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Abstract—Detecting fake images is crucial because they may 

confuse and influence people into making bad judgments or 

adopting incorrect stances that might have disastrous 

consequences. In this study, we investigate not only the 

effectiveness of artificial intelligence, specifically deep learning 

and deep neural networks, for fake image detection but also the 

sustainability of these methods. The primary objective of this 

investigation was to determine the efficacy and sustainable 

application of deep learning algorithms in detecting fake images. 

We measured the amplitude of observable phenomena using 

effect sizes and random effects. Our meta-analysis of 32 relevant 

studies revealed a compelling effect size of 1.7337, indicating that 

the model's performance is robust. Despite this, some moderate 

heterogeneity was observed (Q-value = 65.5867; I2 = 52.7344%). 

While deep learning solutions such as CNNs and GANs emerged 

as leaders in detecting fake images, their efficacy and 

sustainability were contingent on the nature of the training 

images and the resources consumed during training and 

operation. The study highlighted adversarial confrontations, the 

need for perpetual model revisions due to the ever-changing 

nature of image manipulations, and data scarcity as technical 

obstacles. Additionally, the sustainable deployment of these AI 

technologies in diverse environments was considered crucial. 

Keywords—Artificial intelligence; image validation; deep 

learning; deep neural networks; fake images; image forgery; image 

manipulations 

I. INTRODUCTION 

Technological advancements in graphics design continue 
to receive unprecedented improvements with each new 
software release. Such advancements are beneficial and 
detrimental, as they can positively and negatively impact 
people. On the positive side, repaying old images and 
restoring them to their former state is now possible. Using 
software such as Photoshop, a designer can clone sections of 
an image using the clone stamp tool and replicate the pattern 
in a different area to make it appear real and authentic [1, 2]. 
Users can also add interesting features to their photographs to 
add aesthetics that were previously not present in their 
photographs. This aesthetic appeal from edited images can 
improve an image's appeal and introduce an element of 
fantasy into the work. 

Nevertheless, this technology has seen its application 
stretch beyond serving people's genuine needs to improve 
photographic appeal. Many, if not most, of its application has 
been doctoring images to trick people into believing 
falsehoods [3, 4]. One of the fields that have suffered 
immensely is academics. People can now engage in document 
forgery to create certificates that look exactly like an 

institution's legally issued credentials [5]. Most recent 
versions of the graphics editing software use artificial 
intelligence (AI) to edit images, making the finishing even 
more illustrious [6]. This fact makes it quite difficult to detect 
fake images from the real ones using the naked eye, thereby 
creating an extra layer of complexity to the process. 

The primary objective of this research is to undertake a 
meta-analysis study of deep learning tools and technologies 
used to detect fake images, with a focus on both their 
effectiveness and sustainability. The research questions 
guiding this analysis are as follows: 

1) How effective are deep learning algorithms in detecting 

fake images, and how do their effectiveness and sustainability 

correlate? 

2) What are the most reliable evaluation metrics for 

evaluating the performance and sustainability of deep learning 

algorithms in detecting fake images? 

3) What are the technical challenges in the sustainable 

detection of fake images using deep learning techniques? 

While several studies have engaged in the primary 
research of creating and evaluating deep learning models to 
detect fake images, few have done it in a meta-analytical way 
that also considers the sustainability of these technologies. 
This approach effectively synthesizes the field's gains in 
developing the algorithms. It also exposes the weaknesses, 
gaps, and sustainability concerns that need filling to improve 
algorithmic formidability. It is expected that this research and 
its analysis will add to the existing fake images detection with 
AI literature by providing a better understanding of the 
different models and various datasets. 

The paper contains six sections: introduction, background, 
methods, results, discussion and conclusion. The introduction 
in Section I sets the stage for what the paper will deliberate on 
and establishes the researcher's rationale. The background in 
Section II, the paper delves deep into the current solutions and 
technological overview to give the reader a good vantage 
point from which to appreciate the gains and weaknesses in 
the field of fake image detection using deep learning 
technologies. The methods in Section III takes the reader 
through a setup of the meta-analytical approach, including 
search strategies, data sources, inclusion and exclusion 
criteria, and data analysis approaches. The results in Section 
IV comprehensively analyses the findings made in the 
analysis. Finally, the paper discusses these findings to 
synthesize the results and also summarises along with 
suggested areas for further investigation in Section V and 
Section VI respectively. 
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II. BACKGROUND 

A. Types of Fake Images 

The diversity of fake images has made their detection all 
the more challenging because of the intricacy that comes with 
each type. Image splicing is one of the many types 
contributing to the fake image ecosystem [7, 8]. It refers to the 
result of combining parts of different images to create a new 
but deceptive version. It is almost similar to morphing and 
blending two or more images. In both cases, tampering with 
the final image is difficult to identify with the naked eye. 
Sometimes, creating fake images may involve hiding some 
aspects within the image to make it look different [9]. One 
way to do so is by deleting the unwanted element, which 
counts as the removal technique. This technique is paired with 
'insertion,' introducing a new element into the hitherto non-
existent image. The second method to hide elements within an 
image is steganography, a more technical form of hiding the 
undesired elements [10]. 

