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Abstract—In the realm of medical image analysis, accurate 

segmentation of cardiac structures is essential for accurate 

diagnosis and therapy planning. Using the efficient Attention 

Swin U-Net architecture, this study provides 

DEEPCARDIONET, a novel computer vision approach for 

effectively segmenting the left ventricular epicardium and 

endocardium. The paper presents DEEPCARDIONET, a 

cutting-edge computer vision method designed to efficiently 

separate the left ventricular epicardium and endocardium in 

medical pictures.  The main innovation of DEEPCARDIONET is 

that it makes use of the Attention Swin U-Net architecture, a 

state-of-the-art framework that is well-known for its capacity to 

collect contextual information and complicated attributes. 

Specially designed for the segmentation task, the Attention Swin 

U-Net guarantees superior performance in identifying the 

relevant left ventricular characteristics. The model's ability to 

identify positive instances with high precision and a low false 

positive rate is demonstrated by its good sensitivity, specificity, 

and accuracy. The Dice Similarity Coefficient (DSC) illustrates 

the improved performance of the proposed method in addition to 

accuracy, showing how effectively it captures spatial overlaps 

between predicted and ground truth segmentations. The model's 

generalizability and performance in a variety of medical imaging 

contexts are demonstrated by its application and evaluation 

across many datasets. DEEPCARDIONET is an intriguing 

method for enhancing cardiac picture segmentation, with 

potential applications in clinical diagnosis and treatment 

planning. The proposed method achieves an amazing accuracy of 

99.21% by using a deep neural network architecture, which 

significantly beats existing models like TransUNet, MedT, and 

FAT-Net. The implementation, which uses Python, demonstrates 

how versatile and useful the language is for the scientific 

computing community. 

Keywords—DeepCardioNet; attention swin U-Net; ventricular 

epicardium; endocardium; computer vision approach 

I. INTRODUCTION 

Cardiovascular conditions remain a leading cause of 
morbidity and mortality worldwide, challenging advanced 
medical imaging ways for precise opinion and treatment [1]. 
Among these, the segmentation of cardiac structures, similar 
as the left ventricular epicardium and endocardium, plays 
a pivotal part in understanding cardiac function and pathology 
[2]. Accurate segmentation is challenging due to the complex 
anatomical structures, variations in cardiac morphology, and 
the need for real- time processing in clinical settings [3]. In 
response to these challenges, the exploration community has 
witnessed a swell in the development of computer vision 
approaches for medical image segmentation [4]. Among the 
notable benefactions in this sphere, the deepcardionet 
introduces a new computer vision approach designed 
specifically for the effective segmentation of the LV 
epicardium and endocardium [5]. Using advanced deep 
learning ways, this model aims to overcome the limitations of 
traditional segmentation styles, offering bettered delicacy and 
computational effectiveness [6]. 

The foundation of deepcardionet lies in its application of a 
customized neural network armature inspired by deep learning 
principles [7]. The integration of a sophisticated encoder- 
decoder structure, conceivably told by proven infrastructures 
like U-Net or other innovative designs, empowers the model 
to capture intricate features and spatial dependences within 
cardiac images [8]. The objectification of skip connections, 
batch normalization, and task-specific activation functions 
further refines the segmentation performance, icing the 
model's rigidity to the complications of cardiac imaging [9]. 
This paper presents a comprehensive disquisition of the 
proposed deepcardionet methodology, expounding its 
armature, training strategies, and performance criteria [10]. 
The effectiveness of the model is underlined by its capability 
to delineate the left ventricular epicardium and endocardium 
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with high perfection, therefore furnishing a precious tool for 
clinicians in their individual trials. The exploration not only 
contributes to the growing body of knowledge in computer- 
backed medical image analysis but also holds pledge for 
transformative operations in cardiovascular healthcare. 

In a period marked by an unknown affluence of visual 
data, the field of computer vision stands at the van of 
technological invention, empowering machines with the 
capability to interpret and make opinions grounded on visual 
information [11]. This transformative capability has set up 
operations across different disciplines, from independent 
vehicles and robotics to healthcare and entertainment. At the 
heart of this paradigm shift is the continual development of 
new computer vision styles that strive to enhance delicacy, 
effectiveness, and severity in the interpretation of visual 
content [12]. Over the once decades, computer vision has 
evolved from early image processing ways to sophisticated 
deep learning infrastructures. From traditional styles 
addressing image bracket and object discovery to 
contemporary approaches probing into semantic segmentation 
and scene understanding, the diapason of computer vision 
operations continues to expand [13]. 

Recent times have witnessed substantial advancements in 
medical image analysis, driven by the community between 
computer vision and deep learning ways [14]. Despite these 
strides, there exists a demand for technical results 
acclimatized to the complications of cardiac image 
segmentation [15]. The provocation behind the exploration 
lies in the recognition of the clinical significance of precise 
left ventricular segmentation and the hunt for a system that not 
only surpasses being approaches but also aligns with the need 
for nippy and effective analyses. Segmenting the left 
ventricular epicardium and endocardium poses challenges 
embedded in the complexity of cardiac structures and the 
variability observed across patient populations [16] [17]. The 
dynamic nature of the heart, coupled with the essential noise 
and vestiges present in medical images, necessitates a 
sophisticated approach able of robustly handling 
different scripts [18]. 

