
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

821 | P a g e  

www.ijacsa.thesai.org 

Strengthening Sentence Similarity Identification 

Through OpenAI Embeddings and Deep Learning 

Dr. Nilesh B. Korade1, Dr. Mahendra B. Salunke2, Dr. Amol A. Bhosle3, 

Dr. Prashant B. Kumbharkar4, Gayatri G. Asalkar5, Rutuja G. Khedkar6 

Assistant Professor, Department of Computer Engineering, 

JSPM’s Rajarshi Shahu College of Engineering, Tathawade, Pune-411033, Maharashtra, India1, 6 

Assistant Professor, Department of Computer Engineering, 

PCET’s, Pimpri Chinchwad College of Engineering and Research, Ravet, Pune-412101, Maharashtra, India2 

Associate Professor, Department of Computer Science and Engineering, School of Computing,  

MIT Art, Design and Technology University, Loni Kalbhor, Pune-412201, Maharashtra, India3 

Professor, Department of Computer Engineering, 

JSPM’s Rajarshi Shahu College of Engineering, Tathawade, Pune-411033, Maharashtra, India4 

Research Scholar, Department of Computer Science and Engineering, 

Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagari, Churela-333001, Rajasthan, India5 

 

 
Abstract— Discovering similarity between sentences can be 

beneficial to a variety of systems, including chatbots for customer 

support, educational platforms, e-commerce customer inquiries, 

and community forums or question-answering systems. One of 

the primary issues that online question-answering platforms and 

customer service chatbots have is the large number of duplicate 

inquiries that are placed on the platform. In addition to 

cluttering up the platform, these repetitive queries degrade the 

content's quality and make it harder for visitors to locate 

pertinent information. Therefore, it is necessary to automatically 

detect sentence similarity in order to improve the user experience 

and quickly match user expectations. The present study makes 

use of the Quora dataset to construct a framework for similarity 

discovery in sentence pairs. As part of our research, we have 

built additional attributes based on textual data for improving 

the accuracy of similarity prediction. The study investigates 

several vectorization methods and their influence on accuracy. 

To convert preprocess text input to a numerical vector, we 

implemented Word2Vec, FastText, Term Frequency-Inverse 

Document Frequency (TF-IDF), CountVectorizer (CV), and 

OpenAI embedding. In order to judge sentence similarity, the 

embedding offered by several approaches was used with various 

models, including cosine similarity, Random Forest (RF), 

AdaBoost, XGBoost, LSTM, and CNN.  The result demonstrates 

that all algorithms trained on OpenAI embedding yield excellent 

outcomes. The OpenAI-created embedding offers excellent 

information to models trained on it and has significant potential 

for capturing sentence similarity.  

Keywords—OpenAI; embedding; sentence similarity; FastText; 

Word2Vec; CNN; LSTM; precision; recall; F1-score 

I. INTRODUCTION 

The intricacy of natural language and the variety of ways in 
which phrases can express similar concepts make accurate 
sentence similarity assessment difficult. Scholars and 
professionals in the domain employ a variety of methodologies, 
which vary from conventional approaches such as cosine and 
Jaccard similarity to intelligent approaches that involve neural 
network models. An approach known as similarity 

identification or identical inquiry identification identifies 
similarities in the inquiries presented. The following, are 
several areas where text similarity matching is crucial to 
boosting service to clients [1]. 

 Client Assistance Chatbots Use similarity matching to 
find and group together related client inquiries. This 
increases the effectiveness of chatbot conversations and 
helps in generating consistent responses. 

 By discovering and eliminating repetitive queries, 
community forums may enhance the user experience by 
making sure that conversations are concise and relevant 
[2]. 

 Improve customer service on e-commerce sites by 
recognizing common questions about the products and 
offering consistent replies. 

 Employers can find comparable questions about 
policies, benefits, or procedures by using similarity 
matching in HR systems. This will help assure that 
responses are correct and consistent.  

 To gain insights into popular topics and sentiment 
analysis, use similarity matching to combine and 
analyze similar questions or comments on social media 
networks [3]. 

 Similarity matching can be used by healthcare 
information systems to find related medical inquiries 
and give consumers reliable, consistent information 
about symptoms, diagnoses, and other health-related 
issues. 

Finding such repetitively asked queries is crucial to 
improving the efficiency of resource utilization on the internet. 
It is not possible to find and remove duplicate questions 
manually. The duplicate inquiries or sentences should be 
identified automatically using some autodetection approaches 
[4,5,6]. In order to find similarities between two sentences, we 
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conducted our research using Quora's question-pair dataset. On 
the sentence dataset, we have used a variety of preprocessing 
approaches to eliminate unnecessary components and create a 
clean dataset that may be used for vectorization or embeddings. 
Based on parameters like sentence length, the frequency with 
which a string appears in the sentence, common strings in both 
sentences, fuzzy logic usage, etc., we have created a number of 
additional features that will provide additional information to a 
model trained on embedding. Numerous vectorization and 
embedding techniques, such as TF-IDF, CV, Word2Vec, 
FastText, and OpenAI text-embedding-ada-002 embedding, are 
used to convert text collections into numerical features. The 
metrics used to assess the quality of embedding and model 
performance on embedding include precision, recall, F1-score, 
and accuracy. The OpenAI text-embedding-ada-002 
embedding shows potential in capturing sentence similarity and 
offers valuable information that supports different models for 
similarity identification.  

The remainder of the document is structured as follows: 
Section II discusses the existing literature on duplicate question 
detection. Section III outlines the methodology, including the 
research flow, dataset, preprocessing steps, feature engineering, 
vectorization methods, and algorithm implementation. Section 
IV covers the evaluation of accuracy with various vectorization 
techniques and models. Section V presents a summary of our 
research findings and suggests avenues for further 
investigation. 

