
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

821 | P a g e

www.ijacsa.thesai.org

Strengthening Sentence Similarity Identification

Through OpenAI Embeddings and Deep Learning

Dr. Nilesh B. Korade1, Dr. Mahendra B. Salunke2, Dr. Amol A. Bhosle3,

Dr. Prashant B. Kumbharkar4, Gayatri G. Asalkar5, Rutuja G. Khedkar6

Assistant Professor, Department of Computer Engineering,

JSPM’s Rajarshi Shahu College of Engineering, Tathawade, Pune-411033, Maharashtra, India1, 6

Assistant Professor, Department of Computer Engineering,

PCET’s, Pimpri Chinchwad College of Engineering and Research, Ravet, Pune-412101, Maharashtra, India2

Associate Professor, Department of Computer Science and Engineering, School of Computing,

MIT Art, Design and Technology University, Loni Kalbhor, Pune-412201, Maharashtra, India3

Professor, Department of Computer Engineering,

JSPM’s Rajarshi Shahu College of Engineering, Tathawade, Pune-411033, Maharashtra, India4

Research Scholar, Department of Computer Science and Engineering,

Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagari, Churela-333001, Rajasthan, India5

Abstract— Discovering similarity between sentences can be

beneficial to a variety of systems, including chatbots for customer

support, educational platforms, e-commerce customer inquiries,

and community forums or question-answering systems. One of

the primary issues that online question-answering platforms and

customer service chatbots have is the large number of duplicate

inquiries that are placed on the platform. In addition to

cluttering up the platform, these repetitive queries degrade the

content's quality and make it harder for visitors to locate

pertinent information. Therefore, it is necessary to automatically

detect sentence similarity in order to improve the user experience

and quickly match user expectations. The present study makes

use of the Quora dataset to construct a framework for similarity

discovery in sentence pairs. As part of our research, we have

built additional attributes based on textual data for improving

the accuracy of similarity prediction. The study investigates

several vectorization methods and their influence on accuracy.

To convert preprocess text input to a numerical vector, we

implemented Word2Vec, FastText, Term Frequency-Inverse

Document Frequency (TF-IDF), CountVectorizer (CV), and

OpenAI embedding. In order to judge sentence similarity, the

embedding offered by several approaches was used with various

models, including cosine similarity, Random Forest (RF),

AdaBoost, XGBoost, LSTM, and CNN. The result demonstrates

that all algorithms trained on OpenAI embedding yield excellent

outcomes. The OpenAI-created embedding offers excellent

information to models trained on it and has significant potential

for capturing sentence similarity.

Keywords—OpenAI; embedding; sentence similarity; FastText;

Word2Vec; CNN; LSTM; precision; recall; F1-score

I. INTRODUCTION

The intricacy of natural language and the variety of ways in
which phrases can express similar concepts make accurate
sentence similarity assessment difficult. Scholars and
professionals in the domain employ a variety of methodologies,
which vary from conventional approaches such as cosine and
Jaccard similarity to intelligent approaches that involve neural
network models. An approach known as similarity

identification or identical inquiry identification identifies
similarities in the inquiries presented. The following, are
several areas where text similarity matching is crucial to
boosting service to clients [1].

 Client Assistance Chatbots Use similarity matching to
find and group together related client inquiries. This
increases the effectiveness of chatbot conversations and
helps in generating consistent responses.

 By discovering and eliminating repetitive queries,
community forums may enhance the user experience by
making sure that conversations are concise and relevant
[2].

 Improve customer service on e-commerce sites by
recognizing common questions about the products and
offering consistent replies.

 Employers can find comparable questions about
policies, benefits, or procedures by using similarity
matching in HR systems. This will help assure that
responses are correct and consistent.

 To gain insights into popular topics and sentiment
analysis, use similarity matching to combine and
analyze similar questions or comments on social media
networks [3].

 Similarity matching can be used by healthcare
information systems to find related medical inquiries
and give consumers reliable, consistent information
about symptoms, diagnoses, and other health-related
issues.

Finding such repetitively asked queries is crucial to
improving the efficiency of resource utilization on the internet.
It is not possible to find and remove duplicate questions
manually. The duplicate inquiries or sentences should be
identified automatically using some autodetection approaches
[4,5,6]. In order to find similarities between two sentences, we

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

822 | P a g e

www.ijacsa.thesai.org

conducted our research using Quora's question-pair dataset. On
the sentence dataset, we have used a variety of preprocessing
approaches to eliminate unnecessary components and create a
clean dataset that may be used for vectorization or embeddings.
Based on parameters like sentence length, the frequency with
which a string appears in the sentence, common strings in both
sentences, fuzzy logic usage, etc., we have created a number of
additional features that will provide additional information to a
model trained on embedding. Numerous vectorization and
embedding techniques, such as TF-IDF, CV, Word2Vec,
FastText, and OpenAI text-embedding-ada-002 embedding, are
used to convert text collections into numerical features. The
metrics used to assess the quality of embedding and model
performance on embedding include precision, recall, F1-score,
and accuracy. The OpenAI text-embedding-ada-002
embedding shows potential in capturing sentence similarity and
offers valuable information that supports different models for
similarity identification.

The remainder of the document is structured as follows:
Section II discusses the existing literature on duplicate question
detection. Section III outlines the methodology, including the
research flow, dataset, preprocessing steps, feature engineering,
vectorization methods, and algorithm implementation. Section
IV covers the evaluation of accuracy with various vectorization
techniques and models. Section V presents a summary of our
research findings and suggests avenues for further
investigation.

II. LITERATURE SURVEY

The sharing and learning environment have experienced
significant changes due to the quick growth of digital
platforms. Crowdsourced solutions like Community Question
Answering (CQA) have been popular as a way for volunteers
to share their knowledge and get their doubts regarding
particular topics answered. A solution is required to address the
issue of semantically comparable question detection for
duplication identification in bilingually transliterated data. In
order to detect question repetition, deep learning has been
implemented by S. Rani et al. to evaluate informal languages
like Hinglish, a bilingual blend of Hindi and English spoken on
Community Question Answering (CQA) platforms. There are
two components: the first is a language conversion component
that creates a text in mono-language from input questions. The
hybrid model, which combines a Siamese neural network
(SNN), a capsule neural network, and a decision tree classifier,
is used to determine the similarity between the question pairs.
To calculate the similarity of questions, the SNN and the
Manhattan distance function are utilized. An accuracy of 87%
and an AUCROC value of 0.86 are obtained by validating the
suggested model on 150 pairs of questions [7].