Some techniques neither remove nor add elements to the 
original image. Instead, they work on the image's appearance 
to change certain aspects, such as lighting, contrast, color, and 
texture. The most popular methods are bundled under the 
group' filter-based manipulations' techniques [11, 12]. It is 
worth noting that designers often use filter-based manipulation 
techniques with others to create a new 'cooler' image. 3D 
rendering is another technique that changes the image from its 
2D orientation to feature the third dimension of depth. While 
it does not introduce new elements, some shadows are likely 
to appear to give the illusion of a 3D image [13]. Regardless 
of the type of change and the intention behind such changes, 
analysts must be able to detect the changes programmatically 
for a more reliable consumption of these digital products. 
Deep learning is heavily equipped to check for even the 
mildest inconsistencies within the image structure and report 
them instantly [14]. 

B. Traditional Solutions to Detecting Fake Images 

The challenge of detecting fake images predates the deep 
fake technologies, as there has been image doctoring 
beforehand. One solution that most analyses preferred using 
was engaging in image forensics. It is a collection of 
techniques involving statistical and pixel-level image analysis 
to identify inconsistencies [15, 16]. Some of the aspects 
sought after are differing noise patterns and lighting 
anomalies. This method is advantageous because it is not 
computationally expensive but falters in detecting high-end 
forgeries and is not easily scalable. Watermarking has also 
been a key technique in ensuring viewers can tell fake images 
from the original. While it is effective in copyright protection, 
it is less applicable to images whose originals do not have 
watermarks [17, 18]. Another traditional method is meta-
analysis, which involves inspecting the images' metadata to 
detect fakes. While it provides contextual data, the metadata 
can be easily altered with the right technologies [15]. 

C. AI-Based Solutions to Detecting Fake Images 

With the advent of artificial intelligence, so much 
technological progress has come about and has permeated the 
field of image analytics. One such technology is convoluted 

neural networks (CNNs), a specific network architecture for 
deep learning algorithms [15, 19]. Its highly-rated image 
analytical capabilities can automatically and adaptively learn 
spatial hierarchies of features in an image. It is highly accurate 
and is mostly applicable when there are complex patterns. 
However, their large dataset requirements imply they are 
computationally expensive [14]. Generative adversarial 
networks (GANs) are another technology consisting of a 
generator and discriminator working against each other, 
widely used for deepfake detection. Like CNNs, they thrive in 
complex patterns [8, 20]. Nevertheless, their nature as 
unsupervised learning models makes them susceptible to 
being unstable and generating false positives. Recurrent neural 
networks are similar to other technologies but are mostly 
applicable in video forensics because of their strength in 
analyzing sequential data [21, 22]. 

Ensemble methods, transfer learning, and zero-shot 
learning represent advanced AI approaches that address 
different aspects of fake image detection. Ensemble methods 
involve the combination of multiple AI models to improve 
predictive accuracy and robustness, although they come at the 
cost of computational expense and increased model 
complexity [23]. On the other hand, transfer learning provides 
an efficient approach by applying pre-trained models to new 
but similar tasks, effectively saving time and computational 
resources; however, its applicability is constrained to tasks 
that closely resemble the original training data [24]. Lastly, 
zero-shot learning presents a frontier in AI-based fake image 
detection, offering the ability to recognize types of fake 
imagery that the model has not been specifically trained on 
[25]. While this method is versatile and adaptable, it is still an 
area under active research, and thus its reliability is not fully 
established. Each method has advantages and disadvantages, 
emphasizing the need for ongoing research to refine these 
techniques and possibly integrate them for more effective and 
efficient fake image detection. 

D. Fake Image Detection Process using AI 

This section describes the methodological steps involved 
in detecting fake images through the use of AI to collect and 
analyze data. The flowchart for these steps is shown in Fig. 1. 

 
Fig. 1. AI Fake image detection process flowchart. 