II. LITERATURE SURVEY 

The sharing and learning environment have experienced 
significant changes due to the quick growth of digital 
platforms. Crowdsourced solutions like Community Question 
Answering (CQA) have been popular as a way for volunteers 
to share their knowledge and get their doubts regarding 
particular topics answered. A solution is required to address the 
issue of semantically comparable question detection for 
duplication identification in bilingually transliterated data. In 
order to detect question repetition, deep learning has been 
implemented by S. Rani et al. to evaluate informal languages 
like Hinglish, a bilingual blend of Hindi and English spoken on 
Community Question Answering (CQA) platforms. There are 
two components: the first is a language conversion component 
that creates a text in mono-language from input questions. The 
hybrid model, which combines a Siamese neural network 
(SNN), a capsule neural network, and a decision tree classifier, 
is used to determine the similarity between the question pairs. 
To calculate the similarity of questions, the SNN and the 
Manhattan distance function are utilized. An accuracy of 87% 
and an AUCROC value of 0.86 are obtained by validating the 
suggested model on 150 pairs of questions [7]. 

Contributors often make use of a pull-request procedure on 
social coding platforms like GitHub to present their source 
code modifications to inspectors of a particular repository. Due 
to the distributed nature of this approach, pull requests carrying 
out similar development tasks can be unintentionally submitted 
by multiple contributors, resulting in unnecessary effort and 
time spent reviewing.  A strategy for allocating the same 
reviewer or reviewing team to each cluster of related pull 
requests was suggested by H. E. Salman et al., which makes it 

possible to save time and effort. To identify similarities across 
pull requests, first extract descriptive textual information from 
the content of the pull requests and use it to link equivalent pull 
requests together. To group relevant pull requests together, the 
K-means clustering and agglomeration hierarchical clustering 
algorithms are employed. The experimental results indicate 
that the K-Means algorithm achieves 94%, 91%, whereas 
agglomeration hierarchical clustering achieves 93%, 98% 
average precision and recall values over all evaluated 
repositories. The twenty popular repositories of public datasets 
are used to access the provided approach. In addition, the 
suggested method reduces the amount of time and effort 
required for reviews by using the K-Means algorithm by an 
average of 67% to 91% and the agglomeration hierarchical 
clustering technique by an average of 67% to 83% [8]. 

Millions of people use search engines every day to find 
solutions, which results in an increasing need for innovative, 
clever methods to assist people in solving problems. Using a 
7GB real-time dataset, V. K. R. Anishaa et al. trained and 
evaluated four machine learning models in order to identify 
duplicate queries. The noise is eliminated by removing HTML 
tags, stop words, punctuation, white spaces, and URLs after the 
data has loaded. Pre-processing is carried out in SQLite 
databases utilizing PL/SQL blocks, which process enormous 
volumes of data faster than alternate techniques. The four 
different ML models are used to train the acquired dataset. 
After execution, the random, logistic regression, linear SVM, 
and XGBoost error parameters referred to from the log loss 
function are found to be, respectively, 0.887, 0.521, 0.654, and 
0.357. As a result of the unique pre-processing activities 
carried out using PL/SQL, which improve response time 
overall, the result demonstrates that XGBoost is the best 
model, delivering the greatest accuracy in the shortest period of 
time [9]. 

On a social media platform where users post questions, 
other users can assist by editing the questions and providing 
more precise answers to the questions that are asked. Due to 
linguistic heterogeneity, it can be complicated to determine a 
sentence's true meaning with accuracy, making the 
classification of repeated inquiries a challenging process. Deep 
learning techniques have demonstrated exceptional 
performance in several natural language processing (NLP) 
problems, particularly in the area of semantic text similarity. In 
order to determine the semantic relevance between two queries, 
Z. Imtiaz et al. suggested a novel Siamese MaLSTM model, 
wherein the term "Siamese" refers to the employment of two or 
more sub-identical network architectures simultaneously and 
Ma indicates Manhattan distance. The GoogleNewsVector, 
FastText, and FastText subword word embeddings are used to 
independently train the Siamese LSTM model. The final 
prediction is then derived from the combination of these 
trained models [10].  

Using a variety of techniques, many investigators have 
worked on duplicate text detection until now. Text data is pre-
processed and converted to an array of numbers using the TF-
IDF method. Using the Quora’s dataset, D. Basavesha 
examined five machine learning models. Adaboost yields an 
accuracy of 81.73%, random forest yields 81.72%, decision 
tree yields 79.29%, and logistic regression yields 79.21% [11].  
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A well-known software problem-solving website with a 
focus on solving errors in software code, Stack Overflow has 
seen an increase in visitors in recent years. L. Wang et al. 
employed Word2Vec to get the vector representations of 
words, and CNN, RNN, and LSTM are three distinct deep 
learning approaches that are taken into consideration to address 
the issue of similar inquiry discovery in Stack Overflow. The 
evaluation's findings demonstrate that WV-CNN and WV-
LSTM have significantly outperformed the other baseline 
techniques. The dataset consisted of queries in various 
programming languages, including Perl, Java, and others. The 
outcome demonstrates that for every dataset, WV-CNN and 
WV-LSTM based on Word2Vec yield recall rates greater than 
80% [12]. 

A. W. Qurashi measures the level of semantic equivalence 
across multi-word phrases for the regulations and guidelines 
stated in railway safety manuals. There are two text similarity 
measures that are examined: The cosine similarity metric maps 
the text into a vector space model, and the "Word2Vec" 
technique is used to determine the distance between the texts. 
A count-based metric called Jaccard similarity is the 
intersection of two sets divided by the union of two sets. The 
cosine similarity determines the degree of similarity between 
texts by converting sentences from documents into vectors 
using Word2Vec. The results show that the Jaccard similarity 
method, which measures similarity based on character 
matching, yielded unsatisfactory results and while evaluating 
the similarity of two documents, cosine provides a more 
accurate result by measuring the angle between vectorized 
phrases [13]. 

III. METHODOLOGY 

A. Dataset 

To determine textual similarity, this study makes use of the 
0.4 million questions in the Quora dataset [14]. Table I presents 
information on the features and content of the dataset. 

TABLE I.  DATASET DETAILS 

Attribute Details 

ID 
Each dataset row is assigned a unique number that allows 
for its own unique recognition. 

Question_ID1, 

Question_ID2 

There is a distinct identity for each of the questions in the 

features labelled "Question No. 1" and "Question No. 2." 

QuestionNo1, 
QuestionNo2 

This feature includes real questions to check if they are 
similar to each other. 

Is_Duplicate 

When question pairs are intellectually examined, the 

result is Is_Duplicate, where 0 means false and 1 means 
yes. 