Contributors often make use of a pull-request procedure on
social coding platforms like GitHub to present their source
code modifications to inspectors of a particular repository. Due
to the distributed nature of this approach, pull requests carrying
out similar development tasks can be unintentionally submitted
by multiple contributors, resulting in unnecessary effort and
time spent reviewing. A strategy for allocating the same
reviewer or reviewing team to each cluster of related pull
requests was suggested by H. E. Salman et al., which makes it

possible to save time and effort. To identify similarities across
pull requests, first extract descriptive textual information from
the content of the pull requests and use it to link equivalent pull
requests together. To group relevant pull requests together, the
K-means clustering and agglomeration hierarchical clustering
algorithms are employed. The experimental results indicate
that the K-Means algorithm achieves 94%, 91%, whereas
agglomeration hierarchical clustering achieves 93%, 98%
average precision and recall values over all evaluated
repositories. The twenty popular repositories of public datasets
are used to access the provided approach. In addition, the
suggested method reduces the amount of time and effort
required for reviews by using the K-Means algorithm by an
average of 67% to 91% and the agglomeration hierarchical
clustering technique by an average of 67% to 83% [8].

Millions of people use search engines every day to find
solutions, which results in an increasing need for innovative,
clever methods to assist people in solving problems. Using a
7GB real-time dataset, V. K. R. Anishaa et al. trained and
evaluated four machine learning models in order to identify
duplicate queries. The noise is eliminated by removing HTML
tags, stop words, punctuation, white spaces, and URLs after the
data has loaded. Pre-processing is carried out in SQLite
databases utilizing PL/SQL blocks, which process enormous
volumes of data faster than alternate techniques. The four
different ML models are used to train the acquired dataset.
After execution, the random, logistic regression, linear SVM,
and XGBoost error parameters referred to from the log loss
function are found to be, respectively, 0.887, 0.521, 0.654, and
0.357. As a result of the unique pre-processing activities
carried out using PL/SQL, which improve response time
overall, the result demonstrates that XGBoost is the best
model, delivering the greatest accuracy in the shortest period of
time [9].

On a social media platform where users post questions,
other users can assist by editing the questions and providing
more precise answers to the questions that are asked. Due to
linguistic heterogeneity, it can be complicated to determine a
sentence's true meaning with accuracy, making the
classification of repeated inquiries a challenging process. Deep
learning techniques have demonstrated exceptional
performance in several natural language processing (NLP)
problems, particularly in the area of semantic text similarity. In
order to determine the semantic relevance between two queries,
Z. Imtiaz et al. suggested a novel Siamese MaLSTM model,
wherein the term "Siamese" refers to the employment of two or
more sub-identical network architectures simultaneously and
Ma indicates Manhattan distance. The GoogleNewsVector,
FastText, and FastText subword word embeddings are used to
independently train the Siamese LSTM model. The final
prediction is then derived from the combination of these
trained models [10].

Using a variety of techniques, many investigators have
worked on duplicate text detection until now. Text data is pre-
processed and converted to an array of numbers using the TF-
IDF method. Using the Quora’s dataset, D. Basavesha
examined five machine learning models. Adaboost yields an
accuracy of 81.73%, random forest yields 81.72%, decision
tree yields 79.29%, and logistic regression yields 79.21% [11].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

823 | P a g e

www.ijacsa.thesai.org

A well-known software problem-solving website with a
focus on solving errors in software code, Stack Overflow has
seen an increase in visitors in recent years. L. Wang et al.
employed Word2Vec to get the vector representations of
words, and CNN, RNN, and LSTM are three distinct deep
learning approaches that are taken into consideration to address
the issue of similar inquiry discovery in Stack Overflow. The
evaluation's findings demonstrate that WV-CNN and WV-
LSTM have significantly outperformed the other baseline
techniques. The dataset consisted of queries in various
programming languages, including Perl, Java, and others. The
outcome demonstrates that for every dataset, WV-CNN and
WV-LSTM based on Word2Vec yield recall rates greater than
80% [12].

A. W. Qurashi measures the level of semantic equivalence
across multi-word phrases for the regulations and guidelines
stated in railway safety manuals. There are two text similarity
measures that are examined: The cosine similarity metric maps
the text into a vector space model, and the "Word2Vec"
technique is used to determine the distance between the texts.
A count-based metric called Jaccard similarity is the
intersection of two sets divided by the union of two sets. The
cosine similarity determines the degree of similarity between
texts by converting sentences from documents into vectors
using Word2Vec. The results show that the Jaccard similarity
method, which measures similarity based on character
matching, yielded unsatisfactory results and while evaluating
the similarity of two documents, cosine provides a more
accurate result by measuring the angle between vectorized
phrases [13].

III. METHODOLOGY

A. Dataset

To determine textual similarity, this study makes use of the
0.4 million questions in the Quora dataset [14]. Table I presents
information on the features and content of the dataset.

TABLE I. DATASET DETAILS

Attribute Details

ID
Each dataset row is assigned a unique number that allows
for its own unique recognition.

Question_ID1,

Question_ID2

There is a distinct identity for each of the questions in the

features labelled "Question No. 1" and "Question No. 2."

QuestionNo1,
QuestionNo2

This feature includes real questions to check if they are
similar to each other.

Is_Duplicate

When question pairs are intellectually examined, the

result is Is_Duplicate, where 0 means false and 1 means
yes.

B. Preprocessing

The dataset is subjected to basic preprocessing in order to
be approved for usage in the succeeding phase, i.e.,
vectorization and model training. The database is examined for
any duplicate or missing entries, and those that are found are
discarded. All punctuation is deleted, the database is
lowercased, and some special characters like '%' for percent are
substituted out for their string equivalents. The URL and
HTML elements were eliminated, and chartwords like "N.A."
(which indicates "not applicable") were replaced. The dataset

has been lemmatized after all stopwords have been eliminated
and tokenization has been applied [15].

