized throughout this 
classifying activity for assessment and training. The 
geographic distribution of both training and testing sets is 
shown as well, which helps to duplicate the grouping results 
[17]. 

B. Data Pre-processing 

Gathering information is a significant step in ensuring that 
the information is reliable and ready for machine learning 
analysis. It involves several stages, including Noise 
Reduction, Data Normalization 

1) Noise reduction: Applying filters or denoising 

techniques to mitigate noise introduced during image 

acquisition or transmission. 

2) Data normalization: Normalization is used to convert 

data to a similar scale and avoid characteristics with higher 

values from dominating the study. The following 

normalization approaches were used: 

a) Min-max scaling and z-score standardisation: Min-

Max Scaling converts attribute values to a constant scale from 

0 to 1, making them comparable. By subtracting the lowest 

value and dividing by space, it ensures consistency regardless 

of the original size of the objects. This approach is important 

for algorithms that are sensitive to input quantities, promoting 

fair representation in variables. It is especially convenient 

when dealing with different units or heterogeneous ranges in a 

data set. To ease convergence, many models' data was 

normalized to 0 as a mean and 1 as a standard deviation [21]. 

C. CNN-based Feature Extraction 

Comparing to the preceding AlexNet model, VGGNet is a 
straightforward but efficient model that takes into account the 
amount of depth of suitable layers without adding additional 
parameters overall. Consequently, they employed structure 
akin to VGG. Thirteen layers of convolution and three fully 
linked layers make up the original VGG's sixteen layers. 
CNN-Based HSI Spatial Feature Extraction for Every 2.1 The 
BN layer and Relook operations come between the fourth of 
the 22 convolutional layers that are used, while the maximal 
pooling layer is introduced between the third, fourth, seventh, 
tenth, and thirteenth convolutional layers. CNN is frequently 
used for applications involving image processing including 
segmentation, identification, and classifications because of its 
powerful ability to extract spatial properties from images. For 
HSI, it has a plethora of spatial information. With CNN, the 
current study effectively isolates the spatial components of 
HSI.CNN has many different types of architecture. 

Comparing to the preceding Alex Net model, VGGNet is a 
straightforward but efficient approach that takes into account 
the size of suitable layers without adding additional variables 
overall. Consequently, they employed design similar to VGG. 
Thirteen convolutional layers and three fully linked layers 
make up the original VGG's sixteen layers. CNN-Based HSI 
Spatial Feature Extraction for Each 2.1 the BN layer and 
ReLU operations come between the fourth of the 22 
convolutional layers, while the maximum pooling layer is 
introduced between the subsequent, fourthly, seventh place, a 
tenth and thirteenth layers of convolution. 

It's possible that using all 16 layers isn't the best option for 
extracting HSI spatial features. The way due to its strong 
capacity for obtaining spatial characteristics from images, 
CNN is frequently employed for image processing tasks like 
segmentation, identification, and classifying. It provides a 
wealth of geographic data for HSI. This study successfully 
extracts the spatial components of HSI using CNN. Creating 
an appropriate CNN framework is essential to creating an 
effective HSI classification. In the experimentation section, 
researchers created a deep CNN that is similar to VGG for 
extracting HSI spatial characteristics. The extracted features 
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from the CNN are then utilized for subsequent processing 
steps, such as classification. After CNN processes HSI data 
and extracts features, these features are used in subsequent 
processing steps such as classification. These extracted 
features represent the spatial patterns learned by CNN during 
the training process. Information on the spatial distribution of 
various features of the HSI data was recorded. Using these 
features, the subsequent classification algorithm can make a 
more informed decision about the class labels in the different 
regions of the HSI, using the spatial information encoded in 
the features extracted by the CNN has been used [22]. 

D. Spectral-Spatial Transformer for Classification 

The CNN output is handled and sent into a Transformer 
encoder for band categorization in hyperspectral imaging 
(HSI). CNN uses a local connection in order to extract 
adjacent properties from the inputs. HSI often has multiple 
bands. As a result, CNN finds it challenging to acquire 
spectrum associations across great distances. The association 
between each pair of band is obtained through the self-
attention process. For instance, there are 224 bands in the 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). 
During the process of learning, a matrix in a form of 224 224 
may be generated via attention to oneself. The connection 
among both bands is represented by every component within 
the matrix. 

The Transformer encoder, the central component of this 
concept, is the additional component. There are d encoding 
units in the Transformers encoder, and CNN employs local 
connections for every encoding unit to obtain nearby 
characteristics from inputs. Since HSI typically has numerous 
bands, this is challenging for CNN to determine spectral 
correlations over great distances. The connection between 
each pair of band can be obtained by the attention to oneself 
process. For instance, there are 224 bands in the Airborne 
Visible/Infrared Image Spectrometer (AVIRIS). During the 
method of learning, a 224 × 224 matrix may be created via 
self-attention. The connection among the two bands is 
represented by every component in the matrix. Comprises of 
an MLP layer, multi-head attention, layer normalization, and 
residue connections. Prior to every multi-head focused MLP 
layer in every encoding block, a normalization level is 
included and additional connections are planned following 
each of these layers. 