B. Preprocessing 

The dataset is subjected to basic preprocessing in order to 
be approved for usage in the succeeding phase, i.e., 
vectorization and model training. The database is examined for 
any duplicate or missing entries, and those that are found are 
discarded. All punctuation is deleted, the database is 
lowercased, and some special characters like '%' for percent are 
substituted out for their string equivalents. The URL and 
HTML elements were eliminated, and chartwords like "N.A." 
(which indicates "not applicable") were replaced. The dataset 

has been lemmatized after all stopwords have been eliminated 
and tokenization has been applied [15]. 

C. Feature Engineering 

Strong features can increase the predictive ability of 
machine learning models by giving them pertinent information. 
On the basis of the properties of the question text that were 
listed in the dataset, new features were generated [16]. Table II 
presents an extensive overview of each newly developed 
feature along with a description. 

TABLE II.  FEATURE CREATION DETAILS 

New Feature Details 

Sen1Len, 

Sen2Len 

It is the entire sentence length, with all characters 

included. 

WordCountSen1, 
WordCountSen2 

Total number of words present in the sentence, 
including repeated words. 

WordCommon 
The number of terms that are present identically in 

the two sentences. 

DistinctWords 
It is a sum of unique words found in the first 
sentence and unique words found in the second 

sentence. 

WordShare 
It is the ratio of "word common" and "distinct 

words." 

CWC_Min 

It is a ratio of the number of common words 

(WordCommon) to the length of a shorter sentence 

(min (Question1Length, Question2Length)). 

CWC_Max 
It is a ratio of the number of common words 
(WordCommon) to the length of a larger sentence 

(max (Question1Length, Question2Length)). 

CSC_Min 

It is a ratio of the number of common stopwords 
(stopwords(sentence1) ∩ stopwords(sentence2)) to 

the minimum stopword count in the first and second 

sentences (min (stopwords count in sentence1, 
stopwords count in sentence2)). 

CSC_Max 

It is a ratio of the number of common stopwords 

(stopwords(sentence1) ∩ stopwords(sentence2)) to 

the maximum stopword count in the first and second 

sentences (max (stopwords count in sentence1, 

stopwords count in sentence2)). 

CTC_Min 

It is a ratio of the number of common tokens 
(tokens(sentence1) ∩ tokens (sentence2)) to the 

minimum token count in the first and second 

sentences (min (tokens count in sentence1, tokens 
count in sentence2)). 

CTC_Max 

It is a ratio of the number of common tokens 

(tokens(sentence1) ∩ tokens (sentence2)) to the 
maximum token count in the first and second 

sentences (max (tokens count in sentence1, tokens 

count in sentence2)). 

Avg_Tokens 
It is a ratio of the sum of tokens present in both 
sentences to the number of sentences. 

Abs_Len_Diff 
It refers to the absolute value of the numerical 

difference between two sentence lengths. 

Lng_Substr_Ratio 

It is the ratio of the common longest substring in 

sentences 1 and 2 to the minimum token count from 

the first or second sentence min (token 
count(sentence1), token count(sentence2)). 

Last_Word_Equal 
The value is set to 1 if both sentences have identical 

last words; otherwise, it is 0. 

First_Word_Equal 
The value is set to 1 if both sentences have identical 
first words; otherwise, it is 0. 

A Python library called fuzzywuzzy offers a variety of 
functions for string analysis and algorithm-based similarity 
score calculations [17]. The Levenshtein Distance (LD) is a 
measure of the degree of difference between two strings. The 
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degree of difference between the two strings increases with the 
number. is the smallest number of single-character 
modifications needed to convert one word to another. Let us 
assume that the lengths of the two sentences, sen1 and sen2, 
are l1 and l2, respectively. The LD, or the minimum number of 
modifications needed to transform sen1 into sen2, is D (l1, l2). 
By filling up a (l1+1) × (l2+1) matrix, the dynamic 
programming technique efficiently computes this distance. 

fuzz_ratio =
1

1+LD
       (1) 

Using matching substrings of a given length, the 
fuzz_partial_ratio (FPR) function determines the "partial ratio" 
between two strings, which indicates how similar they are. The 
strings' higher fuzz_partial_ratio indicates a high degree of 
similarity. 

FPR =
2∗ Common Characters in Two  sentence

len(sentence1)+len(sentence2)
∗ 100 (2) 

The token_sort_ratio (TSortR) function, which computes 
the similarity ratio between two strings after sorting their 
tokens alphabetically, is especially helpful when working with 
strings that may contain the same words but in a different 
sequence. 

TSortR =
LD(

Sorted Tokens in Sentence1,

Sorted Tokens in Sentence2
)

max(
len(Sorted Tokens in Sentence1),

len(Sorted Tokens in Sentence2)
)

∗ 100 (3) 

The token_set_ratio (TSetR) function, which determines 
the similarity ratio between two strings based on the 
intersection and union of their unique tokens, is helpful when 
comparing texts that might contain common terms but also 
have differences. 

TSetR =
LD(

Token Set in sentence1,

Token Set in sentence2
)

max(
len(Token Set in sentence1),

len(Token Set in sentence2)
)

∗ 100         (4) 

D. Word Embedding / Vectorization 

Word embedding is a method that captures syntactic and 
semantic similarities between words depending on their context 
of usage by representing words as vectors of real numbers in a 
high-dimensional space. The following vectorization and word 
embedding techniques were used in the study. 

1) Count vectorizer: Count Vectorizer creates a matrix in 

which each unique word is represented by a column of the 

matrix, and each text sample from the document is a row in 

the matrix [18]. The value of each cell is nothing but the count 

of the word in that particular text sample [19]. 

2) TF-IDF: The term frequency Inverse Document 

Frequency (TF-IDF) gives information about the more and 

less important words in a document. When retrieving 

information, a word's relevance within the text matters 

significantly. The more times a word appears in the text, the 

more significant it becomes. The frequency of a word (w) in a 

document (d) is measured by term frequency (TF), which is 

the ratio of a word's occurrence in a document to the total 

number of terms in the document [20]. A term's Inverse 

Document Frequency (IDF) indicates how common or 

uncommon a word is within the whole corpus of documents 

D. TFIDF is a product of TF and IDF, where the word that is 

more frequent in the document will get more importance and 

the word that is rare in the corpus will receive more weight 

[21, 22]. 