C. Feature Engineering

Strong features can increase the predictive ability of
machine learning models by giving them pertinent information.
On the basis of the properties of the question text that were
listed in the dataset, new features were generated [16]. Table II
presents an extensive overview of each newly developed
feature along with a description.

TABLE II. FEATURE CREATION DETAILS

New Feature Details

Sen1Len,

Sen2Len

It is the entire sentence length, with all characters

included.

WordCountSen1,
WordCountSen2

Total number of words present in the sentence,
including repeated words.

WordCommon
The number of terms that are present identically in

the two sentences.

DistinctWords
It is a sum of unique words found in the first
sentence and unique words found in the second

sentence.

WordShare
It is the ratio of "word common" and "distinct

words."

CWC_Min

It is a ratio of the number of common words

(WordCommon) to the length of a shorter sentence

(min (Question1Length, Question2Length)).

CWC_Max
It is a ratio of the number of common words
(WordCommon) to the length of a larger sentence

(max (Question1Length, Question2Length)).

CSC_Min

It is a ratio of the number of common stopwords
(stopwords(sentence1) ∩ stopwords(sentence2)) to

the minimum stopword count in the first and second

sentences (min (stopwords count in sentence1,
stopwords count in sentence2)).

CSC_Max

It is a ratio of the number of common stopwords

(stopwords(sentence1) ∩ stopwords(sentence2)) to

the maximum stopword count in the first and second

sentences (max (stopwords count in sentence1,

stopwords count in sentence2)).

CTC_Min

It is a ratio of the number of common tokens
(tokens(sentence1) ∩ tokens (sentence2)) to the

minimum token count in the first and second

sentences (min (tokens count in sentence1, tokens
count in sentence2)).

CTC_Max

It is a ratio of the number of common tokens

(tokens(sentence1) ∩ tokens (sentence2)) to the
maximum token count in the first and second

sentences (max (tokens count in sentence1, tokens

count in sentence2)).

Avg_Tokens
It is a ratio of the sum of tokens present in both
sentences to the number of sentences.

Abs_Len_Diff
It refers to the absolute value of the numerical

difference between two sentence lengths.

Lng_Substr_Ratio

It is the ratio of the common longest substring in

sentences 1 and 2 to the minimum token count from

the first or second sentence min (token
count(sentence1), token count(sentence2)).

Last_Word_Equal
The value is set to 1 if both sentences have identical

last words; otherwise, it is 0.

First_Word_Equal
The value is set to 1 if both sentences have identical
first words; otherwise, it is 0.

A Python library called fuzzywuzzy offers a variety of
functions for string analysis and algorithm-based similarity
score calculations [17]. The Levenshtein Distance (LD) is a
measure of the degree of difference between two strings. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

824 | P a g e

www.ijacsa.thesai.org

degree of difference between the two strings increases with the
number. is the smallest number of single-character
modifications needed to convert one word to another. Let us
assume that the lengths of the two sentences, sen1 and sen2,
are l1 and l2, respectively. The LD, or the minimum number of
modifications needed to transform sen1 into sen2, is D (l1, l2).
By filling up a (l1+1) × (l2+1) matrix, the dynamic
programming technique efficiently computes this distance.

fuzz_ratio =
1

1+LD
 (1)

Using matching substrings of a given length, the
fuzz_partial_ratio (FPR) function determines the "partial ratio"
between two strings, which indicates how similar they are. The
strings' higher fuzz_partial_ratio indicates a high degree of
similarity.

FPR =
2∗ Common Characters in Two sentence

len(sentence1)+len(sentence2)
∗ 100 (2)

The token_sort_ratio (TSortR) function, which computes
the similarity ratio between two strings after sorting their
tokens alphabetically, is especially helpful when working with
strings that may contain the same words but in a different
sequence.

TSortR =
LD(

Sorted Tokens in Sentence1,

Sorted Tokens in Sentence2
)

max(
len(Sorted Tokens in Sentence1),

len(Sorted Tokens in Sentence2)
)

∗ 100 (3)

The token_set_ratio (TSetR) function, which determines
the similarity ratio between two strings based on the
intersection and union of their unique tokens, is helpful when
comparing texts that might contain common terms but also
have differences.

TSetR =
LD(

Token Set in sentence1,

Token Set in sentence2
)

max(
len(Token Set in sentence1),

len(Token Set in sentence2)
)

∗ 100 (4)

D. Word Embedding / Vectorization

Word embedding is a method that captures syntactic and
semantic similarities between words depending on their context
of usage by representing words as vectors of real numbers in a
high-dimensional space. The following vectorization and word
embedding techniques were used in the study.

1) Count vectorizer: Count Vectorizer creates a matrix in

which each unique word is represented by a column of the

matrix, and each text sample from the document is a row in

the matrix [18]. The value of each cell is nothing but the count

of the word in that particular text sample [19].

2) TF-IDF: The term frequency Inverse Document

Frequency (TF-IDF) gives information about the more and

less important words in a document. When retrieving

information, a word's relevance within the text matters

significantly. The more times a word appears in the text, the

more significant it becomes. The frequency of a word (w) in a

document (d) is measured by term frequency (TF), which is

the ratio of a word's occurrence in a document to the total

number of terms in the document [20]. A term's Inverse

Document Frequency (IDF) indicates how common or

uncommon a word is within the whole corpus of documents

D. TFIDF is a product of TF and IDF, where the word that is

more frequent in the document will get more importance and

the word that is rare in the corpus will receive more weight

[21, 22].

Term Frequency(w, d) =
number of times w appears in d.

total number of words in document d.
 (5)

Inverse Document Frequency(w, D) =

log
number of document in D.

