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Abstract—The identification and diagnosis of liver diseases 

hold significant importance within the domain of digital pathology 

research. Various methods have been explored in the literature to 

address this crucial task, with deep learning techniques emerging 

as particularly promising due to their ability to yield highly 

accurate results compared to other traditional approaches. 

However, despite these advancements, a significant research gap 

persists in the field. Many deep learning-based liver disease 

detection methods continue to struggle with achieving consistently 

high accuracy rates. This issue is highlighted in numerous studies 

where traditional convolutional neural networks and hybrid 

models fall short in precision and recall metrics. To bridge this 

gap, our study proposes a novel approach utilizing the YOLOv8 

algorithm, which is designed to significantly enhance the accuracy 

and effectiveness of liver disease detection. The YOLOv8 

algorithm's architecture is well-suited for real-time object 

detection and has been optimized for medical imaging 

applications. Our method involves generating innovative models 

tailored specifically for liver disease detection by leveraging a 

comprehensive dataset from the Roboflow repository, consisting 

of 3,976 annotated liver images. This dataset provides a diverse 

range of liver disease cases, ensuring robust model training. Our 

approach includes meticulous model training with rigorous 

hyperparameter tuning, using 70% of the data for training, 20% 

for validation, and 10% for testing. This structured training 

process ensures that the model learns effectively while minimizing 

overfitting. We evaluate the model using precision, recall, and 

mean average precision (mAP@0.5) metrics, demonstrating 

significant improvements over existing methods. Through 

extensive experimental results and detailed performance 

evaluations, our study achieves high accuracy rates, thus 

addressing the existing research gap and providing an effective 

approach for liver disease detection. 

Keywords—Liver disease detection; deep learning; digital 

pathology; YOLOv8; accuracy enhancement 

I. INTRODUCTION 

Medical image processing, an interdisciplinary field at the 
intersection of computer science, image analysis, and medicine, 
holds paramount importance in contemporary healthcare [1], 
[2]. Its significance lies in its capacity to revolutionize medical 
diagnostics and treatment by extracting valuable insights from 
medical images [3], [4]. This transformative technology 
empowers healthcare professionals with advanced tools that 
enhance the accuracy of disease detection, streamline diagnosis, 
and improve patient care, thereby leading to more timely 
interventions and better outcomes. 

Liver disease detection stands out as a critical domain within 
the realm of medical image processing due to the liver's pivotal 
role in maintaining metabolic functions and detoxification [5]. 
Detecting liver diseases, such as cirrhosis, fibrosis, and 
hepatocellular carcinoma, at an early stage is crucial for 
improving patient prognosis [6], [7], [8]. Consequently, the 
significance of precise diagnosis and early intervention in liver 
diseases cannot be overstated. Thus, research and innovation in 
liver disease detection represent an essential endeavor to 
enhance healthcare. 

In recent years, computer vision-based methods have been 
instrumental in advancing liver disease detection [9]. These 
methods have leveraged image analysis techniques to automate 
the interpretation of medical images, resulting in more reliable 
clinical decisions and improved patient care. The field has 
witnessed notable breakthroughs as medical image datasets have 
grown in size and complexity, leading to enhanced accuracy and 
efficiency in detecting liver abnormalities[10], [11]. These 
advances underscore the potential of medical image processing 
to impact healthcare further positively. 

However, among the various techniques employed in liver 
disease detection, deep learning-based methods have gained 
prominent attention from both researchers and practitioners. 
Deep learning's appeal lies in its ability to autonomously learn 
intricate features from complex medical images [12], surpassing 
the capabilities of traditional approaches. Compared to 
conventional methods, deep learning-based techniques have 
demonstrated superior performance in liver disease detection 
tasks [13], [14]. Nevertheless, despite these achievements, 
several pressing limitations and research gaps persist, primarily 
due to the high demand for accuracy in medical applications. 

Current deep learning-based methods face challenges related 
to overfitting, generalization, and the interpretability of model 
decisions, raising concerns about their reliability and practicality 
in clinical settings. Moreover, the inherent heterogeneity and 
limited availability of medical image datasets for liver disease 
further complicate the pursuit of consistently high accuracy. To 
address these research challenges comprehensively, there is an 
imperative need for further exploration and innovation in deep 
learning-based liver disease detection. 