Term Frequency(w, d) =
number of times w appears in d.

total number of words in document d.
  (5) 

Inverse Document Frequency(w, D) = 

log
number of document in D.

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑤
  (6) 

TFIDF(w, d, D) = TF(w, d) ∗ IDF(w, D)       (7) 

3) Word2Vec: Words can be expressed as vectors using a 

technique called word embedding. Word embedding's main 

aim is to create low-dimensional feature vectors from the 

high-dimensional feature space of words while preserving 

contextual similarity within the corpus. Predicting the words 

that are close to each individual word in a sentence is the 

primary objective of the Word2Vec model. Word2Vec uses 

CBOW and skip-gram architecture, and using the training text 

input, it builds a vocabulary in order to the vector 

representation of words [23].  

a) CBOW: A neural network termed the continuous 

bag-of-words (CBOW) model is used for NLP applications 

like text classification and language translation. One-hot 

encoding serves as the method for the target and input layer 

encoding, with a size of [1 X V]. The CBOW uses context 

words or surrounding words (X) as input in an attempt to 

predict the target or central word (Y). The weight sets (W, W') 

are initiated randomly, one between the input and hidden 

layers and the other between the hidden and output layers. 

Input Hidden layer matrix size is represented as [V X N], and 

hidden output layer matrix size is represented as [N X V], 

where N is a random number that indicates the size of our 

embedding space or how many dimensions, we want to use for 

describing our word. The hidden activation is the product of 

the input and the input-hidden weights. The product of hidden 

input and hidden output weights produces the output Y. The 

difference between the output and the target is evaluated and 

reported back to reset the weights [24,25]. 

b) Skip-Gram: Word2Vec also uses the skip-gram 

neural network approach, which reverses the CBOW 

architecture and predicts context or surrounding words (Y1, 

Y2…) for a given target word (X). The random weight is 

assigned after one-hot encoding of both the input layer and the 

target layer. To modify the weight assigned, the softmax 

function first calculates the probability of context words, then 

backpropagates the error by computing the loss between 

prediction and actual. Fig. 1 and 2 demonstrate the CBOW 

and skip-Gram structure [26,27]. 

4) FastText: An open-source platform called FastText, 

created by Facebook, enables professionals to acquire text 

representations and classifiers to perform efficient text 

classification. fastText offers subword embeddings by 

considering that words are made up of character n-grams [28]. 
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For the purpose of removing common words, FastText 

generates a sample table. The theoretical foundation for this 

work is that words that are commonly used carry less 

information than uncommon terms and that a word's 

representation does not change much even after the same 

sentence is used several times [29]. In order to identify vector 

representations where the text and its associated labels have 

similar vectors, Fasttext represents text and labels as vectors. 

The softmax function is used to determine the the probability 

score of an accurate label given to its corresponding text [30]. 

 
Fig. 1. CBOW architecture. 

 

Fig. 2. Skip-gram architecture. 

5) OpenAI: Text strings' relatedness can be evaluated by 

OpenAI's text embeddings. Searching, clustering, 

recommendations, anomaly detection, diversity assessment, 

and classification are among the common uses of OpenAI 

Embeddings [31]. The "text-embedding-3-small", "text-

embedding-3-large", and "text-embedding-ada-002" are three 

robust third-generation embedding models offered by OpenAI. 

For text search, code search, and sentence similarity tests, 

text-embedding-ada-002 performs comparably to all previous 

embedding models, whereas for text classification, it achieves 

superior results [32]. The text-embedding-ada-002 context 

length is extended from 2048 to 8192 tokens by a factor of 

four, making it easier to work with lengthy documents. The 

new embeddings are only one-eighth the size of the davinci 

embeddings, with only 1536 dimensions and their maximum 

input token is 8191. Semantically comparable words are 

mapped to vectors that are close to each other in a continuous, 

dense, low-dimensional vector space. This is the basis for 

OpenAI embeddings, which use a sort of neural network 

called a transformer to represent text [33]. The conversion of 

text to vector by OpenAI embedding is explained in Fig. 3. 

 
Fig. 3. OpenAI embedding. 

E. Model Training 

1) Cosine similarity: In natural language processing, 

cosine similarity is one of the metrics used to assess how 

similar two sentences are, regardless of their size.  The cosine 

of the angle between two n-dimensional vectors projected in a 

multi-dimensional space is measured mathematically by the 

cosine similarity metric. A document's cosine similarity can 

range from 0 to 1, where 1 denotes that two vectors have the 

same orientation and 0 denotes that there is less similarity 

between the two documents. The following is the 

mathematical expression for the cosine similarity between two 

non-zero vectors [34,35]. 

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝑃. 𝑄

||𝑃|| ∗ ||𝑄||
= 

 
∑ 𝑃𝑖𝑄𝑖

𝑛
𝑖=1

√∑ 𝑃𝑖
2 √∑ 𝑄𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

  𝑤ℎ𝑒𝑟𝑒 𝑃 𝑎𝑛𝑑 𝑄 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (8) 

2) Random Forest: The bagging approach is the 

foundation of the random forest ensemble learning method. 

Because decision trees have low bias and large variation, 

overfitting occurs if the tree grows too deep. By combining 

numerous decision tree predictions rather than relying just on 

one tree's output, Random Forest addresses this issue by 

reducing variance and resolving the overfitting issue. Decision 

trees are the foundation model used by Random Forest and 

predict the final output based on the majority of votes. When 

building a decision tree, entropy or the Gini Index is utilized 

as the splitting criterion [36]. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑖𝑙𝑜𝑔𝑃𝑖
𝑛
𝑖=1  𝑤ℎ𝑒𝑟𝑒 𝑃𝑖  𝑖𝑠 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙     (9) 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑝𝑖
2𝑛

𝑖=1  𝑤ℎ𝑒𝑟𝑒 𝑝𝑖  𝑖𝑠 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 (10) 

3) AdaBoost: AdaBoost, or "adaptive boosting," is an 

ensemble machine-learning technique that builds decision 

stumps using decision trees. Adaboost combines weak learners 

into a single, powerful classifier to boost the performance of 
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machine learning algorithms. By assigning an equal weight to 

every data point, the adaboost algorithm initially constructs 

the model. In the subsequent iteration, the data points whose 

classification by the previous model was incorrect will be 

assigned greater weight [37, 38]. It will keep training models 

until it receives reduced errors. The following equation 

represents the final prediction. 

𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝛼1 ∗ 𝑝1 + 𝛼2 ∗ 𝑝2 + ⋯ + 𝛼𝑛 ∗ 𝑝𝑛   (11) 

where, p1 represents the model's prediction and α1 
represents the model's degree of significance [39]. 

4) XGBoost: A popular gradient boosting approach called 

XGBoost provides regularization that lets you control 

overfitting by applying L1/L2 penalties to each tree's weights 

and biases [40].  Following the base model's prediction, we 

build a decision tree using the residuals and splitting criteria, 

then determine the similarity scores of the root and leaf nodes 

using following equation. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙)2

𝑁+ƛ
   (12) 

Where N is number of residuals and ƛ is regularization 
parameter. The following formula is used to compute the gain 
[41]. 

𝐺𝑎𝑖𝑛 = 𝐿𝑒𝑓𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑅𝑖𝑔ℎ𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 

𝑅𝑜𝑜𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦   (13) 

In XGboost Regression, the Gamma Parameter Is Used. If 
the gain is less than the gamma value, the branch is cut, and no 
additional splitting occurs; otherwise, splitting proceeds. 
Pruning happens more often when gamma is higher. The 
XGboost Learning Rate is used to determine the model's 
convergence [42]. 

5) LSTM: One variation on a recurrent neural network that 

can identify and pick up on order dependence in sequence 

prediction issues is the Long Short-Term Memory (LSTM) 

network. The RNN cannot predict words that are held in long-

term memory, but it can predict words based on recent data, 

which makes it unable to solve the long-term dependence 

problem. The LSTM is the type of neural network that 

receives an input (xt) and outputs a value (ht). The three gates 

in the memory are the input, forget, and output gates, which 

control information flow and have the capacity to add or 

remove data from the cell state, represented by the horizontal 

line at the top of the diagram.  The forget gate has the 

responsibility for selecting which data should be erased from 

the cell state. The sigmoid layer generates a value between 0 

and 1 after analysing ht-1 and xt to determine which cell state 

data should be kept and which should be removed. 

𝑓𝑡 = σ(𝑊𝑓[ℎ𝑡−1, 𝑋𝑡  ] + 𝑏𝑓)         (14) 

The input gate is used to update the cell state value, taking 
into account both the previous time step's hidden state and the 
current input. The Sigma activation function in the first section 
determines the percentage of information that is needed. The 
Tanh activation function, which maps the data between -1 and 

1, receives the two values in the second section. The input 
gate's output, which modifies the cell state determined by 
multiplying the outputs of the Tanh and Sigma functions [43, 
44]. 

𝑖𝑡 = σ(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡  ] + 𝑏𝑖)   (15) 

𝐶𝑡 = tanh(𝑊𝐶[ℎ𝑡−1, 𝑋𝑡  ] + 𝑏𝐶)  (16) 

𝐶𝑡 = 𝐹𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡           (17) 

At the final stage, the sigmoid layer of the output gate 
decides which elements of the cell state are returned as output. 
The tanh layer modifies the cell's state to a value between 1 
and -1, and the final output can be produced by multiplying the 
sigmoid layer's output by the tanh layer [45]. 

𝑂𝑡 = σ(𝑊𝑜[ℎ𝑡−1, 𝑋𝑡  ] + 𝑏𝑜)          (18) 

ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝐶𝑡)   (19) 

6) CNN: CNNs are useful in NLP for linguistic 

modelling, autonomous translation, and classification of text. 

A variant of CNN known as 1D-CNN focuses on the analysis 

of one-dimensional data sequences, including text. By swiping 

the filter over the input matrix, the convolutional layers 

convolved the input, extracted features from the input, and 

passed the output to the next layer. CNN uses two parameters 

for regulating the size of an output matrix: stride, which 

indicates the number of pixels moved throughout the 

convolution process, and padding, which specifies the number 

of pixels added to an input matrix. These parameters control 

how the filter convolves across the input matrix. By 

multiplying the output matrix from the convolution layer and 

pooling matrix, the pooling layer tries to gradually reduce the 

spatial dimension of the representation in order to reduce the 

number of parameters and calculations in the network. The 

dropout layer attempts to minimize overfitting by randomly 

setting the input units to zero at each training phase. The feed-

forward neural network uses the array as input for additional 

computation after it has been flattened into a one-dimensional 

array [46, 47]. 

7) Classification metrics: The true and false values 

accurately forecast are denoted by TP and TN. The false and 

true values that were incorrectly forecast are denoted by FP 

and FN. The ratio of exact forecasts to the total number of 

input observations is known as the classification accuracy. 

The ratio of correctly anticipated positive outcomes to all 

anticipated positive outcomes is known as precision, and the 

percentage of correct positive anticipations to all positive 

samples in the dataset is known as recall. The F1-score, which 

is the harmonic mean of recall and precision, is used when it's 

complicated to choose whether to go with recall or precision. 

Each metrics' corresponding mathematical equation is 

represented below [48, 49, 50]. 

Accuracy =
[𝑇𝑃+𝑇𝑁]

𝑁
     (20) 

Precision =
𝑇𝑃

[𝑇𝑃+𝐹𝑃]
         (21) 
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Recall =
𝑇𝑃

[𝑇𝑃+𝐹𝑁]
           (22) 

F1Score = 2 ∗
[Precision∗Recall]

[Precision+Recall]
  (23) 

IV. RESULTS AND DISCUSSION 

The 30000 samples are chosen at random, and the bias in 
the dataset is controlled by making sure that each type of label 
has identical quantities in the dataset. The dataset was broken 
down into 6000 samples for testing and 24000 samples for 
training. Table III presents the classification evaluation metrics 
for the multiple techniques that were trained on 
CountVectorizer. The precision, recall, and f1-score were 
computed using a weighted average.  