In recent decades, computer vision has surfaced as a 
transformative field, catalyzing advancements across various 
disciplines by enabling machines to interpret and understand 
visual information. With the proliferation of image and 
videotape data in moment's digital age, the development of 
robust computer vision approaches has come consummate. 
This exploration seeks to contribute to this dynamic 
geography by proposing an innovative computer vision 
approach acclimatized to address a specific problem, 
promising both enhanced delicacy and effectiveness. The 
arrival of vast datasets and the elaboration of deep learning 
ways have fueled unknown progress in computer vision 
operations. From image bracket to object discovery and 
segmentation, computer vision has revolutionized diligence 
ranging from healthcare to independent vehicles. Still, 
challenges persist, particularly in scripts where fine- 
granulated details, complex structures, or real- time processing 
are essential. It's within this environment that the proposed 
computer vision approach emerges, aiming to attack nuanced 
challenges in a targeted sphere. 

The key contributions of the article are, 

 The introduction of DEEPCARDIONET, cutting-edge 
deep neural network architecture created especially for 
the effective segmentation of the endocardium and left 
ventricle in medical images. 

 Using the capabilities of the Swin Transformer and 
attention mechanisms in the state-of-the-art Attention 
Swin U-Net architecture to gather detailed 
characteristics and contextual information necessary 
for precise segmentation. 

 Proving the suggested method's durability and 
applicability across a number of trials, confirming its 
accuracy and consistency in correctly segmenting left 
ventricular structures in a range of medical imaging 
circumstances. 

 Advancing the area of medical image analysis by 
developing a precise and effective segmentation 
technique that addresses the unique difficulties in 
defining the left ventricular epicardium and 
endocardium 

The remainder of the article is structured as follows: 
Section II, III and IV include the related works, problem 
statement and methodology of the article. Section V includes 
results and discussion. The article is concluded in Section VI. 

II. RELATED WORKS 

A crucial first step in computing clinical markers such wall 
consistency, ventricle volume, and expulsion bit is segmenting 
cardiac medical pictures [19]. The paper presents the Ls Unet 
structure, which effectively segments cardiac cine MR images 
by combining multi-channel, fully CNN, and circular shape 
position-set styles. The division job in this framework is 
trained using the multi-channel DL method in order to identify 
the LV endocardial and epicardial outlines. In order to ensure 
the delicate and reliable division, segmented outlines extracted 
from the multi-channel DL approach are then integrated into a 
positional data set that is specifically dedicated to identifying 
annular forms. The automated method that was suggested was 
assessed to be 95. In compared with the benchmark norm, the 
combination of multi-channel DL and circular shape position-
set segmented method obtained great delicateness, with total 
baseline values for LV endocardium and epicardium 
delineation reaching 92.15 and 95.42, respectively. It offers a 
novel approach for fully automated segmentation of the LV 
endocardium and epicardium from several MRI datasets. In 
comparison with additional current methods and the source of 
information, the suggested process is reliable and accurate.   

Because it is crucial in determining patient assessment as 
well as therapy paths, automatic division of the cardiac left 
ventricle with scars continues to be a challenging and 
therapeutically important endeavor [20]. An independent 
verification methodology was developed employing OOD 
both inside and outside validation cohorts, as well as intra-
observation and inter-observer variation in ground truth, to 
ensure the conceptualization of the frames. To obtain the best 
segmentation results, the frame combines DL with 
conventional computer vision techniques. Although the 
DL technique makes use of DL methods and infrastructure, 
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the classic method makes use of multi-atlas methods, active 
outlines, and k-means. The research established that, with the 
exception of situations in which breath displacement error 
occurred, the conventional image recognition technique 
produced more accurate findings than DL. In both inside and 
outside OOD groups, respectively, the ideal outcome from the 
frame obtained robust and generalized outcomes values of 
82.8 ±6.4 and 72.1 ±4.6. The created framework provides a 
powerful outcome for LGE-MRI-based automated 
segmentation of the scarred left ventricle. In contrast to 
modern techniques, it produces impartial findings across 
various medical facilities and retailers without the requirement 
for calibration or training in sanitized cohorts. Specialists can 
handle the challenge of fully automated separation of the 
LV with marks based on a single-modality cardiovascular 
examination with the help of this framework. 

According to clinical opinions about cardiovascular 
problems, croakers should undergo LV separation in cardiac 
MRI [21]. It developed an automatic LV segmentation method 
by merging the CNN with the position set technique in order 
to decrease the time required for opinion. Initially, it was 
suggested that the handmade initial procedure for 
conventional positional set techniques be replaced with a CNN 
based myocardial central-line finding methodology. Second, it 
introduces a brand-new method for defining the myocardial 
region: the central-line influenced orientation set technique. 
Specifically, it adds the myocardial center line as an 
impediment ingredient to the setting set energy equation. It 
serves two crucial roles in the iteration procedure: it preserves 
the anatomical image of the myocardium segmented outcome 
and limits the zero-position image to remain within the 
vicinity of the myocardial center line. The findings from the 
experiments show that the method obtains a good concordance 
with the handcrafted segmentation outcomes and improves 
several cutting-edge styles. 