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑤
 (6)

TFIDF(w, d, D) = TF(w, d) ∗ IDF(w, D) (7)

3) Word2Vec: Words can be expressed as vectors using a

technique called word embedding. Word embedding's main

aim is to create low-dimensional feature vectors from the

high-dimensional feature space of words while preserving

contextual similarity within the corpus. Predicting the words

that are close to each individual word in a sentence is the

primary objective of the Word2Vec model. Word2Vec uses

CBOW and skip-gram architecture, and using the training text

input, it builds a vocabulary in order to the vector

representation of words [23].

a) CBOW: A neural network termed the continuous

bag-of-words (CBOW) model is used for NLP applications

like text classification and language translation. One-hot

encoding serves as the method for the target and input layer

encoding, with a size of [1 X V]. The CBOW uses context

words or surrounding words (X) as input in an attempt to

predict the target or central word (Y). The weight sets (W, W')

are initiated randomly, one between the input and hidden

layers and the other between the hidden and output layers.

Input Hidden layer matrix size is represented as [V X N], and

hidden output layer matrix size is represented as [N X V],

where N is a random number that indicates the size of our

embedding space or how many dimensions, we want to use for

describing our word. The hidden activation is the product of

the input and the input-hidden weights. The product of hidden

input and hidden output weights produces the output Y. The

difference between the output and the target is evaluated and

reported back to reset the weights [24,25].

b) Skip-Gram: Word2Vec also uses the skip-gram

neural network approach, which reverses the CBOW

architecture and predicts context or surrounding words (Y1,

Y2…) for a given target word (X). The random weight is

assigned after one-hot encoding of both the input layer and the

target layer. To modify the weight assigned, the softmax

function first calculates the probability of context words, then

backpropagates the error by computing the loss between

prediction and actual. Fig. 1 and 2 demonstrate the CBOW

and skip-Gram structure [26,27].

4) FastText: An open-source platform called FastText,

created by Facebook, enables professionals to acquire text

representations and classifiers to perform efficient text

classification. fastText offers subword embeddings by

considering that words are made up of character n-grams [28].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

825 | P a g e

www.ijacsa.thesai.org

For the purpose of removing common words, FastText

generates a sample table. The theoretical foundation for this

work is that words that are commonly used carry less

information than uncommon terms and that a word's

representation does not change much even after the same

sentence is used several times [29]. In order to identify vector

representations where the text and its associated labels have

similar vectors, Fasttext represents text and labels as vectors.

The softmax function is used to determine the the probability

score of an accurate label given to its corresponding text [30].

Fig. 1. CBOW architecture.

Fig. 2. Skip-gram architecture.

5) OpenAI: Text strings' relatedness can be evaluated by

OpenAI's text embeddings. Searching, clustering,

recommendations, anomaly detection, diversity assessment,

and classification are among the common uses of OpenAI

Embeddings [31]. The "text-embedding-3-small", "text-

embedding-3-large", and "text-embedding-ada-002" are three

robust third-generation embedding models offered by OpenAI.

For text search, code search, and sentence similarity tests,

text-embedding-ada-002 performs comparably to all previous

embedding models, whereas for text classification, it achieves

superior results [32]. The text-embedding-ada-002 context

length is extended from 2048 to 8192 tokens by a factor of

four, making it easier to work with lengthy documents. The

new embeddings are only one-eighth the size of the davinci

embeddings, with only 1536 dimensions and their maximum

input token is 8191. Semantically comparable words are

mapped to vectors that are close to each other in a continuous,

dense, low-dimensional vector space. This is the basis for

OpenAI embeddings, which use a sort of neural network

called a transformer to represent text [33]. The conversion of

text to vector by OpenAI embedding is explained in Fig. 3.

Fig. 3. OpenAI embedding.

E. Model Training

1) Cosine similarity: In natural language processing,

cosine similarity is one of the metrics used to assess how

similar two sentences are, regardless of their size. The cosine

of the angle between two n-dimensional vectors projected in a

multi-dimensional space is measured mathematically by the

cosine similarity metric. A document's cosine similarity can

range from 0 to 1, where 1 denotes that two vectors have the

same orientation and 0 denotes that there is less similarity

between the two documents. The following is the

mathematical expression for the cosine similarity between two

non-zero vectors [34,35].

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝑃. 𝑄

||𝑃|| ∗ ||𝑄||
=

∑ 𝑃𝑖𝑄𝑖

𝑛
𝑖=1

√∑ 𝑃𝑖
2 √∑ 𝑄𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝑃 𝑎𝑛𝑑 𝑄 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (8)

2) Random Forest: The bagging approach is the

foundation of the random forest ensemble learning method.

Because decision trees have low bias and large variation,

overfitting occurs if the tree grows too deep. By combining

numerous decision tree predictions rather than relying just on

one tree's output, Random Forest addresses this issue by

reducing variance and resolving the overfitting issue. Decision

trees are the foundation model used by Random Forest and

predict the final output based on the majority of votes. When

building a decision tree, entropy or the Gini Index is utilized

as the splitting criterion [36].

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑖𝑙𝑜𝑔𝑃𝑖
𝑛
𝑖=1 𝑤ℎ𝑒𝑟𝑒 𝑃𝑖 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 (9)

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑝𝑖
2𝑛

𝑖=1 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 (10)

3) AdaBoost: AdaBoost, or "adaptive boosting," is an

ensemble machine-learning technique that builds decision

stumps using decision trees. Adaboost combines weak learners

into a single, powerful classifier to boost the performance of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

826 | P a g e

www.ijacsa.thesai.org

machine learning algorithms. By assigning an equal weight to

every data point, the adaboost algorithm initially constructs

the model. In the subsequent iteration, the data points whose

classification by the previous model was incorrect will be

assigned greater weight [37, 38]. It will keep training models

until it receives reduced errors. The following equation

represents the final prediction.

𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝛼1 ∗ 𝑝1 + 𝛼2 ∗ 𝑝2 + ⋯ + 𝛼𝑛 ∗ 𝑝𝑛 (11)

where, p1 represents the model's prediction and α1
represents the model's degree of significance [39].