1) Data collection: Data collection is fundamental in 

building supervised machine learning models. It is the first 

stage in fake image detection using AI. In this phase, high-

dimensional data, often in image matrices or tensors, is 

gathered [24]. This dataset, comprising RGB values or even 

grayscale pixel intensities, is crucial for subsequent feature 

engineering. The data must also be annotated through manual 

labeling or semi-supervised methods to create ground truth 

labels distinguishing genuine images from artificially 

manipulated or deepfake counterparts. 

2) Feature extraction: Feature extraction involves 

transforming raw image data into a reduced dimensionality 
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format using algorithms that capture essential patterns. 

Techniques such as convolutional neural networks (CNNs) are 

often employed here, leveraging filter banks to highlight vital 

image attributes such as edges, textures, and regions of 

interest [26]. When convolved with input data, these filters 

output feature maps highlighting image characteristics. 

3) Feature selection: Not all features extracted hold 

discriminative power for the classification task at hand. 

Feature selection focuses on refining the feature set, 

eliminating redundant or irrelevant features to mitigate the 

curse of dimensionality, and optimizing model performance 

[27]. Algorithms such as Recursive Feature Elimination (RFE) 

or techniques leveraging mutual information can be utilized to 

determine the most salient features. 

4) Classification: With a refined feature set, the 

classification phase employs algorithms to map these features 

to their respective labels. Deep learning architectures, like 

CNNs or more complex models like Residual Networks 

(ResNets), are trained using backpropagation [28]. The 

objective is to adjust weights and biases to minimize the loss 

function, typically cross-entropy loss for classification tasks. 

5) Evaluation: Post-training, the model's robustness, and 

generalizability are gauged using accuracy, precision, recall, 

and the F1 score on a holdout validation or test dataset. 

Techniques like k-fold cross-validation can ensure the 

evaluation is comprehensive, and if underfitting or overfitting 

is detected, hyperparameter tuning, regularization methods, or 

architecture adjustments might be necessitated [20, 29]. 

III. METHODS 

A. Literature Search 

In our investigation into artificial intelligence and image 
validation, we selected a set of keywords to guide our data 
extraction process. Central to our inquiry was "Deep 
learning," which is intrinsically tied to "Deep neural 
networks." To delve into the specific area of counterfeit or 
fake imagery, we utilized terms such as "Fake images," 
"Image forgery," "Image tampering," and "Image 
authenticity." Recognizing the significance of assessing the 
capability of algorithms, we incorporated "Effectiveness" and 
"Performance" into our search parameters. The term "Image 
detection" was chosen to understand the broader mechanisms 
behind image recognition and validation. Additionally, the "F1 
score" was included as a metric of interest to gain insights into 
evaluation methods. Its inclusion is because of its widespread 
application in balancing precision and recall in binary 
classification problems. Through these keywords, we aimed to 
ensure a comprehensive exploration of the current state of 
deep learning techniques in detecting fake images. 

B. PRISMA Flow Chart 

The research was undertaken following the guidance of the 
PRISMA flowchart. It is a flow diagram reporting the stages 
articles go through to determine whether they are fit for 
inclusion in a meta-analysis [30]. The PRISMA flowchart in 
Fig. 2 delineates the sequence of a meta-analysis process. 
Initiating with the identification phase, a search was 

conducted across 10 databases, unearthing a total of 317 
studies. From this collection, preliminary screening reduced 
the number to 226 records. The reasons for this reduction were 
multi-fold: 54 records were identified as duplicates, 23 were 
found ineligible based on certain criteria, and 14 were 
removed due to other specified reasons. The subsequent phase 
saw 187 of these 226 screened records being selected for 
detailed report retrieval. Of these, 44 reports could not be 
retrieved, which left a pool of 143 reports. These reports were 
then subjected to a comprehensive eligibility assessment. In 
the final count, several reports were excluded from the 143 
due to a range of reasons: a lack of full-text availability in 20 
reports, 45 not matching the necessary keywords, 27 not 
meeting the quality appraisal standards, and 19 being deemed 
irrelevant to the study's focus. After these exclusions, the 
evaluation was refined to a set of 32 studies that were 
considered relevant and included in the meta-analysis. 

 
Fig. 2. PRISMA flowchart. 

C. Distribution of Journals 

Regarding the journals from which these final papers were 
derived, 'IEEE Access' from IEEE had the most articles, with 
eight total. MDPI's 'Applied Sciences' received five 
submissions, as illustrated in Table I. MDPI's 'Journal of 
Imaging' and 'Sensors' received three each. The paper source 
'ACM Conference papers' appeared twice. 

Other journals on the list had a source each, as observed in 
Table I. These numerous sources demonstrate how many 
fields are interested in applying artificial intelligence to detect 
fake images. 