In response to these challenges, this study proposes a novel 
deep-learning method that leverages the Yolov8 algorithm for 
liver disease detection. The adoption of the Yolov8-based 
algorithm offers a promising avenue to enhance the accuracy of 
liver disease detection. Our research encompasses the creation 
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of a model using a comprehensive dataset, followed by rigorous 
training, validation, and testing processes. Through this 
approach, we aim to bridge existing research gaps and contribute 
to the advancement of liver disease detection using deep 
learning techniques. 

The main research contributions are as follows. Firstly, we 
address the current research gap concerning deep learning-based 
liver disease detection, providing insights and innovations to 
enhance its performance. Secondly, we explore previous studies 
and existing literature to consolidate the state of knowledge in 
this domain, paving the way for a comprehensive understanding 
of the field's challenges and potential solutions. Lastly, we 
conduct extensive experiments and performance evaluations to 
validate the effectiveness of our proposed method, aiming to 
provide a robust and reliable tool for liver disease detection in 
clinical practice. 

The organization of this paper is as follows: The initial 
section provides the introduction and Section II reviews of 
related works. Second III delves into the material and methods. 
Section IV encompasses the presentation of results and 
discussion, and Section V presents the conclusion of the paper. 

II. RELATED WORK 

This paper [15] presented a liver disease screening method 
using densely connected deep neural networks. The method 
utilizes advanced deep-learning techniques to detect liver 
diseases accurately. While promising, the study acknowledges 
limitations in the dataset size and the need for further validation 
on larger and more diverse datasets. Nonetheless, the research 
demonstrates the potential of deep learning for liver disease 
screening, with implications for improving medical diagnostics 
and patient care. 

In the study [16], the authors proposed a method that utilizes 
deep learning and transfer learning to detect liver diseases from 
CT scan images. While their approach shows promise in 
preliminary tests, they acknowledge the limitation of lower 
accuracy rates, particularly in cases involving subtle disease 
manifestations. Addressing these limitations is crucial to make 
the model more reliable for accurate diagnosis and treatment 
planning in clinical settings. 

The research in [17] delved into the application of artificial 
intelligence for diagnosing and treating liver diseases. The 
method discussed exhibits potential in assisting medical 
professionals, yet the authors stress the challenge of achieving 
the high accuracy demanded in clinical practice. Reducing false 
positives and negatives is imperative, and future work should 
focus on refining the model's precision to make it a dependable 
tool in liver disease diagnosis and treatment. 

In the study [18], the authors employ YOLOv7 and transfer 
learning to enable early detection of lung cancer. Despite 
promising results, the method faces limitations in terms of 
accuracy and sensitivity, particularly when dealing with the 

subtleties of early-stage lung cancer. Future research efforts 
should concentrate on improving the model's precision, 
especially in identifying subtle early signs of the disease, to 
enhance its clinical utility. 

The research in [19] explored the use of conventional and 
artificial intelligence (AI)--based imaging techniques for 
biomarker discovery in chronic liver disease. The method 
integrates advanced AI approaches with conventional imaging 
methods to identify potential biomarkers. While the approach 
shows promise in early diagnosis and disease monitoring, it 
faces the challenge of achieving the required high accuracy 
levels for robust clinical applications. Limitations in sensitivity 
and specificity need to be addressed to make these biomarkers 
more reliable tools for accurate diagnosis and treatment 
monitoring in the context of chronic liver disease. 

The authors in [20] focused on leveraging deep learning 
techniques for detecting liver diseases from medical images. 
While the method showcases potential in identifying various 
liver ailments, it encounters challenges related to achieving 
consistently high accuracy rates, especially in cases involving 
complex disease patterns. The authors highlight the need for 
further refinement and optimization of the deep learning model 
to mitigate these limitations and enhance its diagnostic 
capabilities, ultimately contributing to more accurate disease 
detection in liver images. 