4) XGBoost: A popular gradient boosting approach called

XGBoost provides regularization that lets you control

overfitting by applying L1/L2 penalties to each tree's weights

and biases [40]. Following the base model's prediction, we

build a decision tree using the residuals and splitting criteria,

then determine the similarity scores of the root and leaf nodes

using following equation.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙)2

𝑁+ƛ
 (12)

Where N is number of residuals and ƛ is regularization
parameter. The following formula is used to compute the gain
[41].

𝐺𝑎𝑖𝑛 = 𝐿𝑒𝑓𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑅𝑖𝑔ℎ𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 −

𝑅𝑜𝑜𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (13)

In XGboost Regression, the Gamma Parameter Is Used. If
the gain is less than the gamma value, the branch is cut, and no
additional splitting occurs; otherwise, splitting proceeds.
Pruning happens more often when gamma is higher. The
XGboost Learning Rate is used to determine the model's
convergence [42].

5) LSTM: One variation on a recurrent neural network that

can identify and pick up on order dependence in sequence

prediction issues is the Long Short-Term Memory (LSTM)

network. The RNN cannot predict words that are held in long-

term memory, but it can predict words based on recent data,

which makes it unable to solve the long-term dependence

problem. The LSTM is the type of neural network that

receives an input (xt) and outputs a value (ht). The three gates

in the memory are the input, forget, and output gates, which

control information flow and have the capacity to add or

remove data from the cell state, represented by the horizontal

line at the top of the diagram. The forget gate has the

responsibility for selecting which data should be erased from

the cell state. The sigmoid layer generates a value between 0

and 1 after analysing ht-1 and xt to determine which cell state

data should be kept and which should be removed.

𝑓𝑡 = σ(𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) (14)

The input gate is used to update the cell state value, taking
into account both the previous time step's hidden state and the
current input. The Sigma activation function in the first section
determines the percentage of information that is needed. The
Tanh activation function, which maps the data between -1 and

1, receives the two values in the second section. The input
gate's output, which modifies the cell state determined by
multiplying the outputs of the Tanh and Sigma functions [43,
44].

𝑖𝑡 = σ(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (15)

𝐶𝑡 = tanh(𝑊𝐶[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝐶) (16)

𝐶𝑡 = 𝐹𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 (17)

At the final stage, the sigmoid layer of the output gate
decides which elements of the cell state are returned as output.
The tanh layer modifies the cell's state to a value between 1
and -1, and the final output can be produced by multiplying the
sigmoid layer's output by the tanh layer [45].

𝑂𝑡 = σ(𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜) (18)

ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝐶𝑡) (19)

6) CNN: CNNs are useful in NLP for linguistic

modelling, autonomous translation, and classification of text.

A variant of CNN known as 1D-CNN focuses on the analysis

of one-dimensional data sequences, including text. By swiping

the filter over the input matrix, the convolutional layers

convolved the input, extracted features from the input, and

passed the output to the next layer. CNN uses two parameters

for regulating the size of an output matrix: stride, which

indicates the number of pixels moved throughout the

convolution process, and padding, which specifies the number

of pixels added to an input matrix. These parameters control

how the filter convolves across the input matrix. By

multiplying the output matrix from the convolution layer and

pooling matrix, the pooling layer tries to gradually reduce the

spatial dimension of the representation in order to reduce the

number of parameters and calculations in the network. The

dropout layer attempts to minimize overfitting by randomly

setting the input units to zero at each training phase. The feed-

forward neural network uses the array as input for additional

computation after it has been flattened into a one-dimensional

array [46, 47].

7) Classification metrics: The true and false values

accurately forecast are denoted by TP and TN. The false and

true values that were incorrectly forecast are denoted by FP

and FN. The ratio of exact forecasts to the total number of

input observations is known as the classification accuracy.

The ratio of correctly anticipated positive outcomes to all

anticipated positive outcomes is known as precision, and the

percentage of correct positive anticipations to all positive

samples in the dataset is known as recall. The F1-score, which

is the harmonic mean of recall and precision, is used when it's

complicated to choose whether to go with recall or precision.

Each metrics' corresponding mathematical equation is

represented below [48, 49, 50].

Accuracy =
[𝑇𝑃+𝑇𝑁]

𝑁
 (20)

Precision =
𝑇𝑃

[𝑇𝑃+𝐹𝑃]
 (21)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

827 | P a g e

www.ijacsa.thesai.org

Recall =
𝑇𝑃

[𝑇𝑃+𝐹𝑁]
 (22)

F1Score = 2 ∗
[Precision∗Recall]

[Precision+Recall]
 (23)

IV. RESULTS AND DISCUSSION

The 30000 samples are chosen at random, and the bias in
the dataset is controlled by making sure that each type of label
has identical quantities in the dataset. The dataset was broken
down into 6000 samples for testing and 24000 samples for
training. Table III presents the classification evaluation metrics
for the multiple techniques that were trained on
CountVectorizer. The precision, recall, and f1-score were
computed using a weighted average.

TABLE III. PERFORMANCE OF COUNT VECTORIZER

E
m

b
ed

d
in

g

M
o

d
el

C
o

si
n

e

R
F

A
d

a
B

o
o

st

X
G

B
o
o

st

L
S

T
M

C
N

N

C
o

u
n

tV
e
c
to

r
iz

e
r Accuracy 0.565 0.781 0.745 0.792 0.771 0.790

Precision 0.571 0.781 0.753 0.797 0.771 0.798

Recall 0.565 0.781 0.745 0.792 0.771 0.790

F1-Score 0.557 0.781 0.743 0.791 0.771 0.789

FP 1716 843 1030 824 856 750

The outcome demonstrates that the Cosine Similarity
calculated on CV yields disappointing results. In addition, in
comparison to other models, the AdaBoost is producing
unsatisfactory results. FP prediction refers to the situation
where the model anticipated a negative value but the actual
value was positive. When two statements have the same
meaning but the model predicts they are different, it is normal;
but, when two distinct sentences are anticipated to be similar, it
is not acceptable and will negatively impact the system's
performance. For this reason, we have taken into account FP,
or Type-I mistake, as an evaluation metric.

The Table IV performance data for TF-IDF shows that the
cosine similarity calculated on TF-IDF yields bad results, and
the adaboost also yields disappointing results.