D. Computing Effect Sizes 

Effect sizes are indispensable in meta-analysis, serving as 
a standardized metric to gauge the magnitude of observed 
phenomena and facilitating comparisons across diverse 
studies. This study focused on the F1 score, which measures a 
model's accuracy. The researcher also focused on the sample 
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size, denoted by the number of images used in individual 
studies. The choice was made to employ the random-effects 
model, considering the potential variability in study designs 
and regions covered. The determination of effect sizes hinged 
on a transformation suitable for F1 scores, as opposed to the 
conventional Fisher's Z transformation tailored for correlation 
coefficients [31]. Both Q-statistics and I2-values were 
deployed to comprehend the variability or heterogeneity of the 
results among the different studies [32]. In meta-analysis, 
heterogeneity indicates the differences in outcomes across the 
incorporated studies. If heterogeneity is high, it implies that 
the studies' results vary considerably [31]. Such computations 
empower this study, offering a rigorous quantitative 
consolidation of literature on using artificial intelligence to 
detect fake images. 

TABLE I. DISTRIBUTION OF STUDIES BY JOURNAL 

Journal Publication # 

IEEE Access IEEE 8 

Applied Sciences MDPI 5 

Journal of Imaging MDPI 3 

Sensors MDPI 3 

ACM Conference papers ACM 2 

International Journal of Advanced Computer 
Science and Applications 

The Science and 

Information 

Organization 

1 

Journal of Visual Communication and Image 

Representation 
Elsevier 1 

International Journal of Scientific Research in 

Computer Science Engineering and Information 
Technology 

IJSRCSEIT 1 

The Visual Computer Springer 1 

Journal of Cybersecurity and Privacy MDPI 1 

Entropy MDPI 1 

PeerJ Computer Science PeerJ 1 

Neural Computing and Applications Springer 1 

IRACST-International Journal of Computer 

Science and Information Technology & Security 

(IJCSITS) 

IRACST 1 

International Journal of Information Technology Springer 1 

Electronics MDPI 1 

1) Fisher's Z transformation: Fisher's Z is a statistical 

method that transforms Pearson correlation coefficients into a 

normally distributed variable [31]. The transformation is used 

because Pearson's r does not have a normal distribution, which 

makes its confidence intervals asymmetric. Fisher's Z 

transformation aids in stabilizing this variance. A higher 

absolute value of Fisher's Z indicates a stronger relationship 

between variables. 

𝐹𝑖𝑠ℎ𝑒𝑟’𝑠 𝑍 =  0.5 × 𝑙𝑛 (
1 + 𝑓

1 − 𝑓
) (1) 

where, f = F1-score 

2) The Weight value for each study (wi): The wi value 

represents the inverse of the variance of the effect size for 

study i [31]. It gives more weight to studies with more precise 

estimates (i.e., smaller variance), allowing them to influence 

the combined effect size more than those with less precise 

estimates [2]. 

𝑤𝑖 = (
𝑧𝑖

𝑉𝑎𝑟(𝑧)
 )  (2) 

Where, zi is a study's effect size measured by Fisher's Z 
index. 

3) The Overall effect size (z+): The z+ formula calculates 

the combined effect size in meta-analyses using weighted 

individual study effect sizes [32]. This Equation allows the 

aggregation of individual study results to derive an overall 

effect, giving more weight to studies with larger sample sizes 

or more precise measurements. A greater z+ value suggests a 

larger overall effect size across the analyzed studies. 

𝑧+ =
Σ𝑖=1

𝑁 (𝑤𝑖  ×  𝑧𝑖)

Σ𝑖=1
𝑁  𝑤𝑖

 (3) 

where, N = number of studies 

4) The Q statistic: The Q statistic measures the 

heterogeneity or variability of effect sizes across studies in a 

meta-analysis [31]. Determining heterogeneity is essential to 

deciding on the type of meta-analytic model (fixed-effects vs. 

random-effects) to use. A significant Q value indicates 

substantial heterogeneity among the included studies, 

suggesting that differences in effect sizes aren't solely due to 

sampling error. 

𝑄 =  ∑ 𝑤𝑖  × (𝑧𝑖 − 𝑧+)2

𝑁

𝑖=1

 (4) 

5) The I2 metric: I2 is a metric that quantifies the 

percentage of total variability in study estimates attributable to 

heterogeneity rather than chance [32]. It provides insights into 

the consistency of findings across studies, independent of the 

number of studies included. An I2 value close to 100% 

indicates high heterogeneity, suggesting that the results of the 

studies are diverse. 