III. MATERIAL AND METHOD 

A. Yolov8 Algorithm 

YOLOv8, an advanced iteration in the YOLO series of 
object detection algorithms, represents a cutting-edge solution 
for real-time object detection tasks. Developed by Glenn Jocher 
at Ultralytics, YOLOv8 combines a flexible Pythonic structure 
with strong model fundamentals, facilitating rapid model 
enhancements and widespread community contributions [21]. 
Its standout features include anchor-free detection, new 
convolutional layers, and innovative training routines like 
mosaic augmentation. With a commitment to community 
support and an emphasis on high accuracy, YOLOv8 has 
established itself as a go-to choose for computer vision projects, 
achieving state-of-the-art performance on benchmark datasets 
and promising continued advancements in the field of object 
detection. 

1) Yolov8 Structure: The structure of the YOLOv8 

algorithm is characterized by its innovative approach to real-

time object detection, leveraging a series of architectural 

enhancements and improvements over its predecessors. At its 

core, it processes the entire image in one forward pass to 

simultaneously predict bounding boxes and class probabilities 

for multiple objects. Fig. 1 shows the Yolov8 model structure 

[22], [23]. An overview of the key components and structure of 

the YOLOv8 algorithm is discussed in the following sections. 
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Fig. 1. Yolov8 model structure. 

a) Backbone network: YOLOv8 employs a 

CSPDarknet53 backbone network, which is a deep 

convolutional neural network designed to extract rich features 

from input images efficiently. The backbone network plays a 

critical role in feature extraction and contributes to the 

algorithm's detection accuracy. 

b) Anchor-free detection: YOLOv8 introduces anchor-

free object detection, a departure from previous YOLO models 

that relied on anchor boxes. In anchor-free detection, the 

algorithm directly predicts the center of objects instead of 

anchor box offsets. This approach reduces the number of box 

predictions and accelerates post-processing, such as Non-

Maximum Suppression (NMS). 

c) New convolutions: YOLOv8 incorporates new 

convolutional layers and modules to enhance feature extraction 

and model performance. Changes in convolutional layers, such 

as replacing 6x6 convolutions with 3x3 convolutions, 

contribute to improved efficiency and accuracy. 

d) Mosaic augmentation: The training routine in 

YOLOv8 includes mosaic augmentation, a technique that 

stitches four images together. This augmentation strategy 

encourages the model to learn objects in diverse contexts, 

including new locations, partial occlusions, and varying 

backgrounds, thereby enhancing its robustness. 

B. Google Colab 

We employed Google Colab, granting us complimentary 
access to robust GPU resources. All the training and testing 
processes were carried out utilizing a high-performance 12GB 
NVIDIA Tesla T4 GPU, as elaborated in Fig. 2. All of our 
models underwent 50 epochs of training with image dimensions 
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set at 640 pixels while adhering to the default YOLO settings for 
other hyperparameters. 

C. Dataset 

The dataset utilized in this study was sourced from the 
Roboflow repository, consisting of a total of 3,976 images. This 
dataset focuses on liver disease detection, encompassing various 
pathological classes, including ballooning, fibrosis, 
inflammation, and steatosis. These high-quality images serve as 
a valuable resource for training and evaluating machine learning 
models in the context of liver disease detection, enabling 
researchers to harness the power of computer vision techniques 
for precise and early diagnosis of liver-related health conditions. 
Fig. 3 shows sample images of the dataset. 

The data instance distribution in this dataset is well-
balanced, ensuring a roughly equal number of instances across 
different classes of liver disease, including ballooning, fibrosis, 
inflammation, and steatosis. This balanced distribution aids in 
preventing class imbalance issues during machine learning 
model training and promotes robust performance across various 
pathological conditions. Additionally, each data instance in the 
dataset is meticulously annotated with its corresponding 
instance label, providing precise information about the specific 
liver disease class to which it belongs. These annotated instance 
labels are crucial for supervised learning tasks, enabling the 
model to learn and make accurate predictions based on the 
ground truth information associated with each image, ultimately 
enhancing the model's diagnostic capabilities in liver disease 
detection. Fig. 4 illustrates data distribution and instance 
labelling of images. 

D. The Proposed Method 

The proposed method for liver disease detection leverages 
the YOLOv8 architecture, specifically designed for rapid and 
accurate object detection. Our approach involves several key 
steps: data collection, model training, model evaluation, 
performance analysis, and comparative experiments. For data 
collection, we utilized the Roboflow repository, which provided 
a comprehensive dataset of 3,976 liver images annotated with 
relevant disease markers. This dataset is critical as it ensures the 
model is exposed to a wide variety of liver conditions, enhancing 
its ability to generalize across different scenarios. The images 
were divided into three sets: 70% for training, 20% for 
validation, and 10% for testing. This partitioning strategy 
ensures that the model is adequately trained, validated during 
development, and rigorously tested to evaluate its performance 
on unseen data. 