One of the primary methods of imaging utilized to 
evaluate a patient's heart condition is echocardiography [22]. 
Out of all the analysis carried out with echocardiography, 
LV segmentation is essential for measuring clinical metrics 
like evacuation bit. Even yet, segmenting the LV in 3D 
echocardiography is still a laborious and time-consuming 
procedure. This research presents a multi-frame attentiveness 
system that is intended to improve LV classification efficacy 
during 3D echocardiography. Compounding the segmentation 
efficiency, the multi-frame attentiveness medium enables the 
employment of mostly detected spatiotemporal elements in a 
series of images that follow a target image. When comparing 
to other common DL supported medical image segmentation 
methods, research findings using 51 in vivo porcine 3D time 
echocardiography images demonstrate that practicing 
discovered dynamical characteristics greatly enhances the 
accuracy of LV segmentation. 

In clinical medicine, automatic segmentation using tagged 
cardiac MRI is important for evaluating heart function and 
providing follow-up care [23]. Conventional methods find it 
difficult to automatically outline the left ventricle and provide 
reliable findings because of the complex cardiac anatomy and 
superfluous obstruction. As a result, they presented the 
DL and class approach together with the automated LV 

segmentation technique. These are the key technologies' 
descriptions.  Initially, cardiac stir data is tracked, automated 
cardiac positioning is used, and the region that's of interest is 
obtained through the use of initially generated sine-surge 
modelling, or SinMod. Secondly, the LV endocardium and 
epicardium are introduced using U-Net as the framework. 
Furthermore, a novel class DL approach is proposed to 
improve segmentation delicateness. Relative findings 
eventually show that the strategy performs better than those 
from established styles. 

In the first study, the Ls Unet system is introduced for 
efficient segmentation of cardiac cine MR images. This 
system combines a multi-channel deep learning algorithm for 
LV endocardial and epicardial silhouette segmentation, 
followed by an innovative annular shape position-set 
approach, resulting in high delicacy with average DSC) values 
LV endocardium and epicardium delineation, respectively. 
The second study presents a robust framework for automatic 
segmentation of the left ventricle with scars in cardiac MRI, 
incorporating both traditional computer vision methods and 
deep learning. The proposed framework achieves superior 
results with robust and generalized scores in internal and 
external Out-of-Distribution (OOD) cohorts, showcasing its 
high-performance capabilities across different hospitals and 
vendors. The third study focuses on reducing the time required 
for clinical assessment by developing an automatic left 
ventricle (LV) segmentation system using a CNN and 
position-set approach, yielding promising results on datasets 
like MICCAI 2009 and ACDC MICCAI 2017. Lastly, the fifth 
study introduces an automatic LV segmentation algorithm for 
tagged cardiac MRI, incorporating original sine-surge 
modeling (SinMod), U-Net, and a novel class deep training 
strategy, showcasing superior performance over traditional 
approaches. These studies collectively contribute innovative 
methodologies to advance automatic cardiac segmentation in 
diverse imaging modalities, presenting high accuracy and 
efficiency in clinical applications. 

III. PROBLEM STATEMENT 

Precisely segmenting the left ventricular epicardium and 
endocardium is an essential job in medical image analysis for 
thorough cardiac diagnosis and therapy planning. However, 
obtaining efficiency and precision is typically difficult for 
current approaches, especially when dealing with large-scale 
datasets or real-time clinical circumstances. 
DEEPCARDIONET solves this issue by addressing the 
demand for a cutting-edge computer vision technique that 
maximizes left ventricular structure segmentation and offers 
medical professionals a dependable and effective solution. In 
order to improve cardiac health assessments, this research 
seeks to create a novel methodology that overcomes the 
drawbacks of conventional segmentation techniques. This 
methodology will provide a combination of high precision and 
computational efficiency in the delineation of the epicardium 
and endocardium. 

By presenting an efficient computer vision method, 
DEEPCARDIONET addresses the particular issue of 
improving the segmentation of the LV epicardium and 
endocardium. The difficulty is in striking a balance between 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

852 | P a g e  

www.ijacsa.thesai.org 

the computing needs of complex medical image processing 
and the precise definition of cardiac components that are 
essential for clinical decision-making. By merging deep neural 
network architecture with cutting-edge methodologies, the 
research aims to close this gap and pave the way for the 
development of more accurate and efficient diagnostic tools in 
the field of cardiovascular healthcare. This might 
revolutionize the field of cardiac image segmentation [24]. 
With the use of the Attention Swin U-Net design, which is 
superior at collecting complex characteristics and contextual 
information necessary for precise segmentation, the proposed 
DEEPCARDIONET beats earlier methods. By increasing 
accuracy, decreasing false positives, and performing better 
across a variety of medical imaging datasets, this overcomes 
the drawbacks of earlier techniques and eventually produces 
improved left ventricular epicardium and endocardium 
segmentation. 