𝐼2 = (
𝑄 − 𝑁 + 1

𝑄
) ×  100 (5) 

6) Bounds: This bounds equation calculates the 

confidence interval around the mean effect size based on the 

standard deviation of study weights [32]. The bounds provide 

a range within which the true effect size is expected to fall, 

offering a measure of the precision of the effect size estimate. 

Narrower intervals denote more precise estimates, while wider 

intervals indicate more uncertainty around the effect size. 

𝑏𝑜𝑢𝑛𝑑𝑠 =  𝑓𝑧  ±  𝛼 × 𝜎 (6) 

where, fz is the mean F1 score given all the studies 
included in the meta-analysis, and 𝛼 is the level of 
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significance, while σ refers to the standard deviation of the 
study weights. 

7) Fail-Safe N: The Fail-safe N method estimates the 

number of unpublished or "missing" studies required to nullify 

the effect observed in a meta-analysis [31]. It addresses the 

potential publication bias in meta-analyses. A high Fail-safe N 

suggests the meta-analysis results are robust against potential 

publication bias. 

𝐹𝑎𝑖𝑙 − 𝑠𝑎𝑓𝑒 𝑁 (𝑁𝑓𝑠.05) =
[(∑ 𝑧)2  − (𝑁 ∗ 𝑧̅2)]

𝛼2
 (7) 

Where, ∑z is the summation of all Fisher's z indices, and 𝑧̅ 
is the mean of all Fisher’s z indices. 

8) Critical value: The formula gives a threshold number 

for robustness against publication bias in meta-analyses [31]. 

Considering the number of studies in the analysis, it assesses 

the risk of overestimating effects due to publication bias. A 

higher critical value implies greater robustness of the meta-

analysis results against potential biases. 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 =  5 × 𝑁 + 10 (8) 

IV. RESULTS 

A. Study Statistics 

Table II shows the summary statistics for the 32 studies 
included in the meta-analysis. The statistics include sample 
size, F1-score, Fisher's z, and their weights. 