Let n denote model, wherein HS1 ( 
𝑏′1,𝑏′2, … … 𝑏′𝑛,)dimensionality of the CNN-extracted 

features, represent the number of n bands of The 
Transformer's encoder encodes every band as a function of the 
overall contextual data with the goal of capturing the 
interactions between all n bands of HSI. In particular, three 
accessible weighting matrices have been identified: queries 
(Q), values (V) of dimension dv, and keys (K) of dimension 
dk. The search query containing all keys is computed using 
the dot products, and the weights that are placed for each 
value are subsequently calculated using the function known as 
softmax. The following is the definition of attention's output is 
given in Eq. (1) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝑘, 𝑣) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞𝑘𝑡

√𝑑′𝑘
) V,     (1) 

where, 𝑑′𝑘 is the dimension of K. 

Projecting the questions, keys, and values multiple times 
(h times) using distinct and learned projection is 
advantageous. The outcomes were then combined. This call 
this method attention in multiple heads. A head is the name 
given to every outcome of those concurrent attentional 
calculations is given in Eq. (2) 

𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑞, 𝑘, 𝑣) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,…….,ℎ𝑒𝑎𝑑ℎ)𝑤𝑜′  (2) 

The values of the weights the fact that are obtained 
through the multi-head attention system are then sent to the 
MLP layer, resulting in 512-dimensional production features. 
In this case, MLP is made up of two layers that are completely 
interconnected that have a nonlinearity called the Gaussian 
error linear unit (GELU) stimulation among it. The ReLU 
variant known as GELU is described as Eq.. (3) 

𝐺𝐸𝐿𝑈 = 𝑥′𝛷(𝑥′) = 𝑥′.
1

2
[1+erf(x’/√2)]      (3) 

where, 𝛷(𝑥′)designates the normal Gaussian cumulative 

distribution function, erf(x’) =∫ 𝑒′−𝑡′2𝑥′

0
dt 

There is usually a normalization layer preceding the MLP 
layer that additionally normalizes neurons to shorten the 
duration of training but additionally solves the disappearing or 
expanding gradients issue. The normalization of the layer, 
represented by Eq. (4) 

a:𝑎′𝐼
−𝑙=

𝑔′𝐼

𝜎𝐼 .(𝑎𝑖
−𝑙-𝜇𝐼)+b’      (4) 

where in is the normalized total of the input, and l and l 
stand for the corresponding expectations and variances at the 
lth layer. The learnt shifting parameter is denoted by b, and 
the newly acquired scaling factor by gl. [23].Spectral-Spatial 
CNN Architecture is shown in Fig. 2. 

E. ADAM Optimization 

The adaptive learning rate for each parameter used in the 
gradient-based training process is estimated by the Adaptive 
Momentum (Adam) method. This is an extremely basic and 
highly computationally effective method for stochastic 
optimization which requires limited storage and incorporates 
first-order gradients. The suggested method is applied to high-
dimensional parameter space machine learning problems using 
large data sets that compute the rate of learning for different 
parameters separately of assumptions such as initial and 
second-order aspects. The Adam form of mathematics is as the 
following Eq. (5) to Eq. (8) 

𝑦𝑡=𝛿′1×𝑦𝑡−1-(1-𝛿′1)× ℎ𝑡     (5) 

𝑥𝑡=𝛿′2×𝑥𝑡−1-(1-𝛿′1)× ℎ𝑡
2
    (6) 

∆𝑤′𝑡
=−ղ’

𝑦𝑡

√𝑥𝑡+€
  × ℎ𝑡    (7) 

𝑤𝑡+1=𝑤1+∆𝑤𝑡      (8) 
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Fig. 2. Spectral-spatial CNN architecture. 

where,  

ղ: Preliminary learning rate 

ℎ𝑡: Gradient at time t along h 

𝑦𝑡: Exponential average of gradient along 𝑦𝑡  

𝑥𝑡 :Exponential average of squares of gradient along 𝑥𝑡 

𝛿′1,𝛿′2Hyperparameters. 

Adam optimizer lowers the overall computing cost, uses 
fewer resources for execution, and maintains its invariance 
when gradients are rescaled diagonally. Large data sets, hyper 
parameters, noisy data, insufficient gradients, and irregular 
problems requiring minor tweaking are just some of the 
challenges this resolves. Alpha is the setup parameter for 
Adam. This is a learning rate or step size; an elevated number 
(e.g., 0.3) is probably employed because it enables rapid 
acquisition rather than a lower value and produces flawless 
results while training. 