IV. PROPOSED COMPUTER VISION APPROACH FOR LEFT 

VENTRICULAR EPICARDIUM AND ENDOCARDIUM 

SEGMENTATION 

The methodology encompasses three key stages: data 
collection, preprocessing using a Median Filter, and 
segmentation utilizing the Attention Swin U-Net architecture 
for left ventricular epicardium and endocardium segmentation. 
Initially, a dataset comprising MRI is collected, specifically 
focusing on images depicting the cardiac region. 
Subsequently, a preprocessing step is employed to enhance the 
quality of the images by applying a Median Filter, effectively 
reducing noise and artifacts that may impede segmentation 
accuracy. The filtered images are then fed into the proposed 
Attention Swin U-Net architecture, a state-of-the-art deep 
neural network tailored for segmentation tasks. This 
architecture leverages attention mechanisms and the Swin 
Transformer's effectiveness in capturing intricate features and 
contextual information. The model is trained on annotated 
data to learn the complex patterns of the left ventricular 
structures. The combined methodology of meticulous data 
collection, noise reduction through preprocessing, and the 
application of a sophisticated segmentation model ensures a 

comprehensive and accurate delineation of the left ventricular 
epicardium and endocardium in medical images. It is depicted 
in Fig. 1. 

A. Data Collection 

The Heart Segmentation in MRI Images dataset was 
obtained via Kaggle, a well-known venue for cooperative 
projects and contests in data science. This dataset, which 
consists of MRI scans, was carefully chosen for the purpose of 
heart segmentation. This set of images includes annotations to 
help distinguish between different cardiac structures, such the 
epicardium and endocardium of the left ventricle. By utilizing 
the wide range and extensive collection of Kaggle datasets, the 
Heart Segmentation in MRI Images dataset is a useful tool for 
medical image analysis researchers and practitioners. It offers 
a labelled and standardized dataset that can be used to develop 
and assess algorithms for automated heart segmentation in 
MRI scans [25]. 

B. Preprocessing using Median Filter 

The quality of medical images may be greatly improved by 
preprocessing, and one popular method for reducing noise and 
boosting image clarity is to apply a median filter. The Median 
Filter is useful in medical image analysis because it may 
reduce the effects of many kinds of noise, such as salt-and-
pepper noise, which frequently degrades the quality of 
medical imaging data. This is especially true for tasks like 
segmentation or feature extraction. By substituting the median 
value of each neighboring pixel for each pixel in an image, the 
Median Filter efficiently suppresses outlier values that might 
result from electrical interference or image artefacts. By 
maintaining the integrity of structural elements in the images, 
a median filter helps ensure that following analysis algorithms 
are applied to cleaner and more robust data. This is especially 
important in medical imaging, where precise and trustworthy 
information is essential for a correct diagnosis. 

The equation for the median filter is given in Eq. (1), 

𝑧̂(𝑐, 𝑑) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥,𝑦)∈𝑇𝑐𝑑{𝑓(𝑥, 𝑦)} (1) 

 
Fig. 1. Proposed methodology. 
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Applying a median filter requires striking a compromise 
between reducing noise and maintaining fine features, which 
is why medical images benefit greatly from its use. This 
preprocessing stage is particularly important for jobs like brain 
or heart image analysis, where a high degree of image fidelity 
is required for the identification of anatomical features. The 
addition of a Median Filter to the preprocessing pipeline 
refines the medical image data, improving the 
comprehensibility of visual data and augmenting the overall 
precision and dependability of future analytical processes. 

C. Utilizing Attention Swin U-Net for Left Ventricular 

Epicardium and Endocardium Segmentation 

1) Swin transformer block: An integral part of 

the architecture, the Swin Transformer has a unique 

construction that includes a shifting window MSA 

mechanism. The goal of effectively capturing long-range 

relationships has an impact on this design decision as it will 

improve the model's capacity to identify intricate patterns in 

the input data. This method introduces a window-based 

attention module, which is a key difference that sets Swin 

Transformer block apart from traditional multi-head attention. 

Layer Normalization (LN), a residual connection, and a two-

layer Multi-Layer Perceptron (MLP) with Gaussian Error 

Linear Unit (GELU) non-linearity make up each transformer 

block in the Swin structure. Effective feature extraction and 

representation learning are intended to be facilitated by the 

arrangement of components inside each sub-block. Stable 

training dynamics are facilitated by Layer Normalization, and 

the residual connection guarantees seamless information 

transfer across the network, reducing the likelihood of 

disappearing gradients. 