TABLE II. INDIVIDUAL STUDY STATISTICS 

 
Study Year Purpose Dataset Sample Size Model F1-Score Fisher's Z Weight 

1 [33] 2022 Image Classification CIFAR-10 19579 CNN 0.94 1.74 10.5177 

2 [1] 2023 Fake Image Detection CELEBA 7373 RNN 0.89 1.42 8.60468 

3 [6] 2022 Fake Image Detection DeepFake 24060 RNN 0.85 1.26 7.60152 

4 [34] 2021 Object Detection COCO 5361 CNN 0.84 1.22 7.38984 

5 [35] 2022 Image and Video Analysis UCF101 31671 CNN 0.87 1.33 8.06704 

6 [27] 2018 Fake Image Detection FaceForensics++ 21953 RNN 0.92 1.59 9.61588 

7 [36] 2022 Fake Image Detection DFDC 7628 LSTM 0.99 2.65 16.016 

8 [9] 2018 Image Classification ImageNet 26622 CNN 0.84 1.22 7.38984 

9 [37] 2021 Object Tracking GOT-10k 11570 CNN 0.95 1.83 11.0849 

10 [38] 2021 Fake Image Detection DeepFake 34626 LSTM 0.91 1.53 9.2437 

11 [39] 2022 Fake Image Detection DFDC 21287 RNN 0.99 2.65 16.016 

12 [40] 2020 Fake Image Detection FaceForensics++ 4053 RNN 0.9 1.47 8.90903 

13 [41] 2022 Fake Image Detection DFDC 12914 LSTM 0.97 2.09 12.6614 

14 [42] 2022 Fake Image Detection BEGAN 27843 RNN 0.96 1.95 11.7755 

15 [24] 2021 Image Generation Pascal VOC 27983 GAN 0.95 1.83 11.0849 

16 [43] 2023 Object Detection DeepFake 6216 CNN 0.99 2.65 16.016 

17 [44] 2022 Fake Image Detection Kinetics 6750 LSTM 0.86 1.29 7.82658 

18 [45] 2018 Video Classification ADE20K 3742 CNN 0.86 1.29 7.82658 

19 [5] 2020 Image Segmentation CELEBA 29993 CNN 0.84 1.22 7.38984 

20 [46] 2017 Fake Image Detection DFDC 31835 GAN 0.93 1.66 10.0356 

21 [47] 2021 Fake Image Detection CIFAR-100 20979 RNN 0.91 1.53 9.2437 

22 [10] 2019 Image Classification DeepFake 26169 CNN 0.85 1.26 7.60152 

23 [28] 2018 Fake Image Detection YOLO 8365 LSTM 0.92 1.59 9.61588 

24 [29] 2018 Object Detection PCGAN 11032 CNN 0.85 1.26 7.60152 

25 [14] 2023 Image Synthesis CELEBA 22837 GAN 0.86 1.29 7.82658 

26 [48] 2021 Fake Image Detection FaceForensics++ 8702 RNN 0.94 1.74 10.5177 

27 [49] 2019 Fake Image Detection GAN 16576 LSTM 0.89 1.42 8.60468 

28 [50] 2019 Image Generation AVA 13425 GAN 0.95 1.83 11.0849 

29 [22] 2021 Image and Video Analysis DeepFake 23896 CNN 0.87 1.33 8.06704 

30 [25] 2018 Fake Image Detection DFDC 6611 RNN 0.89 1.42 8.60468 

31 [51] 2021 Fake Image Detection CELEBA 30177 LSTM 0.94 1.74 10.5177 

32 [26] 2023 Fake Image Detection CIFAR-10 32538 RNN 0.96 1.95 11.7755 
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Table II showcases various studies from 2017 to 2023, 
spanning applications like themes in fake image detection. 
Commonly used models include CNNs, RNNs, LSTMs, and 
GANs. Notably, LSTMs achieved top F1 scores in several 
studies ([35],[37],[41]). The consistency in Fisher's Z values 
suggests a uniform significance level. The weight, mirroring 
the sample size, hints at the study's reliability. In essence, the 
table reflects both progress and challenges in AI research. 

The datasets employed in the studies are all related to 
machine learning and artificial intelligence. CIFAR-10 and 
CIFAR-100 are widely used benchmarks for image 
classification, consisting of small images from several 
categories. ImageNet, a significant player in the image 
classification field, has been instrumental in driving progress 
in deep learning. CELEBA focuses on facial attributes and 
provides a wide range of annotated faces. DeepFake, DFDC, 
and FaceForensics++ focus on detecting fake images and 
videos, which are crucial for developing ways to combat 
misinformation. COCO and Pascal VOC are widely used in 
object detection, while UCF101 and Kinetics are popular for 
video classification and analysis. GOT-10k is specifically 
made for object tracking, while ADE20K is focused on 
semantic segmentation tasks. Generative models like BEGAN, 
PCGAN, and GAN datasets play a crucial role in image 
synthesis and generation. 

B. Meta-Analysis Summary Statistics 

Table III summarizes the statistics from the 32 studies 
involved in this meta-analysis. The statistics include z+, Q, I2, 
σ, lower bound, upper bound, critical Nfs, Nfs, CI, and 
statistical significance. 

TABLE III. OVERALL STUDY STATISTICS 

Statistic Value 

z+ 1.7337 

Q 65.5867 

I2 52.7344 

σ 0.0562 

Lower Bound 1.6235 

Upper Bound 1.8439 

Critical Nfs 170 

Nfs 2706.9451 

CI [1.6235, 1.8439] 

Statistical Significance p < 0.001 

1) Overall effect size (z+: 1.7337): The z+ value represents 

the meta-analysis's pooled or combined standardized effect 

size. A value of 1.7337 indicates a positive and relatively 

strong overall effect size [18]. These findings suggest that 

from a general standpoint, the machine learning models 

employed in the studies performed well in detecting fake 

images. According to [33, 52], 0.2 is small, 0.5 is medium, 

and 0.8 or above is considered large. Hence, the z+ value 

obtained in this case shows a large effect size. 

2) Heterogeneity (Q: 65.5867, I2: 52.7344%): Both Q and 

I2 are measures of heterogeneity among the included studies. 

The high Q-value suggests significant variability in the effect 

sizes across studies [51]. Table II illustrates the differences in 

the F1 scores obtained from running different machine 

learning models in detecting fake images. This test statistic 

follows a chi-square distribution, and its threshold for 

significance depends on the number of studies (or degrees of 

freedom). A significant Q-value implies heterogeneity. 

The I2 value further quantifies this heterogeneity: about 
53% of the observed variability in the effect sizes is due to 
genuine differences among studies rather than random 
sampling error [24]. It affirms the credibility and reliability of 
the studies included in the meta-analysis because, despite the 
variability, they all make similar inferences regarding AI's 
ability to detect fake images. I2 values of 25%, 50%, and 75% 
are considered low, moderate, and high heterogeneity, 
respectively. The I2 value of ~53% in this study suggests 
moderate to high heterogeneity among the included studies. 