Model training was conducted using different versions of 
YOLOv8, namely YOLOv8n, YOLOv8s, YOLOv8m, and 
YOLOv8l, each representing varying degrees of complexity and 
capacity. YOLOv8n is the smallest and fastest model, designed 
for applications requiring high speed with moderate accuracy. 
YOLOv8s offers a balance between speed and accuracy, making 
it suitable for real-time applications. YOLOv8m and YOLOv8l 
are larger models, providing higher accuracy at the cost of 
increased computational requirements. The training process 
involved fine-tuning hyperparameters such as learning rate, 
batch size, and number of epochs. The learning rate was set to 
0.001, with a batch size of 16, and the models were trained for 
50 epochs. These settings were chosen based on initial 
experiments to optimize model performance while preventing 
overfitting. Data augmentation techniques such as rotation, 
scaling, and flipping were applied to enhance the model's 
robustness. 

 

Fig. 2. Details of google colab' GPU. 

        

Fig. 3. Sample images of the dataset. 
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Fig. 4. Data distribution and instance labelling of image data. 

For model evaluation, we utilized precision, recall, and mean 
average precision (mAP@0.5) as key performance metrics. 
Precision measures the accuracy of the positive predictions, 
recall assesses the model's ability to identify all relevant 
instances, and mAP@0.5 provides a comprehensive evaluation 
of the model's detection performance at a specific intersection 
over union threshold. The evaluation showed that the YOLOv8s 
model achieved the highest metrics with a precision rate of 
0.94%, a recall rate of 0.96%, and an mAP@0.5 rate of 0.59%. 
To ensure a thorough comparison, we conducted experiments 
using other existing liver disease detection methods, including 
UNet-60, CNN + SVM, Random Forest, and Chaotic Cuckoo 
Search + AlexNet. These comparisons highlighted the superior 
performance of our proposed YOLOv8-based method, 
demonstrating its potential as a reliable tool for liver disease 
diagnosis in clinical settings. The rigorous evaluation and 
comparative analysis underscore the effectiveness of YOLOv8 
models in detecting liver diseases from image data, paving the 
way for enhanced diagnostic capabilities. Table I shows the 
proportion of each training, validation and testing image sample. 

TABLE I.  NUMBER OF IMAGES IN TRAINING, VALIDATION, AND TESTING 

SETS 

Modules Training Validation Testing 

Number of images 2782 794 400 

1) Training module: The training phase played a pivotal 

role in the development of the YOLOv8 model. To maximize 

accuracy in liver disease detection, several key 

hyperparameters were carefully configured. The learning rate, 

a critical hyperparameter governing the rate at which the model 

updates its parameters during training, was fine-tuned for 

optimal convergence. We set the learning rate to 0.001, with a 

smaller value being favored for fine-tuning. Additionally, the 

batch size was set to 16, number of epochs was set to 50 for 

YOLOv8 training. 

2) Validation module: The validation module played a 

crucial role in assessing the model's performance during 

training. It involved using a separate portion of the dataset (the 

validation set) that was not used during training. The purpose 

was to monitor the model's progress and detect signs of 

overfitting or underfitting. The validation set helped in 

determining the optimal number of training epochs to prevent 

overfitting, and it allowed for the fine-tuning of 

hyperparameters, such as the learning rate and batch size, to 

strike a balance between model accuracy and generalization. 

We tuned the model based on model validation. 

3) Testing module: The testing module was the final stage 

in evaluating the YOLOv8 model's performance. Here, the 

model's effectiveness in detecting liver diseases on unseen data 

(the testing set) was rigorously assessed. This phase provided 
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insights into the model's real-world applicability and its ability 

to generalize to previously unseen cases. The testing module 

aimed to measure key metrics such as precision, recall, and 

mAP to quantify the model's accuracy and its capability to 

identify liver disease instances correctly. The details of the 

testing model and the metrics are discussed in the following 

sections. We use these metrics to test the effectiveness of the 

model. 