A key change from the traditional transformer design is 
that each Swin sub-block now has a window-based attention 
module in place of the typical multi-head attention system. 
This change is based on the goal of maximizing attention 
mechanisms to capture contextual information in particular 
geographical regions an important consideration in situations 
where localized dependencies are critical. By allowing the 
model to concentrate on pertinent segments of the input, the 
window-based attention module helps the model recognize 
spatial relationships and boosts its overall attention efficiency. 
It is formulated in Eq. (2) and Eq. (3). 

x’ = W-MSA (LN (𝑥𝑙−1)) + 𝑥𝑙−1   (2) 

x’ = MLP (LN (𝑥̃1)) + 𝑥̃𝑙−1   (3) 

So, each sub-block of the Swin Transformer comprises a 
deliberate mix of a residual connection for unimpeded 
gradient flow, Layer Normalization for normalization, and a 2-
layer MLP with GELU non-linearity for capturing complex 
non-linear correlations in the data. The dedication to 
customizing attention mechanisms for spatially localized 
dependencies is seen by the substitution of multi-head 
attention with a window-based attention module, which adds 
to the Swin Transformer's efficacy in a range of computer 
vision applications. The model's creative architecture 
guarantees that it can effectively process and extract 

significant characteristics from input data, which makes it an 
invaluable tool in the fields of deep learning and computer 
vision. 

2) Encoding path: To embed the input image into a latent 

space, using a sequence of stacked Swin Transformer blocks 

in the encoder module of the system. The ability of Swin 

Transformer blocks to transform and capture complicated 

hierarchical aspects in the supplied data is what drove this 

strategic decision. The encoder employs three consecutive 

Swin Transformer blocks to progressively decrease the input 

image's spatial dimension while simultaneously enlarging its 

representation dimension. Effective feature learning is made 

possible by the model's ability to extract hierarchical features 

from the input image through this step-by-step transformation. 

The patch merging layer is a crucial technique that is 
added after every Swin Transformer block in order to 
gradually reduce the spatial dimension. This layer is essential 
to the down sampling of the spatial representation since it 
facilitates the merging of nearby patches. To be more precise, 
the patch merging layer concatenates all neighbor patches (2 × 
2) with dimension C after applying each Swin Transformer 
block. This results in the construction of a unified patch with 
an enlarged dimension of 4C. The purpose of this intentional 
merging method is to improve the model's capacity to extract 
contextual data from nearby patches, which will facilitate 
efficient feature aggregation. 

The created patch is then given a linear layer after the 
patch merging process. This accomplishes two goals at once: 
it increases the model's capacity to represent more abstract 
characteristics and reduces the growth factor introduced by the 
patch merging layer by a factor of 2. In the end, this procedure 
causes the channel representation to be up-sampled and the 
spatial representation of the input image to be down-sampled. 
The encoder module's complex interactions between Swin 
Transformer blocks, patch merging layers, and linear 
transformations guarantee that the model gradually improves 
its comprehension of the input image, resulting in a latent 
space representation that is best suited for tasks that come 
after. 

3) Decoding path: Complying with the symmetric 

architecture of the U-Net model, the design's decoder module 

uses three Swin Transformer blocks to recreate the prediction 

mask in an iterative manner. The decoder's use of Swin 

Transformer blocks makes it possible to efficiently gather the 

complex characteristics and contextual data needed for precise 

mask reconstruction. Smooth feature extraction and 

reconstruction are made possible by the symmetrical structure, 

which guarantees a coherent and balanced information flow 

between the encoder and decoder components. 

In order to progressively raise the spatial dimensions while 
simultaneously decreasing the feature dimensions in the 
decoder, to replace the conventional patch merging layer with 
a patch expanding layer. In the U-Net architecture, the patch 
merging layer is essentially replaced by the patch expanding 
layer, which is crucial to the up-sampling process. In 
particular, the output of a bottleneck, denoted as W32 × H32 × 
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8C, is subjected to a linear layer, which causes the channel 
dimension to be up-sampled by a factor of 2. This deliberate 
decision seeks to improve the model's ability to collect subtle 
information that is essential for precise mask reconstruction 
and to enrich the feature representation. 

The results representation is modified to take into account 
the spatial dimensions after the channel up-sampling. This 
rearrangement down samples the channel features by a factor 
of 4 and the spatial dimensions by a factor of 2 (W16 × H16 × 
4C), transforming the representation from W32 × H32 × 8C to 
W32 × H32 × 16C. The model is able to recreate the 
prediction mask Y0H×W while maintaining important 
characteristics and spatial details because of this iterative 
procedure, which guarantees a progressive and controlled rise 
in spatial dimensions. Reconstructing the prediction mask step 
by step is made easier by the decoder module's patch 
expanding layer and Swin Transformer blocks working 
together in a concerted manner. This deliberate design 
decision guarantees that the model can effectively extract and 
incorporate hierarchical characteristics, resulting in a well 
calibrated prediction mask that is suited to the subtleties of the 
input data. 

4) Cross attention mechanism: According to the basic U-

Net design, the addition of a skip connection path is essential 

for enabling the decoding path to receive low-level features. 