V. RESULT AND DISCUSSIONS 

In the study, a conducted extensive experiment on real-
world high-band picture samples to assess the suggested 
method's efficacy. The results demonstrate that the method 
outperforms existing methods in terms of accuracy and 
performance in high-band image analysis and classification 
tasks. Specifically, the method achieved state-of-the-art results 
by leveraging three main components: CNN-based feature 
extraction, spectral-spatial transformer for classification, and 
adaptive motion for optimization. Through the use of a 
convolutional neural network (CNN), it successfully extracted 
hierarchical features from high-band images, capturing both 
low and high-level features for detailed representation. 
Additionally, the incorporation of a spectral-spatial 
transformer module facilitated more judicious classification by 

considering both spectral and spatial characteristics of the 
images. Furthermore, the introduction of adaptive motion 
algorithms improved the training process of the deep learning 
network, leading to faster convergence and enhanced 
generalization performance. Overall, the research contributes 
to the advancement of remote sensing image analysis by 
providing a robust framework that enables deep learning 
networks to optimize classification accuracy and performance 
for high-band images. Table I represents Classes from the 
Indian Pines Dataset for every class. 

TABLE I. CLASSES FROM THE INDIAN PINES DATASET FOR EVERY CLASS 

Class No Class Name Training Testing 

1 Grass Pasture 40 1453 

2 Oats 40 434 

3 Wheat 40 456 

4 Corn 20 76 

5 Soybean Clean 20 543 

5 Grass Trees 10 34 

7 Soybean Notill 10 45 

Table I presents the classes from the Indian Pines dataset 
along with their corresponding training and testing sample 
sizes. The dataset comprises six classes: Grass Pasture, Oats, 
Wheat, Corn, Soybean Clean, and GrassTrees. Each class is 
assigned a unique class number, and the table details the 
number of samples allocated for training and testing within 
each class. For instance, the GrassPasture class has 40 samples 
for training and 1453 samples for testing, while the 
GrassTrees class has 10 samples for training and 34 samples 
for testing. This information provides a breakdown of the 
dataset's composition, aiding researchers in understanding the 
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distribution of classes and sample sizes for model training and 
evaluation. 

Taking into account the amount of band used, Fig. 3 
displays the Indian Pines dataset's overall precision. The total 
amount of bands is shown by the X-axis, whereas the overall 
accuracy ratio is shown by the Y-axis. The diagram shows that 
accuracy increases as the number of bands grows, but after 
reaching around five bands, further additions yield 
diminishing returns while adding more bands initially leads to 
significant improvements in accuracy, there comes a point 
where the marginal benefit of additional bands becomes 
negligible, and further additions may not significantly enhance 
the complete performance of the classification archetypal. 

 

Fig. 3. Overall accuracy of the Indian pines. 

Fig. 4 demonstrates the percentage of samples utilized 
across three distinct datasets: Pavia, Indian Pines, and Houston 
2013. It highlights that as the percentage of samples used 
upsurges, the complete accuracy tends to rise for all datasets. 
However, each dataset exhibits unique characteristics, 
resulting in varying rates of accuracy improvement. Pavia 
dataset shows a steady increase in accuracy with sample 
percentage, while Indian Pines initially demonstrates rapid 
gains followed by a plateau, and Houston 2013 exhibits a 
more gradual increase. These nuances emphasize the 
importance of dataset-specific considerations when 
determining the optimal sample size for achieving maximum 
accuracy in classification tasks. 

Fig. 5 illustrates the convergence behaviour of the Adam 
optimization algorithm over iterations during the training of a 
machine learning model. Initially, the loss decreases rapidly as 
the algorithm adjusts the model parameters using adaptive 
learning rates and momentum. As training progresses, the rate 
of improvement slows down, indicating convergence towards 
a minimum point. The graph may exhibit fluctuations due to 
the adaptive nature of the algorithm, but overall, it 
demonstrates a consistent decrease in loss over time. The 
stability and efficiency of Adam optimization make it a 
popular choice for training deep neural networks. The X-axis 
represents the steps or iterations in the optimization process, 
ranging from -1 to 3, while the Y-axis indicates the value of 
the loss function, ranging from 3.0 to 8.0. This graph depicts 

how Adam Optimization efficiently navigates through the loss 
landscape, with blue dots indicating specific points on its path, 
demonstrating its effectiveness in finding optimal solutions in 
machine learning model. 

 

Fig. 4. Samples utilized across three distinct datasets. 

 

Fig. 5. ADAM optimizer. 

Fig. 6 visually signifies the performance of a model during 
training and evaluation. The x-axis typically indicates epochs 
or iterations, while the y-axis represents the loss metric. As 
training progresses, the training loss typically decreases, 
indicating improved model fit to the training data. Meanwhile, 
the testing loss, often evaluated on a separate validation set, 
can help assess generalization performance; ideally, it should 
decrease initially but stabilize or increase if overfitting occurs, 
forming distinct patterns aiding in model diagnosis and 
optimization. 