TABLE III.  PERFORMANCE OF COUNT VECTORIZER 
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r Accuracy 0.565 0.781 0.745 0.792 0.771 0.790 

Precision 0.571 0.781 0.753 0.797 0.771 0.798 

Recall 0.565 0.781 0.745 0.792 0.771 0.790 

F1-Score 0.557 0.781 0.743 0.791 0.771 0.789 

FP 1716 843 1030 824 856 750 

The outcome demonstrates that the Cosine Similarity 
calculated on CV yields disappointing results. In addition, in 
comparison to other models, the AdaBoost is producing 
unsatisfactory results. FP prediction refers to the situation 
where the model anticipated a negative value but the actual 
value was positive. When two statements have the same 
meaning but the model predicts they are different, it is normal; 
but, when two distinct sentences are anticipated to be similar, it 
is not acceptable and will negatively impact the system's 
performance. For this reason, we have taken into account FP, 
or Type-I mistake, as an evaluation metric. 

The Table IV performance data for TF-IDF shows that the 
cosine similarity calculated on TF-IDF yields bad results, and 
the adaboost also yields disappointing results. 

TABLE IV.  PERFORMANCE OF TF-IDF 
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Accuracy 0.660 0.778 0.756 0.779 0.767 0.791 

Precision 0.660 0.791 0.766 0.787 0.770 0.796 

Recall 0.660 0.778 0.756 0.779 0.767 0.791 

F1-Score 0.659 0.776 0.754 0.777 0.767 0.790 

FP 1099 972 1020 920 986 821 

Table V performance data for Fasttext embedding 
demonstrates that all other techniques produce results that are 

reasonably nearby, whereas the cosine similarity calculated on 
Fasttext produces poor results. 

Performance of each model trained using Word2Vec 
embedding is displayed in Table VI. 

The performance of all models trained on OpenAI 
embedding is displayed in Table VII. The outcome highlights 
that, in contrast to alternative embeddings, cosine similarity 
yields outstanding outcomes. All models trained on OpenAI 
embedding show a performance gain of about 3%. With its 
ability to generate embeddings in such a way that two 
sentences with almost identical meanings have nearly the same 
value in the embedding, OpenAI has strong potential for 
capturing sematic meaning. With OpenAI embedding, the 
CNN performs effectively, yielding satisfactory outcomes with 
a slight FP value. 

TABLE V.  PERFORMANCE OF FASTTEXT 
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Accuracy 0.649 0.779 0.761 0.774 0.763 0.787 

Precision 0.651 0.784 0.763 0.780 0.763 0.790 

Recall 0.649 0.779 0.761 0.774 0.763 0.787 

F1-Score 0.648 0.778 0.760 0.773 0.762 0.786 

FP 1231 852 875 784 790 782 

TABLE VI.  PERFORMANCE OF WORD2VEC 
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Accuracy 0.671 0.767 0.767 0.782 0.776 0.791 

Precision 0.675 0.788 0.770 0.786 0.781 0.793 

Recall 0.671 0.767 0.767 0.782 0.776 0.791 

F1-Score 0.669 0.763 0.766 0.781 0.775 0.791 

FP 1219 982 854 831 871 762 

TABLE VII.  PERFORMANCE OF OPENAI 
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Accuracy 0.757 0.807 0.781 0.813 0.791 0.825 

Precision 0.768 0.812 0.781 0.817 0.796 0.823 

Recall 0.757 0.807 0.781 0.813 0.791 0.823 

F1-Score 0.755 0.806 0.781 0.812 0.790 0.823 

FP 1026 767 825 725 821 639 
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Fig. 4. Comparison of FP values for different models. 

Fig. 4 indicates the false positive prediction for every 
model trained across different embeddings. 

V. CONCLUSION 

Detecting similarity across sentences can be helpful in the 
implementation of a number of different types of systems, such 
as question-answering systems, community forums, e-
commerce consumer questions, instructional platforms, and 
chatbots for customer service. Sentence similarity must be 
automatically detected in order to meet user expectations 
promptly and enhance the user experience. Common uses for 
OpenAI embedded systems include searching, clustering, 
similarity, anomaly detection, diversity evaluation, and 
classification.  The outcome demonstrates that machine 
learning receives valuable information from the embedding 
produced by the OpenAI model, improving prediction 
accuracy. Sentence similarity can be captured with significant 
potential using OpenAI embeddings. Almost all algorithms 
perform well with OpenAI embedding; CNN is one of the 
better performing algorithms. In order to improve prediction 
accuracy, we can incorporate a cascading CNN structure in 
future study. The CNN architecture's ideal parameter can be 
found using the optimization technique. Rather than taking a 
sentence as input, we can incorporate OpenAI STT and TTS to 
receive verbal input and produce verbal output in future 
research. 

REFERENCES 

[1] N. B. Korade, M. B. Salunke, G. G. Asalkar, R. G. Khedkar, A. U. 
Bhosale, D. M. Joshi, and A. C. Jadhav, “Exploring NLP Techniques for 
Duplicate Question Detection to Maximizing Responses on Q&A 
Websites”, International Journal of Intelligent Systems and Applications 
in Engineering, vol. 12, no.3, pp. 11-20, 2024. 

[2] R. F. G. Silva, K. Paixão and M. de Almeida Maia, "Duplicate question 
detection in stack overflow: A reproducibility study," 2018 IEEE 25th 
International Conference on Software Analysis, Evolution and 
Reengineering (SANER), Campobasso, Italy, pp. 572-581, 2018, doi: 
10.1109/SANER.2018.8330262. 

[3] J. Wang, and Y. Dong, “Measurement of Text Similarity: A Survey”,  
Information, vol. 11, no. 9, 2020, doi: 10.3390/info11090421. 

[4] H. T. Le, D. T. Cao, T. H. Bui, L. T. Luong and H. Q. Nguyen, 
"Improve Quora Question Pair Dataset for Question Similarity Task," 
2021 RIVF International Conference on Computing and Communication 
Technologies (RIVF), Hanoi, Vietnam, pp. 1-5, 2021, doi: 
10.1109/RIVF51545.2021.9642071. 

[5] A. Gupta, K. Sharma, and K. K. Goyal, “Computation of Similarity 
Between Two Pair of Sentence Using Word-Net”,  International Journal 
of Intelligent Systems and Applications in Engineering, vol. 11, no. 5s, 
pp. 458–467, 2023. 

[6] X. Sun, Y. Meng, X. Ao, F. Wu, T. Zhang, J. Li, and C. Fan, “Sentence 
Similarity Based on Contexts”, Transactions of the Association for 
Computational Linguistics, vol. 10, pp. 573–588, 2022, doi: 
10.1162/tacl_a_00477. 