TABLE IV. PERFORMANCE OF TF-IDF

E
m

b
ed

d
in

g

M
o

d
el

C
o

si
n

e

R
F

A
d

a
B

o
o

st

X
G

B
o
o

st

L
S

T
M

C
N

N

T
F

-I
D

F

Accuracy 0.660 0.778 0.756 0.779 0.767 0.791

Precision 0.660 0.791 0.766 0.787 0.770 0.796

Recall 0.660 0.778 0.756 0.779 0.767 0.791

F1-Score 0.659 0.776 0.754 0.777 0.767 0.790

FP 1099 972 1020 920 986 821

Table V performance data for Fasttext embedding
demonstrates that all other techniques produce results that are

reasonably nearby, whereas the cosine similarity calculated on
Fasttext produces poor results.

Performance of each model trained using Word2Vec
embedding is displayed in Table VI.

The performance of all models trained on OpenAI
embedding is displayed in Table VII. The outcome highlights
that, in contrast to alternative embeddings, cosine similarity
yields outstanding outcomes. All models trained on OpenAI
embedding show a performance gain of about 3%. With its
ability to generate embeddings in such a way that two
sentences with almost identical meanings have nearly the same
value in the embedding, OpenAI has strong potential for
capturing sematic meaning. With OpenAI embedding, the
CNN performs effectively, yielding satisfactory outcomes with
a slight FP value.

TABLE V. PERFORMANCE OF FASTTEXT

E
m

b
ed

d
in

g

M
o

d
el

C
o

si
n

e

R
F

A
d

a
B

o
o

st

X
G

B
o
o

st

L
S

T
M

C
N

N

F
a

st
T

e
x

t

Accuracy 0.649 0.779 0.761 0.774 0.763 0.787

Precision 0.651 0.784 0.763 0.780 0.763 0.790

Recall 0.649 0.779 0.761 0.774 0.763 0.787

F1-Score 0.648 0.778 0.760 0.773 0.762 0.786

FP 1231 852 875 784 790 782

TABLE VI. PERFORMANCE OF WORD2VEC

E
m

b
ed

d
in

g

M
o

d
el

C
o

si
n

e

R
F

A
d

a
B

o
o

st

X
G

B
o
o

st

L
S

T
M

C
N

N

W
o

r
d

2
V

ec

Accuracy 0.671 0.767 0.767 0.782 0.776 0.791

Precision 0.675 0.788 0.770 0.786 0.781 0.793

Recall 0.671 0.767 0.767 0.782 0.776 0.791

F1-Score 0.669 0.763 0.766 0.781 0.775 0.791

FP 1219 982 854 831 871 762

TABLE VII. PERFORMANCE OF OPENAI

E
m

b
ed

d
in

g

M
o

d
el

C
o

si
n

e

R
F

A
d

a
B

o
o

st

X
G

B
o
o

st

L
S

T
M

C
N

N

O
p

e
n

A
I

Accuracy 0.757 0.807 0.781 0.813 0.791 0.825

Precision 0.768 0.812 0.781 0.817 0.796 0.823

Recall 0.757 0.807 0.781 0.813 0.791 0.823

F1-Score 0.755 0.806 0.781 0.812 0.790 0.823

FP 1026 767 825 725 821 639

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

828 | P a g e

www.ijacsa.thesai.org

Fig. 4. Comparison of FP values for different models.

Fig. 4 indicates the false positive prediction for every
model trained across different embeddings.

V. CONCLUSION

Detecting similarity across sentences can be helpful in the
implementation of a number of different types of systems, such
as question-answering systems, community forums, e-
commerce consumer questions, instructional platforms, and
chatbots for customer service. Sentence similarity must be
automatically detected in order to meet user expectations
promptly and enhance the user experience. Common uses for
OpenAI embedded systems include searching, clustering,
similarity, anomaly detection, diversity evaluation, and
classification. The outcome demonstrates that machine
learning receives valuable information from the embedding
produced by the OpenAI model, improving prediction
accuracy. Sentence similarity can be captured with significant
potential using OpenAI embeddings. Almost all algorithms
perform well with OpenAI embedding; CNN is one of the
better performing algorithms. In order to improve prediction
accuracy, we can incorporate a cascading CNN structure in
future study. The CNN architecture's ideal parameter can be
found using the optimization technique. Rather than taking a
sentence as input, we can incorporate OpenAI STT and TTS to
receive verbal input and produce verbal output in future
research.

REFERENCES

[1] N. B. Korade, M. B. Salunke, G. G. Asalkar, R. G. Khedkar, A. U.
Bhosale, D. M. Joshi, and A. C. Jadhav, “Exploring NLP Techniques for
Duplicate Question Detection to Maximizing Responses on Q&A
Websites”, International Journal of Intelligent Systems and Applications
in Engineering, vol. 12, no.3, pp. 11-20, 2024.

[2] R. F. G. Silva, K. Paixão and M. de Almeida Maia, "Duplicate question
detection in stack overflow: A reproducibility study," 2018 IEEE 25th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), Campobasso, Italy, pp. 572-581, 2018, doi:
10.1109/SANER.2018.8330262.

[3] J. Wang, and Y. Dong, “Measurement of Text Similarity: A Survey”,
Information, vol. 11, no. 9, 2020, doi: 10.3390/info11090421.

[4] H. T. Le, D. T. Cao, T. H. Bui, L. T. Luong and H. Q. Nguyen,
"Improve Quora Question Pair Dataset for Question Similarity Task,"
2021 RIVF International Conference on Computing and Communication
Technologies (RIVF), Hanoi, Vietnam, pp. 1-5, 2021, doi:
10.1109/RIVF51545.2021.9642071.

[5] A. Gupta, K. Sharma, and K. K. Goyal, “Computation of Similarity
Between Two Pair of Sentence Using Word-Net”, International Journal
of Intelligent Systems and Applications in Engineering, vol. 11, no. 5s,
pp. 458–467, 2023.

[6] X. Sun, Y. Meng, X. Ao, F. Wu, T. Zhang, J. Li, and C. Fan, “Sentence
Similarity Based on Contexts”, Transactions of the Association for
Computational Linguistics, vol. 10, pp. 573–588, 2022, doi:
10.1162/tacl_a_00477.