The Receiver Operating Characteristic (ROC) curve is 
shown in Fig. 7. It serves as an illustration depiction of a 
binary classification algorithm's effectiveness. Plotting the 
False Positive Rate (1 - Specificity) versus the True Positive 
Rate (Sensitivity) at various thresholds is what it does. A ROC 
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curve which approaches the top-left region of the chart, 
signifying a high degree of sensitivity along with a small 
positive error rate, suggests an ideal classifier. Greater values 
for AUC indicate improved class discrimination. The region 
underneath the ROC curve (AUC) measures the classifier's 
overall efficacy. When it comes to the compromise among the 
two qualities in tasks involving classification, ROC modelling 
offers insightful information. 

 

Fig. 6. Training loss and testing loss. 

 

Fig. 7. ROC curve. 

Table II compares the performance of various methods in 
high-band image classification, focusing on accuracy, 
precision, recall, and F1 score metrics. The Convolutional 
Neural Network (CNN) achieves 85.77% accuracy, with 
precision, recall, and F1 score values of 75.87%, 86.09%, and 
82%, respectively. The Generative Adversarial Network 
(GAN) demonstrates superior performance, achieving 97.75% 
accuracy, with precision, recall, and F1 score values of 90%, 
98%, and 95.98%, respectively. The Spectral-Spatial CNN 
method combines spectral and spatial information, resulting in 
95% accuracy, with precision, recall, and F1 score values of 
88.56%, 97%, and 95%, respectively. 

TABLE II. PERFORMANCE PARAMETERS OF DIFFERENT CLASSIFICATION 

METHODS 

Method Accuracy Precision Recall F1score 

CNN 85.77 75.87 86.09 82 

GAN 97.75 90 98 95.98 

Spectral-Spatial 

CNN 
95 88.56 97 95 

Proposed 
Spectral-Spatial 

CNN WITH 

ADAM 

97.8 97 96.8 98 

The proposed Spectral-Spatial CNN with ADAM 
optimization achieves the highest performance, with an 
accuracy of 97.8%, precision of 97%, recall of 96.8%, and an 
outstanding F1 score of 98%. These results underscore the 
efficacy of the proposed approach in high-band image 
classification, suggesting its suitability for practical 
applications as shown in Fig. 8. 

 

Fig. 8. The performance comparison of different classification methods. 

The study explores the effectiveness of a proposed method 
for high-band image analysis in remote sensing applications. 
The method significantly outperforms existing methods, 
achieving state-of-the-art results in accuracy and performance. 
The approach utilizes CNNs for feature extraction, capturing 
hierarchical features and improving classification accuracy. 
The introduction of a spectral-spatial transformer module 
enhances classification performance by considering both 
spectral and spatial features. This module enhances robustness 
and adaptability in processing complex and varied image data 
sets. Additionally, adaptive motion algorithms optimize the 
training process of the deep learning network, achieving faster 
convergence and improved generalization performance. This 
strategy is highly effective in scenarios where training data 
may be diverse or noisy. The study contributes to the 
advancement of remote sensing image analysis by providing a 
comprehensive framework that integrates state-of-the-art 
techniques in deep learning and optimization. Future research 
may explore additional refinements and extensions to the 
proposed method, such as integrating multi-modal data 
sources or incorporating additional optimization techniques. 
This will further enhance the capabilities of image analysis 
systems for remote sensing and related domains, enabling 
more accurate and efficient analysis of Earth observation data 
[15]. 
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VI. CONCLUSION AND FUTURE WORK 

The method for high-band image analysis and 
classification exhibits promising efficiency and accuracy, 
leveraging a combination of spectral-spatial transformer, 
CNN-based feature extraction, and adaptive momentum 
optimization. By integrating deep learning techniques and 
optimization algorithms, this framework effectively captures 
both spatial and spectral data, leading to improved 
classification accuracy. The flexible momentum optimization 
approach further enhances the training process by dynamically 
modifying the momentum parameter, resulting in faster 
convergence and better generalization. These findings 
underscore the efficacy of the proposed technique across 
various high-band image analysis applications. Moving 
forward, future research directions could focus on exploring 
attention mechanisms to enhance feature extraction and 
classification precision, investigating new optimization 
methods tailored for high-band picture analysis, extending the 
framework to accommodate multi-modal or multi-temporal 
datasets, and conducting comprehensive tests on larger and 
more diverse datasets to confirm scalability and resilience. 
Ultimately, these efforts aim to enhance the methodology's 
effectiveness and adaptability for high-band picture 
assessment and classification in real-world scenarios. 
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