[7] S. Rani, A. Kumar, and N. Kumar, “Eliminating Data Duplication in 
CQA Platforms Using Deep Neural Model”, Hindawi Computational 
Intelligence and Neuroscience, vol. 2022, 2022, 
doi:10.1155/2022/2067449.  

[8] H. E. Salman, Z. Alshara, A. D. Seriai, “Automatic Identification of 
Similar Pull-Requests in GitHub’s Repositories Using Machine 
Learning”, Information, vol. 13, no. 2, 2022, doi: 
10.3390/info13020073. 

[9] V. K. R. Anishaa, P. Sathvika, S. Rawat, “Identifying Similar Question 
Pairs Using Machine Learning Techniques”, Indian Journal of Science 
and Technology, vol. 14, no. 20, pp. 1635-1641, 2021, 
doi:10.17485/IJST/v14i20.312. 

[10] Z. Imtiaz, M. Umer, M. Ahmad, S. Ullah, G. S. Choi and A. Mehmood, 
"Duplicate Questions Pair Detection Using Siamese MaLSTM," IEEE 
Access, vol. 8, pp. 21932-21942, 2020, doi: 
10.1109/ACCESS.2020.2969041. 

[11] D. Basavesha., and Y. S. Nijagunarya, Detecting Duplicate Questions in 
Community Based Websites Using Machine Learning, Proceedings of 
the International Conference on Innovative Computing & 
Communication (ICICC) 2021, April 2021, doi:10.2139/ssrn.3835083. 

[12] L. Wang, L. Zhang, and J. Jiang, “Duplicate Question Detection With 
Deep Learning in Stack Overflow”, IEEE Access, vol. 8, pp. 25964- 
25975, 2020, doi: 10.1109/ACCESS.2020.2968391. 

[13] A. W. Qurashi, V. Holmes and A. P. Johnson, "Document Processing: 
Methods for Semantic Text Similarity Analysis," International 
Conference on Innovations in Intelligent Systems and Applications 
(INISTA), pp. 1-6, 2020, doi: 10.1109/INISTA49547.2020.9194665. 

[14] Quora Question Pairs: https://www.kaggle.com/c/quora-question-
pairs/data 

[15] M. J. Wu, T. Y. Fu, Y. C. Chang and C. W. Lee, "A Study on Natural 
Language Processing Classified News," 2020 Indo – Taiwan 2nd 
International Conference on Computing, Analytics and Networks (Indo-
Taiwan ICAN), Rajpura, India, 2020, pp. 244-247, doi: 10.1109/Indo-
TaiwanICAN48429.2020.9181355. 

[16] N. Ansari, and R, Sharma, “Identifying Semantically Duplicate 
Questions Using Data Science Approach: A Quora Case Study”, ACM 
Conference, 2020, doi: 10.48550/arXiv.2004.11694. 

[17] Y. Du and H. Huo, "News Text Summarization Based on Multi-Feature 
and Fuzzy Logic," in IEEE Access, vol. 8, pp. 140261-140272, 2020, 
doi: 10.1109/ACCESS.2020.3007763. 

[18] T. Turki, and S. S. Roy, “Novel Hate Speech Detection Using Word 
Cloud Visualization and Ensemble Learning Coupled with Count 
Vectorizer”, Applied Sciences, vol. 12, no. 13, 2022, doi: 
10.3390/app12136611. 

[19] R. Goyal, "Evaluation of rule-based, CountVectorizer, and Word2Vec 
machine learning models for tweet analysis to improve disaster relief," 
2021 IEEE Global Humanitarian Technology Conference (GHTC), 
Seattle, WA, USA, pp. 16-19, 2021, doi: 
10.1109/GHTC53159.2021.9612486. 

[20] F. Lan, “Research on Text Similarity Measurement Hybrid Algorithm 
with Term Semantic Information and TF-IDF Method”, Advanced 
Pattern Recognition Systems for Multimedia Data, 2022, doi: 
10.1155/2022/7923262. 

[21] J. Ni, Y. Cai, G. Tang, Y. Xie, “Collaborative Filtering 
Recommendation Algorithm Based on TF-IDF and User 
Characteristics”. Applied Sciences, vol. 11, no. 20, 2021, 
doi:10.3390/app11209554. 

[22] H. Vranken H, H. Alizadeh, “Detection of DGA-Generated Domain 
Names with TF-IDF”, Electronics, vol. 11, no. 3, 2022, 
doi:10.3390/electronics11030414. 

[23] P. T. Hung, K. Yamanishi, “Word2vec Skip-Gram Dimensionality 
Selection via Sequential Normalized Maximum Likelihood”, Entropy, 
vol. 23, no. 8, 2021, doi: 10.3390/e23080997. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

829 | P a g e  

www.ijacsa.thesai.org 

[24] X. Yang, K. Yang, T. Cui, M. Chen, L. He, “A Study of Text 
Vectorization Method Combining Topic Model and Transfer Learning”, 
Processes, vol. 10, no. 2, 2022, doi: 10.3390/pr10020350. 

[25] X. Xue, H. Wang, J. Zhang,Y. Huang, M. Li,and H. Zhu, “Matching 
Transportation Ontologies with Word2Vec and Alignment Extraction 
Algorithm”, Journal of Advanced Transportation, 2021, doi: 
10.1155/2021/4439861. 

[26] Q. Du, N. Li, W. Liu, D. Sun,S. Yang,and F. Yue, “A Topic Recognition 
Method of News Text Based on Word Embedding Enhancement”, 
Computational Intelligence and Neuroscience, 2022, doi: 
10.1155/2022/4582480. 

[27] R. Esmeli, M. Bader-El-Den and H. Abdullahi, "Using Word2Vec 
Recommendation for Improved Purchase Prediction," 2020 International 
Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020, pp. 
1-8, doi: 10.1109/IJCNN48605.2020.9206871. 

[28] T. Yao, Z. Zhai and B. Gao, "Text Classification Model Based on 
fastText," 2020 IEEE International Conference on Artificial Intelligence 
and Information Systems (ICAIIS), Dalian, China, 2020, pp. 154-157, 
doi: 10.1109/ICAIIS49377.2020.9194939. 