[7] S. Rani, A. Kumar, and N. Kumar, “Eliminating Data Duplication in
CQA Platforms Using Deep Neural Model”, Hindawi Computational
Intelligence and Neuroscience, vol. 2022, 2022,
doi:10.1155/2022/2067449.

[8] H. E. Salman, Z. Alshara, A. D. Seriai, “Automatic Identification of
Similar Pull-Requests in GitHub’s Repositories Using Machine
Learning”, Information, vol. 13, no. 2, 2022, doi:
10.3390/info13020073.

[9] V. K. R. Anishaa, P. Sathvika, S. Rawat, “Identifying Similar Question
Pairs Using Machine Learning Techniques”, Indian Journal of Science
and Technology, vol. 14, no. 20, pp. 1635-1641, 2021,
doi:10.17485/IJST/v14i20.312.

[10] Z. Imtiaz, M. Umer, M. Ahmad, S. Ullah, G. S. Choi and A. Mehmood,
"Duplicate Questions Pair Detection Using Siamese MaLSTM," IEEE
Access, vol. 8, pp. 21932-21942, 2020, doi:
10.1109/ACCESS.2020.2969041.

[11] D. Basavesha., and Y. S. Nijagunarya, Detecting Duplicate Questions in
Community Based Websites Using Machine Learning, Proceedings of
the International Conference on Innovative Computing &
Communication (ICICC) 2021, April 2021, doi:10.2139/ssrn.3835083.

[12] L. Wang, L. Zhang, and J. Jiang, “Duplicate Question Detection With
Deep Learning in Stack Overflow”, IEEE Access, vol. 8, pp. 25964-
25975, 2020, doi: 10.1109/ACCESS.2020.2968391.

[13] A. W. Qurashi, V. Holmes and A. P. Johnson, "Document Processing:
Methods for Semantic Text Similarity Analysis," International
Conference on Innovations in Intelligent Systems and Applications
(INISTA), pp. 1-6, 2020, doi: 10.1109/INISTA49547.2020.9194665.

[14] Quora Question Pairs: https://www.kaggle.com/c/quora-question-
pairs/data

[15] M. J. Wu, T. Y. Fu, Y. C. Chang and C. W. Lee, "A Study on Natural
Language Processing Classified News," 2020 Indo – Taiwan 2nd
International Conference on Computing, Analytics and Networks (Indo-
Taiwan ICAN), Rajpura, India, 2020, pp. 244-247, doi: 10.1109/Indo-
TaiwanICAN48429.2020.9181355.

[16] N. Ansari, and R, Sharma, “Identifying Semantically Duplicate
Questions Using Data Science Approach: A Quora Case Study”, ACM
Conference, 2020, doi: 10.48550/arXiv.2004.11694.

[17] Y. Du and H. Huo, "News Text Summarization Based on Multi-Feature
and Fuzzy Logic," in IEEE Access, vol. 8, pp. 140261-140272, 2020,
doi: 10.1109/ACCESS.2020.3007763.

[18] T. Turki, and S. S. Roy, “Novel Hate Speech Detection Using Word
Cloud Visualization and Ensemble Learning Coupled with Count
Vectorizer”, Applied Sciences, vol. 12, no. 13, 2022, doi:
10.3390/app12136611.

[19] R. Goyal, "Evaluation of rule-based, CountVectorizer, and Word2Vec
machine learning models for tweet analysis to improve disaster relief,"
2021 IEEE Global Humanitarian Technology Conference (GHTC),
Seattle, WA, USA, pp. 16-19, 2021, doi:
10.1109/GHTC53159.2021.9612486.

[20] F. Lan, “Research on Text Similarity Measurement Hybrid Algorithm
with Term Semantic Information and TF-IDF Method”, Advanced
Pattern Recognition Systems for Multimedia Data, 2022, doi:
10.1155/2022/7923262.

[21] J. Ni, Y. Cai, G. Tang, Y. Xie, “Collaborative Filtering
Recommendation Algorithm Based on TF-IDF and User
Characteristics”. Applied Sciences, vol. 11, no. 20, 2021,
doi:10.3390/app11209554.

[22] H. Vranken H, H. Alizadeh, “Detection of DGA-Generated Domain
Names with TF-IDF”, Electronics, vol. 11, no. 3, 2022,
doi:10.3390/electronics11030414.

[23] P. T. Hung, K. Yamanishi, “Word2vec Skip-Gram Dimensionality
Selection via Sequential Normalized Maximum Likelihood”, Entropy,
vol. 23, no. 8, 2021, doi: 10.3390/e23080997.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

829 | P a g e

www.ijacsa.thesai.org

[24] X. Yang, K. Yang, T. Cui, M. Chen, L. He, “A Study of Text
Vectorization Method Combining Topic Model and Transfer Learning”,
Processes, vol. 10, no. 2, 2022, doi: 10.3390/pr10020350.

[25] X. Xue, H. Wang, J. Zhang,Y. Huang, M. Li,and H. Zhu, “Matching
Transportation Ontologies with Word2Vec and Alignment Extraction
Algorithm”, Journal of Advanced Transportation, 2021, doi:
10.1155/2021/4439861.

[26] Q. Du, N. Li, W. Liu, D. Sun,S. Yang,and F. Yue, “A Topic Recognition
Method of News Text Based on Word Embedding Enhancement”,
Computational Intelligence and Neuroscience, 2022, doi:
10.1155/2022/4582480.

[27] R. Esmeli, M. Bader-El-Den and H. Abdullahi, "Using Word2Vec
Recommendation for Improved Purchase Prediction," 2020 International
Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020, pp.
1-8, doi: 10.1109/IJCNN48605.2020.9206871.

[28] T. Yao, Z. Zhai and B. Gao, "Text Classification Model Based on
fastText," 2020 IEEE International Conference on Artificial Intelligence
and Information Systems (ICAIIS), Dalian, China, 2020, pp. 154-157,
doi: 10.1109/ICAIIS49377.2020.9194939.