For localization reasons, this deliberate design decision is 

crucial since it guarantees that minute information will not be 

lost in the decoding process. The efficiency of the skip 

connection path has been increased throughout time by a 

number of U-Net model extensions that have been published 

in the literature, demonstrating its importance in producing 

precise and localized forecasts. It advances this field of study 

in the work by presenting a brand-new method for improving 

the feature fusion technique in the skip connection portion. 

The main objective is to enhance localization and feature 

representation by fine-tuning the information flow between 

the encoding and decoding channels through the integration of 

a two-level attention mechanism. 

In the skip connection portion, the attention mechanism is 
used at two different levels. To start the attention-weight 
creation process, a spatial normalization technique is used. 
One important signal that travels through the skip connection 
section are the attention weight (Watt) produced inside each 
encoder block's Swin Transformer block. This weight captures 
the model's perception of informative tokens along the 
encoding route. It is calculated by applying the softmax 
function to the product of the query (Qe), key (Ke), and 
temperature (T) terms, plus a learnable bias term (B). It is 
expressed in Eq. (4). 

𝐴𝑡𝑡𝑗 (𝑄𝑒 , 𝐾𝑒, 𝑉𝑒) = (softmax (𝑄𝑒  𝐾𝑒
𝑇 / √𝑒 + C) + 𝑊𝑎𝑡𝑡) 𝑉𝑒    (4) 

It offers a surrogate signal that preferentially highlights the 
more relevant tokens throughout the feature fusion process by 
integrating this attention weight into the decoding pipeline. 
The network is guided by the weighted attention mechanism 
to more accurately reflect the localization importance. The 
method enhances the network's capacity to gather and 

prioritize pertinent data for precise localization by summing 
attention weights from the encoding path into the decoding 
path. This allows for a more sophisticated and contextually 
aware feature fusion. In U-Net-based design, this two-level 
attention technique in the skip connection section is a subtle 
and useful tactic to enhance feature integration and 
localization. 

V. RESULTS AND DISCUSSION 

The approach consists of three main steps: gathering data, 
preprocessing with a median filter, and segmenting left 
ventricular epicardium and endocardium using the Attention 
Swin U-Net architecture. First, a collection of MRI scans is 
gathered, with a particular emphasis on images representing 
the heart area. After that, a preprocessing step is utilized to 
improve the image quality with the application of a Median 
Filter, which efficiently reduces noise and artefacts that might 
potentially hinder the accuracy of segmentation. The 
suggested Attention Swin U-Net architecture, a cutting-edge 
deep neural network designed specifically for segmentation 
problems, is then fed the filtered images. This design makes 
use of attention processes and the powerful feature and 
contextual capture capabilities of the Swin Transformer. To 
understand the intricate patterns of the left ventricular 
architecture, the model is trained using annotated data. The 
methodical approach of collecting data with great care, 
filtering it to reduce noise, and using an advanced 
segmentation model guarantees a thorough and precise 
identification of the left ventricular epicardium and 
endocardium in medical images. 

A. Dice Similarity Coefficient (DSC) 

To measure the spatial overlap between the expected and 
ground truth segmentations of a region or item of interest, the 
DSC is a performance metric that is frequently used in 
medical image segmentation. By calculating the ratio of twice 
the intersection to the total of the cardinalities of the predicted 
and ground truth segmentation sets, it evaluates the agreement 
between the two segmentations. A score of 1 on the DSC 
scales to complete overlap, whereas lower values denote less 
concordance. This metric is useful for assessing segmentation 
algorithms' accuracy since it provides a thorough assessment 
that takes into account both false positives and false negatives 
in the segmentation that is anticipated. Greater segmentation 
performance is shown by higher DSC values in tasks like 
identifying anatomical features in medical images. DSC is 
given in Eq. (5). 

DSC = 
2×|𝐴 ∩B|

|𝐴|+|𝐵|
                    (5) 

The DSC for the suggested approach is shown in Fig. 2 
throughout the course of several trials. Every trial has a unique 
DSC value; Trial 1's DSC is 96.78%, Trial 2's is 97.11%, Trial 
3's is 96.99%, and Trial 4's DSC is the highest, at 97.67%. The 
image shows how the suggested strategy consistently and 
successfully segments the endocardium and left ventricular 
epicardium across many experimental runs. The suggested 
approach's resilience is demonstrated by the incremental 
improvement in DSC values over trials, indicating a high level 
of accuracy and reliability in identifying cardiac structures in 
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medical images. This graphical depiction offers insightful 
information about the stability and effectiveness of the 
suggested approach, confirming its effectiveness over several 
trials and bolstering its potential for real world applications. 

 
Fig. 2. Dice similarity coefficients in various trials. 

B. Accuracy 

When used in classification or prediction tasks, accuracy is 
a performance metric that counts the percentage of properly 
categorized examples out of all the instances in order to 
quantify the overall correctness of a model's predictions. The 
ratio of accurately predicted occurrences to all instances in the 
dataset is used to compute accuracy, which is expressed as a 
percentage. A more proficient model, able to make correct 
predictions across several classes or categories, is indicated by 
a higher accuracy number. Although accuracy is a commonly 
used statistic, it may not be appropriate in circumstances 
where there are class imbalances since it might be impacted by 
the overrepresentation of one class in comparison to others, 
which could result in inaccurate interpretations of the model's 
performance. Accuracy is given in Eq. (6), 

NegPosNegPos

NegPos

FFTT

TT
Accuracy




      (6) 

 
Fig. 3. Accuracy in various trials. 