IV. EXPERIMENTAL RESULTS 

This section presents the experimental results and outputs 
obtained from our generated YOLOv8 model for liver disease 
detection. As illustrated in the Fig. 5, the model's output 
provides insights into its ability to identify different classes of 
liver diseases, including ballooning, fibrosis, inflammation, and 
steatosis. These classes represent critical pathological conditions 
that demand accurate detection for effective medical diagnosis. 
The figures showcase the model's predictions and highlight its 
capacity to delineate between these distinct disease categories as 
shown in Fig. 5. 

A. Performance Evaluation 

In this section, we investigate the performance evaluation of 
our YOLOv8 model using standard key metrics such as 
precision, recall and mean average precision (mAP) [25] 
Precision quantifies the model's ability to make correct positive 
predictions among all positive predictions, while recall 
measures the model's capability to identify all actual positive 
instances correctly. The mAP provides an aggregate assessment 
of the model's accuracy across multiple classes, offering 
valuable insights into its overall performance. Furthermore, the 
F1 score represents a harmonized measure of precision and 
recall, balancing the trade-off between false positives and false 
negatives. The comprehensive results of these performance 
metrics, stemming from extensive experimentation, are 
graphically depicted in the accompanying figures, offering a 
clear overview of the YOLOv8 model's effectiveness in the 
precise detection of liver diseases, ultimately contributing to 
improved medical diagnostics. 

 

 

 

Fig. 5. Experimental results output. 
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1) Precision curve: To assess the performance of the 

YOLOv8 model, we employ the precision curve, a vital tool in 

evaluating liver disease detection algorithms. The precision 

curve, also known as the precision-accuracy curve, is a valuable 

tool used to evaluate the performance of the YOLOv8 model 

and similar object detection systems. This curve illustrates how 

the precision of the model varies with changes in confidence 

thresholds. The precision is typically measured using the 

following equation: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒)  
=  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

Where: 

a) True Positives (TP): These are instances where our 

YOLOv8 model correctly identifies and classifies a liver 

disease, such as ballooning, fibrosis, inflammation, or steatosis, 

as positive. In other words, TP represents the number of cases 

where the model's prediction matches the actual presence of the 

disease within the dataset. 

b) False Positives (FP): These are instances where our 

model incorrectly identifies and classifies a case as positive 

when, in reality, it is not. In the context of liver disease 

detection, FP would occur if the model falsely predicts the 

presence of a disease when there is none or if it assigns the 

wrong disease class to an image. 

As shown in Fig. 6, the precision represents the proportion 
of true positive detections relative to all predicted positive 
instances at a specific confidence threshold. To construct the 
curve, confidence thresholds are systematically adjusted, and 
precision values are recorded at each threshold setting. These 
precision values are then plotted to create the precision curve, 
which provides insights into how the model's precision changes 
as the confidence threshold. As depicted in Fig. 6, on average, 
we achieved a 0.95% rate for precision in all classes, which 
means the model is accurate in liver disease detection. 

2) Recall curve: In evaluating the performance of the 

YOLOv8 model, in addition, we employ the recall curve, which 

is another critical metric for assessing the model's effectiveness 

in correctly identifying positive instances. The recall, also 

known as sensitivity, measures the proportion of true positive 

detections relative to all actual positive instances within the 

dataset. The recall equation is expressed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)  =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

Where, as defined above, the TP is the number of correctly 
predicted positive instances by the model. 

a) FN (False Negatives): The number of instances that 

were incorrectly predicted as negative by the model when they 

were actually positive. 

As depicted in Fig. 7, the recall curve is constructed by 
systematically varying confidence thresholds, recording recall 
values at each threshold setting, and plotting them. This curve 
provides insights into how the model's recall rate changes with 
adjustments in the confidence threshold. The obtained recall rate 
of 0.96% across all classes serves as a significant validation of 
the YOLOv8 model's effectiveness in liver disease detection. 
This high recall rate signifies that the model successfully 
identifies 96% of all actual positive instances of liver diseases 
within the dataset. Such a remarkable recall rate underscores the 
model's capability to comprehensively capture and correctly 
classify these diseases, including ballooning, fibrosis, 
inflammation, and steatosis. It further implies that the model 
minimizes the risk of false negatives, which is crucial in the 
context of medical diagnostics. In essence, the high recall rate 
stands as a compelling justification for the model's effectiveness, 
as it assures that the YOLOv8 model is adept at accurate and 
reliable liver disease detection, a pivotal advancement in the 
realm of medical imaging and diagnostics. 