[29] Fasttext official site: <https://fasttext.cc/docs/en/support.html>

[30] D. Jeon, J. Lee, J. M. Ahn, C. Lee, “Measuring the novelty of scientific
publications: A fastText and local outlier factor approach”, Journal of
Informetrics, vol. 17, no. 4, 2023, doi: 10.1016/j.joi.2023.101450.

[31] E. J. Ciaccio, “Use of artificial intelligence in scientific paper writing”,
Informatics in Medicine Unlocked, vol. 41, 2023, doi:
10.1016/j.imu.2023.101253.

[32] OpenAI Documentation: https://platform.openai.com/docs/introduction

[33] K. I. Roumeliotis, N. D. Tselikas, “ChatGPT and Open-AI Models: A
Preliminary Review”, Future Internet, vol. 15, no. 6, 2023,
doi:10.3390/fi15060192.

[34] I. L. Ansorena, “On the benchmarking of port performance. A cosine
similarity approach”, International Journal of Process Management and
Benchmarking, vol.11, no.1, pp.101 – 114, 2021, doi:
10.1504/IJPMB.2021.112258.

[35] R.S. Ramya, Ganesh Singh, S. N. Sejal, K.R. Venugopal, S.S. Iyengar,
L.M. Patnaik, “R2DCLT: retrieving relevant documents using cosine
similarity and LDA in text mining”, International Journal of Information
and Communication Technology, vol.19, no.4, pp.391 – 422, 2021, doi:
10.1504/IJICT.2021.118576.

[36] M. Schonlau, and R. Y. Zou, “The random forest algorithm for statistical
learning”, The Stata Journal, vol. 20, no. 1, pp. 3-29, 2020, doi:
10.1177/1536867X20909688.

[37] C. Wang, S. Xu, J. Yang, “Adaboost Algorithm in Artificial Intelligence
for Optimizing the IRI Prediction Accuracy of Asphalt Concrete
Pavement”, Sensors, vol. 21, no. 17, 2021, doi: 10.3390/s21175682.

[38] G. Sembina, "Building a Scoring Model Using the Adaboost Ensemble
Model," 2022 International Conference on Smart Information Systems
and Technologies (SIST), Nur-Sultan, Kazakhstan, pp. 1-6, 2022, doi:
10.1109/SIST54437.2022.9945713.

[39] D. Sudharson, S. Ashfia Fathima, P. S. Kailas, K. S. Thrisha Vaishnavi,
S. Darshana and A. Bhuvaneshwaran, "Performance Evaluation of

Improved Adaboost Framework in Randomized Phases Through
Stumps," 2021 International Conference on Advancements in Electrical,
Electronics, Communication, Computing and Automation (ICAECA),
Coimbatore, India, pp. 1-6, 2021, doi:
10.1109/ICAECA52838.2021.9675739.

[40] D. M. Alghazzawi, A. G. A. Alquraishee, S. K. Badri, S. H. Hasan,
“ERF-XGB: Ensemble Random Forest-Based XG Boost for Accurate
Prediction and Classification of E-Commerce Product Review”,
Sustainability, vol. 15, no. 9, 2023, doi: 10.3390/su15097076.

[41] D. A. -L. Mariadass, E. G. Moung, M. M. Sufian and A. Farzamnia,
"Extreme Gradient Boosting (XGBoost) Regressor and Shapley
Additive Explanation for Crop Yield Prediction in Agriculture," 2022
12th International Conference on Computer and Knowledge Engineering
(ICCKE), Mashhad, Iran, Islamic Republic of, pp. 219-224, 2022, doi:
10.1109/ICCKE57176.2022.9960069.

[42] T. R. Mahesh,V. Vinoth Kumar, V. Muthukumaran, H. K. Shashikala,
B. Swapna, and Suresh Guluwadi, “Performance Analysis of XGBoost
Ensemble Methods for Survivability with the Classification of Breast
Cancer”, Hindawi, Journal of Sensors, vol. 2022, , 2022, doi:
10.1155/2022/4649510.

[43] Z. Wang, S. Kim, I. Joe, “An Improved LSTM-Based Failure
Classification Model for Financial Companies Using Natural Language
Processing”, Applied Sciences, vol. 13, no. 13, doi:
10.3390/app13137884.

[44] B. Nath Saha and A. Senapati, "Long Short Term Memory (LSTM)
based Deep Learning for Sentiment Analysis of English and Spanish
Data," 2020 International Conference on Computational Performance
Evaluation (ComPE), Shillong, India, pp. 442-446, 2020, doi:
10.1109/ComPE49325.2020.9200054.

[45] N. B. Korade, and M. Zuber, “Stock Price Forecasting using
Convolutional Neural Networks and Optimization Techniques”, vol. 13,
no. 11, pp. 378-385, 2022, doi: 10.14569/IJACSA.2022.0131142.

[46] N. B. Korade, and M. Zuber, “Boost Stock Forecasting Accuracy Using
The Modified Firefly Algorithm And Multichannel Convolutional
Neural Network”, Journal of Theoretical and Applied Information
Technology, vol. 101, no. 7, pp. 2668- 2677, 2023.

[47] N. B. Korade, and M. Zuber, “Stock Forecasting Using Multichannel
CNN and Firefly Algorithm”, Proceedings of the 2nd International
Conference on Cognitive and Intelligent Computing, pp. 447-458, 2023,
doi: 10.1007/978-981-99-2742-5_46

[48] A. Gasparetto, M. Marcuzzo, A. Zangari, A. Albarelli, “A Survey on
Text Classification Algorithms: From Text to Predictions”, Information,
vol. 13, no. 2, 2022,. doi: 10.3390/info13020083.

[49] Y. Liu, and S. Yang, “Application of Decision Tree-Based Classification
Algorithm on Content Marketing”, Journal of Mathematics, 2022, doi:
10.1155/2022/6469054.

[50] Y. I. Alzoubi, A. E. Topcu, A. E. Erkaya, “Machine Learning-Based
Text Classification Comparison: Turkish Language Context”, Applied
Sciences, vol. 13, no. 16, 2023, doi: 10.3390/app13169428.