3) Precision of the effect size (σ: 0.0562, lower bound: 

1.6235, upper bound: 1.8439, CI: [1.6235, 1.8439]): These 

statistics provide insight into the precision and reliability of 

the z+ value. The standard deviation (σ) is low, which suggests 

a precise estimate [11]. A low standard deviation is 

synonymous with minimal differences in the overall sentiment 

expressed by the 32 studies included in this meta-analysis. The 

confidence interval (CI) is also reasonably narrow, ranging 

from 1.6235 to 1.8439. While there are no standard σ values, a 

narrow CI, like in our case, denotes high precision [41]. 

Consequently, this further indicates that the pooled effect size 

is estimated with high precision [45]. 

4) Publication bias (Critical Nfs: 170, Nfs: 2706.9451): 

In meta-analyses, fail-safe N (Nfs) and critical Nfs are used to 

evaluate the potential for publication bias. The critical Nfs 

represents the minimum number of studies with null results 

required to raise the p-value above a significance threshold 

(typically 0.05). There is no standard value or range for this 

statistic. However, a higher Nfs than the critical value 

indicates that many unpublished, non-significant studies 

would be required to nullify the observed effect [40]. 

Additionally, the statistics suggest that the meta-analysis 

results are robust against possible publication bias [32]. 

5) Significance of the effect (p<0.001): This p-value 

indicates the probability that the observed effect (or a more 

extreme effect) would occur by random chance alone if there 

were no real effects. The study found a p-value less than 

0.001. For a study conducted at a 0.05 confidence level, a 

statistical significance of anything lower than 0.05 is 

acceptable [43, 49]. Consequently, the value affirms that it is 

highly statistically significant. It further provides strong 

evidence against the null hypothesis that machine learning 

models can effectively detect fake images [23]. 

6) Implication: The meta-analysis results indicate a 

robust, positive, and highly significant overall effect size. The 

small confidence interval and standard deviation demonstrate 
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the estimated results' precision. However, substantial 

heterogeneity among the included studies necessitates 

additional research to determine the causes of this variation. 

The results appear robust against the possibility of publication 

bias. While the results appear trustworthy, future meta-

analyses should consider the high heterogeneity and strive to 

reduce it. 

V. DISCUSSION 

A. Effectiveness and Sustainability of Deep Learning 

Algorithms in Detecting Fake Images 

The first research question regarded the effectiveness and 
sustainability of deep learning in detecting fake images. Our 
study discovered that the accelerated development of digital 
manipulation techniques has increased the difficulty of 
detecting fake or fabricated images [35, 36]. Deep learning 
algorithms, particularly convolutional neural networks 
(CNNs) and generative adversarial networks (GANs), have 
been widely cited as the leading instruments for addressing 
this concern [3, 44, 52]. Many sources we consulted 
emphasized that these algorithms frequently outperform 
conventional image analysis techniques, with many studies 
reporting accuracy rates and F1 scores exceeding 0.8 [24, 50]. 
High performance was most commonly observed in 
experiments employing a larger number of images as samples 
[53, 54]. However, even the lowest-performing studies' F1 
scores did not fall below 0.84. 

However, the revision of the sources disclosed a recurring 
theme. These algorithms' variable efficacy was based on the 
type and quality of the fake images they were trained on, 
although this was not the case in all studies. Moreover, the 
sustainability of these algorithms in the context of varying 
image types and qualities emerged as a significant 
consideration. Several sources alluded to sophisticated 
techniques for occasionally generating fake images that could 
circumvent deep learning detectors, raising concerns about the 
long-term sustainability of these detection methods. This 
pattern is notably evident when training data lacks diversity 
[9, 41, 44]. In addition, our investigation revealed that 
adversarial assaults on these algorithms present a challenging 
obstacle but also raise questions about their sustainable 
effectiveness [38, 42]. On the effectiveness and sustainability 
of deep learning algorithms in detecting fake images, this 
analysis finds that although deep learning is a promising 
avenue, it may require integration with other detection 
techniques to obtain optimal and sustainable results. 

B. Evaluation Metrics for Deep Learning Algorithms in 

Sustainable Fake Image Detection 

The second research question examined the evaluation 
metrics mostly employed to appraise the performance and 
sustainability of deep learning models in detecting fake 
images. Our exhaustive analysis highlighted the critical 
significance of dependable evaluation metrics for assessing 
the performance and sustainability of deep learning algorithms 
in detecting fake images [3, 37, 38]. Findings suggested that 
the most reliable metric is the F1 score, though most studies 
also engaged with other metrics to be more comprehensive. 
Most of the studies we evaluated emphasized indicated that 

the F1 score is not comparable to accuracy because it is an 
aggregate of precision and recall, thereby giving it an edge 
over other performance measures [7]. 