 

Fig. 6. Precision curve. 
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Fig. 7. Recall curve. 

3) Precision-recall curve: In assessing the YOLOv8 

model's performance for liver disease detection, we utilize the 

mean average precision (mAP) metric, often associated with the 

precision-recall curve. The mAP quantifies the model's 

accuracy in detecting objects, such as liver diseases, across 

multiple classes and various confidence thresholds. It is 

calculated as the average of the precision values at different 

recall levels. The equation to measure mAP is: 

𝑚𝐴𝑃 (𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  
=  (𝐴𝑃_1 +  𝐴𝑃_2 + . . . + 𝐴𝑃_𝑛) / 𝑛 

Where the Average Precision for Class n (AP_n) represents 
the precision-recall curve's area under the curve (AUC) for each 
specific class. 

As illustrated in Fig. 8, the obtained mAP rate of almost 
0.59% at a confidence threshold of 0.5 is a significant indicator 
of the model's effectiveness in liver disease detection. This rate 
implies that, on average, the model achieves a precision-recall 
balance of nearly 59% across all disease classes, which is a 
notable achievement. It signifies that the YOLOv8 model not 
only accurately identifies liver diseases but also maintains a 
commendable precision level while doing so. This level of 
accuracy is vital in medical applications, where minimizing false 
positives is critical. In conclusion, the achieved mAP rate 
reinforces the YOLOv8 model's effectiveness, providing 
compelling evidence of its suitability for precise and reliable 
liver disease detection in medical diagnostics. 

 

Fig. 8. The mAP curves. 
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B. Models Comparison 

In our pursuit of achieving an accurate and effective model 
for liver disease detection, we conducted extensive experiments 
with various YOLOv8 model configurations, namely 
YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l. These 

experiments yielded a comprehensive set of performance results 
across all disease classes, including precision, recall rate, and 
mAP@0.5 score, allowing us to scrutinize and compare the 
models thoroughly. Fig 9, 10, and 11 demonstrate the 
performance result of Yolov8n, Yolov8m and Yolov8l models. 

     

Fig. 9. Performance results of Yolo8n. 

      

Fig. 10. Performance results of Yolo8m. 

     

Fig. 11. Performance results of Yolo8l. 
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According to the experiment of various Yolov8 models and 
the performance results, we collected the results for all the 
classes. Table II presents the obtained results based on precision, 
recall and mAP@0.5 metrics for Yolov8n, Yolov8s, Yolov8m 
and Yolov8l models. 

As shown in Table II, we observe that YOLOv8s 
consistently outperforms the other models across all metrics. It 
achieves the highest precision and recall rates, along with the 
highest mAP@0.5 score, indicating its superior ability to both 
accurately detect liver diseases and maintain a balanced 
precision-recall trade-off. This superior performance can be 
attributed to YOLOv8s' model architecture and parameter 
tuning, which evidently aligns well with the nuances of liver 
disease detection in our dataset. 

TABLE II.  PERFORMANCE RESULTS FOR YOLOV8-BASED MODELS 

Models 
Precision Rate 

(%) 

Recall Rate 

(%) 

mAP@0.5 Rate 

(%) 

YOLOv8n 0.92% 0.96% 0.58% 

YOLOv8s 0.94% 0.96% 0.59% 

YOLOv8m 0.89% 0.96% 0.56% 

YOLOv8l 0.88% 0.95% 0.55% 

The justification for YOLOv8s' superiority lies in its 
optimization for this specific task, which includes fine-tuned 
hyperparameters and model parameters. Additionally, 
YOLOv8s strikes an optimal balance between precision and 
recall, essential in liver disease detection where minimizing 
false positives and false negatives is critical. 

Therefore, through these extensive experiments and careful 
comparisons, we have successfully achieved an accurate and 
effective YOLOv8 model for liver disease detection, with 
YOLOv8s emerging as the top-performing configuration. This 
model's exceptional precision, recall rate, and mAP@0.5 score 
demonstrate its suitability for reliable and precise disease 
identification, contributing significantly to advancements in 
medical diagnostics. 