In Fig. 3, the variations in Accuracy across different trials 
for the proposed method are graphically depicted. Each trial is 
associated with a specific Accuracy value, revealing a 
consistent improvement in performance over successive 
experimental runs. Trial 1 exhibits an Accuracy of 97.99%, 
followed by a notable increase to 98.76% in Trial 2. Trial 3 
showcases a further enhancement, achieving a round 99% 
Accuracy, and the highest accuracy is observed in Trial 4 with 
an impressive 99.21%. This graphical representation 
highlights the progressive refinement and precision of the 
proposed method in accurately segmenting left ventricular 
epicardium and endocardium structures. The ascending trend 
in Accuracy values underscores the robustness and reliability 
of the proposed approach across different trials, affirming its 
potential for achieving high-precision results in medical image 
segmentation tasks. 

C. Sensitivity 

Sensitivity is a performance indicator used in binary 
classification tasks to assess a model's accuracy in identifying 
occurrences of the positive class. It is sometimes referred to as 
true positive rate or recall. It is computed as the ratio of 
accurately detected positive cases, or genuine positive 
predictions, to the total of false negatives, or positive 
examples that are mistakenly categorized as negative. 
Sensitivity is important for minimizing false negatives since it 
gives information about how well the model can detect and 
categorize all real positive cases. It is given in Eq. (7). 

NegPos

Pos

FT

T
R


   (7) 

 
Fig. 4. Sensitivity in various trials. 

Fig. 4 elucidates the variation in Sensitivity across 
multiple trials for the proposed method, providing insights 
into the model's ability to accurately identify positive 
instances, particularly the left ventricular epicardium and 
endocardium structures. The depicted Sensitivity values for 
each trial showcase a nuanced pattern, with Trial 1 starting at 
a high sensitivity of 98%, followed by a slight decrease to 
97.99% in Trial 2. Trial 3 indicates a temporary decline to 
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96.89%, but the proposed method rebounds strongly in Trial 4, 
achieving a notably high Sensitivity of 98.98%. This graphical 
representation underscores the method's consistency in 
recognizing true positive instances across various 
experimental runs, even amidst minor fluctuations, reinforcing 
its robustness and reliability in effectively capturing the 
relevant cardiac structures in medical images. 

D. Specificity 

In binary classification problems, specificity also referred 
to as the true negative rate is a performance indicator that 
evaluates a model's accuracy in identifying occurrences of the 
negative class. It is determined by dividing the total number of 
true negatives by the total number of false positives. 
Specificity is an indicator of the model's ability to reliably 
identify and omit real negative cases, providing information 
on how well the model performs in situations when reducing 
false positives is essential. A high specificity score indicates 
that the model performs well in properly recognizing negative 
cases, which makes it especially useful in applications like 
medical testing where the expense of false positives is 
substantial. It is expressed in Eq. (8). 

PosNeg

Neg

FT

T
ySpecificit


   (8) 

 
Fig. 5. Specificity in various trials. 

In Fig. 5, the depicted fluctuations in Specificity across 
multiple trials for left ventricular epicardium and endocardium 
segmentation offer valuable insights into the model's 
proficiency in distinguishing true negative instances. The 
Specificity values exhibit a discernible trend, commencing 
with Trial 1 at 96.89%, followed by a notable increase to 
97.89% in Trial 2. Trial 3 showcases a further enhancement to 
98.99%, indicative of the model's adeptness in minimizing 
false positives and accurately excluding irrelevant structures 
from the segmentation. Although Trial 4 experiences a 
marginal decrease to 98.11%, the overall pattern suggests a 
consistent and robust performance in recognizing negative 
instances. This graphical representation underscores the 
proposed method's ability to maintain a high level of 
specificity, crucial in medical image segmentation where 
minimizing false positives is imperative for precise 

delineation of cardiac structures, further affirming its efficacy 
for clinical applications. 

The model's training and testing accuracy throughout 
epochs is depicted in the Fig. 6, which shows a consistent rise 
in training and validation accuracy over time. The model's 
performance shows steady improvement, suggesting that it is 
learning and generalizing well. 

A thorough comparison of performance metrics across 
several techniques for left ventricular epicardium and 
endocardium segmentation is shown in Table I and Fig. 7. 
Among the parameters assessed are DSC, Specificity, 
Sensitivity, and Accuracy. With DSC values ranging from 
80.37% to 85%, accuracy from 90.90% to 93.26%, sensitivity 
from 80.64% to 83.92%, and specificity from 95.46% to 
97.25%, TransUNet, MedT, and FAT-Net show varied 
degrees of performance. Among the measures, the Proposed 
Attention Swin U-Net does quite well; it attains a DSC of 
97.67%, Accuracy of 99.21%, Sensitivity of 98.98%, and 
Specificity of 98.11%. 