[29] Fasttext official site: <https://fasttext.cc/docs/en/support.html> 

[30] D. Jeon, J. Lee, J. M. Ahn, C. Lee, “Measuring the novelty of scientific 
publications: A fastText and local outlier factor approach”, Journal of 
Informetrics, vol. 17, no. 4, 2023, doi: 10.1016/j.joi.2023.101450. 

[31] E. J. Ciaccio, “Use of artificial intelligence in scientific paper writing”, 
Informatics in Medicine Unlocked, vol. 41, 2023, doi: 
10.1016/j.imu.2023.101253. 

[32] OpenAI Documentation: https://platform.openai.com/docs/introduction 

[33] K. I. Roumeliotis, N. D. Tselikas, “ChatGPT and Open-AI Models: A 
Preliminary Review”, Future Internet, vol. 15, no. 6, 2023, 
doi:10.3390/fi15060192.  

[34] I. L. Ansorena, “On the benchmarking of port performance. A cosine 
similarity approach”, International Journal of Process Management and 
Benchmarking, vol.11, no.1, pp.101 – 114, 2021, doi: 
10.1504/IJPMB.2021.112258. 

[35] R.S. Ramya, Ganesh Singh, S. N. Sejal, K.R. Venugopal, S.S. Iyengar, 
L.M. Patnaik, “R2DCLT: retrieving relevant documents using cosine 
similarity and LDA in text mining”, International Journal of Information 
and Communication Technology, vol.19, no.4, pp.391 – 422, 2021, doi: 
10.1504/IJICT.2021.118576. 

[36] M. Schonlau, and R. Y. Zou, “The random forest algorithm for statistical 
learning”, The Stata Journal, vol. 20, no. 1, pp. 3-29, 2020, doi: 
10.1177/1536867X20909688. 

[37] C. Wang, S. Xu, J. Yang, “Adaboost Algorithm in Artificial Intelligence 
for Optimizing the IRI Prediction Accuracy of Asphalt Concrete 
Pavement”, Sensors, vol. 21, no. 17, 2021, doi: 10.3390/s21175682. 

[38] G. Sembina, "Building a Scoring Model Using the Adaboost Ensemble 
Model," 2022 International Conference on Smart Information Systems 
and Technologies (SIST), Nur-Sultan, Kazakhstan, pp. 1-6, 2022, doi: 
10.1109/SIST54437.2022.9945713. 

[39] D. Sudharson, S. Ashfia Fathima, P. S. Kailas, K. S. Thrisha Vaishnavi, 
S. Darshana and A. Bhuvaneshwaran, "Performance Evaluation of 

Improved Adaboost Framework in Randomized Phases Through 
Stumps," 2021 International Conference on Advancements in Electrical, 
Electronics, Communication, Computing and Automation (ICAECA), 
Coimbatore, India,  pp. 1-6, 2021, doi: 
10.1109/ICAECA52838.2021.9675739. 

[40] D. M. Alghazzawi, A. G. A. Alquraishee,  S. K. Badri, S. H. Hasan,  
“ERF-XGB: Ensemble Random Forest-Based XG Boost for Accurate 
Prediction and Classification of E-Commerce Product Review”,  
Sustainability, vol. 15, no. 9, 2023, doi: 10.3390/su15097076. 

[41] D. A. -L. Mariadass, E. G. Moung, M. M. Sufian and A. Farzamnia, 
"Extreme Gradient Boosting (XGBoost) Regressor and Shapley 
Additive Explanation for Crop Yield Prediction in Agriculture," 2022 
12th International Conference on Computer and Knowledge Engineering 
(ICCKE), Mashhad, Iran, Islamic Republic of, pp. 219-224, 2022, doi: 
10.1109/ICCKE57176.2022.9960069. 

[42] T. R. Mahesh,V. Vinoth Kumar, V. Muthukumaran, H. K. Shashikala, 
B. Swapna, and Suresh Guluwadi, “Performance Analysis of XGBoost 
Ensemble Methods for Survivability with the Classification of Breast 
Cancer”, Hindawi, Journal of Sensors, vol. 2022, , 2022, doi: 
10.1155/2022/4649510.  

[43] Z. Wang, S. Kim, I. Joe, “An Improved LSTM-Based Failure 
Classification Model for Financial Companies Using Natural Language 
Processing”, Applied Sciences, vol. 13, no. 13, doi: 
10.3390/app13137884. 

[44] B. Nath Saha and A. Senapati, "Long Short Term Memory (LSTM) 
based Deep Learning for Sentiment Analysis of English and Spanish 
Data," 2020 International Conference on Computational Performance 
Evaluation (ComPE), Shillong, India, pp. 442-446, 2020, doi: 
10.1109/ComPE49325.2020.9200054. 

[45] N. B. Korade, and M. Zuber, “Stock Price Forecasting using 
Convolutional Neural Networks and Optimization Techniques”, vol. 13, 
no. 11, pp. 378-385, 2022, doi: 10.14569/IJACSA.2022.0131142. 

[46] N. B. Korade, and M. Zuber, “Boost Stock Forecasting Accuracy Using 
The Modified Firefly Algorithm And Multichannel Convolutional 
Neural Network”, Journal of Theoretical and Applied Information 
Technology, vol. 101, no. 7, pp. 2668- 2677, 2023. 

[47] N. B. Korade, and M. Zuber, “Stock Forecasting Using Multichannel 
CNN and Firefly Algorithm”, Proceedings of the 2nd International 
Conference on Cognitive and Intelligent Computing, pp. 447-458, 2023, 
doi: 10.1007/978-981-99-2742-5_46 

[48] A. Gasparetto, M. Marcuzzo, A. Zangari, A. Albarelli, “A Survey on 
Text Classification Algorithms: From Text to Predictions”,  Information, 
vol. 13, no. 2, 2022,. doi: 10.3390/info13020083. 

[49] Y. Liu, and S. Yang, “Application of Decision Tree-Based Classification 
Algorithm on Content Marketing”, Journal of Mathematics, 2022, doi: 
10.1155/2022/6469054. 

[50] Y. I. Alzoubi, A. E. Topcu, A. E. Erkaya, “Machine Learning-Based 
Text Classification Comparison: Turkish Language Context”,  Applied 
Sciences,  vol. 13, no. 16, 2023, doi: 10.3390/app13169428. 

 

 