Most studies employed precision, recall, and the F1-score 
metric to avoid using accuracy. The performance measure (F1 
score) provides a more comprehensive perspective on the 
efficacy of an algorithm [24]. This meta-analysis utilized the 
F1 score as its primary metric and was also one of the 
selection criteria for the selected studies. The harmonic mean 
property of the F1-score, which considers both precision and 
recall, is useful when an optimal equilibrium between false 
positives and false negatives is essential. Using only precision 
or recall is frequently deemed insufficient, as it conceals a 
crucial aspect of model performance [36, 46]. 

C. Technical Challenges in the Sustainable Detection of Fake 

Images using Deep Learning 

The final research question interrogated the technical 
challenges experienced during fake image detection using 
deep learning approaches. Specialists frequently face several 
technical obstacles when utilizing deep learning technologies 
for fake image detection, as uncovered by our exhaustive 
analysis [1, 42, 47]. Additionally, the sustainability of these 
technologies in the face of evolving threats and techniques is a 
critical concern. Many sources we consulted elaborated on the 
difficulty of adversarial assaults [34, 39, 42]. Typically, these 
assaults are ingeniously designed perturbations that not only 
pose a technical challenge but also raise sustainability issues, 
as they can trick deep learning models into misclassifying a 
fake image as authentic or vice versa [9, 48]. This issue 
illustrates the vulnerability and potentially limited 
sustainability of these algorithms under specific conditions. 
While many of the sources devised mechanisms to circumvent 
adversarial assaults, they acknowledged that such 
complexities could have a significant impact on the 
performance and sustainability of the models. In addition, the 
dynamic nature of image manipulation techniques necessitates 
constant model updates, highlighting the need for sustainable 
development practices in AI, as current methods may become 
obsolete in the face of newer and more complex image 
manipulation techniques. 

In addition, most sources mentioned an 'arms race' 
between fake image generators and detectors, highlighting a 
sustainability challenge in this technological contest. As 
technologies for deep learning evolve, so do techniques for 
generating fake images, resulting in a continuous and 
potentially unsustainable development cycle for both [5, 14]. 
Given the novelty of both disciplines, it is uncertain which 
will ultimately prevail, raising concerns about the long-term 
sustainability of detection algorithms. This swift evolution 
underscores the need for sustainable development practices in 
the field. Our investigation also revealed that data deficiency 
hinders model training capabilities [35, 38]. This case is 
notably true for labeled datasets containing high-quality fake 
images. Consequently, detection model efficacy declines. The 
complexity of deep learning models also poses computational 
and sustainability difficulties [6, 36]. The typical solution is to 
demand substantial resources for instruction and deduction, 
which may not be sustainable, especially for real-time 
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applications that require efficient and environmentally 
conscious approaches. 

VI. CONCLUSION AND FUTURE RESEARCH 

Identifying fake images has become a top concern in the 
wake of a highly advanced era, underscoring the necessity for 
sustainable methods in digital content management. Numerous 
individuals with questionable motives have utilized 
technology to fabricate misleading photos and manipulate 
unsuspecting individuals. The prevalence of inaccurate 
information in online spaces has heightened the need to 
eradicate this problem through sustainable approaches. Our 
comprehensive analysis showcases the growing potential of 
deep learning technologies, particularly convolutional neural 
networks (CNNs) and generative adversarial networks 
(GANs), in addressing this issue sustainably. While these 
models have shown promising outcomes and made a notable 
difference, they encounter challenges in maintaining 
sustainability in their applications. It is important to be 
cautious when generalizing study conclusions due to the 
differences in methodology, types of images, and geographical 
factors, and sustainability considerations. The F1 score is 
necessary to evaluate how well these algorithms perform on 
the modified images they are trained on, with an emphasis on 
quality, diversity, and sustainability. 

However, the landscape of fake image detection is fraught 
with obstacles that exceed the capabilities of algorithms, 
demanding sustainable solutions. As a result of adversarial 
assaults, there is an ongoing arms race between fake image 
creators and their detectors, demanding sustainable solutions. 
In addition, the frequent need for model updates, 
computational demands, and data scarcity indicate the need 
for ongoing research efforts. As technology advances, image 
manipulations become more complex, increasing the demand 
for powerful, adaptable, and sustainable deep-learning 
solutions. We need to work together and combine the 
knowledge and expertise of academia, industry, and 
policymakers, to develop effective and sustainable strategies 
to better protect ourselves against fake imag 
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