 
Fig. 6. Training and testing accuracy graph. 

TABLE I. COMPARISON OF PERFORMANCE METRICS 

Methods DSC (%) Accuracy (%) Sensitivity (%) Specificity (%) 

TransUNet 

[26] 
81.23 92.07 82.63 95.77 

MedT [27] 80.37 90.90 80.64 95.46 

FAT-Net 

[28] 
85 93.26 83.92 97.25 

Proposed 

Attention 

Swin U-Net 

97.67 99.21 98.98 98.11 

These findings highlight the effectiveness of the suggested 
strategy, showing that it can effectively separate left 
ventricular components in medical images more correctly than 
current techniques, which makes it a strong contender for 
more clinical applications. 

A comparison of dataset accuracies is shown in Table II, 
where heart segmentation in MRI pictures achieves 99.21% 
accuracy and CT images achieves 97.3% accuracy in Fig. 8. 
The outcomes demonstrate how well the suggested approach 
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performs when it comes to separating cardiac structures from 
MRI data as opposed to CT scans. 

 
Fig. 7. Performance comparison of existing and proposed methods. 

TABLE II. COMPARISON OF DATASETS 

Datasets Accuracy (%) 

CT Images [29] 97.3 

Heart Segmentation in MRI 

Images 
99.21 

 
Fig. 8. Performance comparison of different datasets. 

E. Discussion 

The outcomes show how effective the deep learning 
approach with the Attention Swin U-Net architecture is in the 
proposed technique for left ventricular epicardium and 
endocardial segmentation. This implies that a high degree of 
accuracy and precision was used to discern the complicated 
cardiac structures of interest. Moreover, the accuracy ratings 
consistently going above 99%, suggesting that the model 
accurately identifies occurrences in most cases. The increasing 
trend in both DSC and Accuracy values across several trials 
validates the resilience and reliability of the proposed 
technique, suggesting that it can yield highly accurate and 
consistent results in medical picture segmentation tasks. 

Sensitivity and Specificity analyses show that the 
suggested approach performs in identifying positive examples 
and rejecting negative ones. TransUNet [26], MedT [27], and 
FAT-Net [28] show varied degrees of performance. Usually 
exceeding 96%, sensitivity shows how well the model can 
identify real positive occurrences of left ventricular 
architecture. Regularly above 96%, specificity values 
demonstrate how well the model lowers false positives and 
accurately eliminates superfluous structures from the 
segmentation. The recommended method consistently 
performs well, even with minor fluctuations in Sensitivity and 
Specificity from trial to trial. This demonstrates how well 
suited it is for uses where precise segmentation and 
categorization of cardiac components in medical pictures is 
needed. Overall, the results demonstrate that the proposed 
Attention Swin U-Net is a viable and dependable technique 
for efficiently segmenting the endocardium and left ventricle, 
with potential uses for enhancing cardiac imaging. Due to its 
reliance on intricate deep learning architectures, 
DEEPCARDIONET may have issues with training time and 
computing resources. Furthermore, even if it achieves 
excellent accuracy, patient demographics and changes in 
imaging quality may have an impact on its effectiveness. 

VI. CONCLUSION AND FUTURE SCOPE 

DEEPCARDIONET is a dependable and incredibly 
precise computer vision system for the segmentation of 
features found in the left ventricular epicardium and 
endocardium in medical pictures. Its remarkable accuracy of 
99.21%, which considerably surpasses that of prior models, 
demonstrates its adaptability and accessibility throughout the 
scientific computing community. Its implementation in Python 
illustrates these qualities. Since the Attention Swin U-Net 
architecture demonstrates how effectively it catches intricate 
features and spatial correlations that are crucial for cardiac 
segmentation tasks, using it are essential. 
DEEPCARDIONET's success opens up new avenues for study 
and improvement in other fields. Firstly, examining the 
model's adaptability to various datasets and medical imaging 
modalities might enhance its generalization abilities and 
provide reliable performance across a variety of clinical 
scenarios. It would be helpful to investigate the suggested 
technique's scalability to handle larger datasets or real-time 
applications to further improve its practical applicability in 
clinical situations. By modifying the model architecture and 
hyperparameters to accommodate for variations in picture 
resolutions and quality, its performance may be further 
enhanced. Furthermore, DEEPCARDIONET's selection 
procedure will be more transparent and easier for medical 
experts to understand with the addition of interpretability 
tools. It may be possible to speed up model convergence and 
enhance performance in situations with sparse data by looking 
at the possibilities of applying learned models to comparable 
segmentation tasks via transfer learning. Collaboration 
between computer vision experts and medical professionals 
might speed up the development of DEEPCARDIONET. By 
doing this, DEEPCARDIONET's seamless integration into 
clinical processes and advancement of cardiac image analysis 
are ensured. All in all, DEEPCARDIONET lays a strong 
foundation for future advancements in medical image 
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segmentation, providing a pathway toward more accurate and 
successful cardiac diagnosis and treatment planning. 
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