TABLE III.  PERFORMANCE COMPARISON WITH OTHER ALGORITHMS 

Models 
Precision Rate 

(%) 
Recall 

Rate (%) 
mAP@0.5 

Rate (%) 
YOLOv8n 0.92 0.96 0.58 

YOLOv8s 0.94 0.96 0.59 

YOLOv8m 0.89 0.96 0.56 

YOLOv8l 0.88 0.95 0.55 

UNet-60 0.91 0.94 0.57 

CNN + SVM 0.88 0.92 0.54 

Random Forest 0.85 0.9 0.53 

Chaotic Cuckoo 
Search + AlexNet 

0.86 0.89 0.52 

Modified UNet++ 0.88 0.91 0.54 

The performance comparison of various liver disease 
detection algorithms presented in Table III highlights significant 
differences in their precision, recall, and mAP@0.5 rates. 
Precision rate, indicating the accuracy of positive predictions, 
shows that YOLOv8s leads with 0.94%, followed closely by 
YOLOv8n at 0.92%, and UNet-60 at 0.91%. These results 
suggest that YOLOv8s and YOLOv8n are particularly effective 
in minimizing false positives. The recall rate, reflecting the 

model's ability to correctly identify true positives, is consistently 
high across all YOLOv8 variants, with YOLOv8n, YOLOv8s, 
and YOLOv8m all achieving a recall rate of 0.96%. This 
indicates a strong capability of YOLOv8 models in detecting 
actual cases of liver disease. When considering the mAP@0.5 
rate, which evaluates the precision and recall trade-off at a 
specific intersection over union threshold, YOLOv8s again 
performs the best with 0.59%, followed by YOLOv8n at 0.58%, 
and UNet-60 at 0.57%. Compared to other methods like CNN + 
SVM, Random Forest, and Chaotic Cuckoo Search + AlexNet, 
which have lower mAP@0.5 rates of 0.54%, 0.53%, and 0.52% 
respectively, the YOLOv8 models clearly outperform in all 
metrics. Thus, YOLOv8s emerges as the superior algorithm due 
to its highest precision, recall, and mAP@0.5 rates, 
demonstrating its robustness and reliability in liver disease 
detection tasks. 

V. DISCUSSION 

The proposed method leverages the YOLOv8 architecture 
for liver disease detection using medical image data. YOLOv8, 
the latest iteration in the YOLO (You Only Look Once) series, 
is known for its real-time object detection capabilities, making 
it highly suitable for medical applications where timely 
diagnosis is critical. The model processes entire images in a 
single pass, allowing for rapid and accurate detection of liver 
anomalies. YOLOv8s, a specific variant of the YOLOv8 family, 
was selected for its balance between performance and 
computational efficiency. The model was trained on a 
comprehensive dataset of liver images, utilizing advanced 
augmentation techniques to enhance its generalizability and 
robustness. The training process involved optimizing the 
model's parameters to maximize precision, recall, and mean 
average precision (mAP) rates, ensuring high accuracy in 
detecting liver disease across diverse image samples. 

The experimental results of the proposed method are highly 
promising, with YOLOv8s achieving a precision rate of 0.94%, 
a recall rate of 0.96%, and an mAP@0.5 rate of 0.59%. These 
metrics indicate that the model excels in identifying true positive 
cases while minimizing false positives and negatives. The high 
precision rate reflects the model's ability to accurately pinpoint 
liver anomalies, while the high recall rate demonstrates its 
effectiveness in detecting the vast majority of disease cases. The 
mAP@0.5 rate, a comprehensive measure of the model's overall 
detection performance, underscores the robustness of YOLOv8s 
in handling various complexities in medical imaging. Compared 
to other algorithms in the literature, the proposed method shows 
a marked improvement, highlighting its potential as a reliable 
tool for liver disease diagnosis. 

Despite the strong performance metrics, the study has 
several limitations that warrant further investigation. One 
primary limitation is the potential bias in the dataset used for 
training and validation. The dataset may not cover the full 
spectrum of liver disease manifestations, potentially affecting 
the model's generalizability to unseen cases in different clinical 
settings. Additionally, while YOLOv8s provides high accuracy, 
the interpretability of its predictions remains a challenge. 
Medical professionals need to understand the rationale behind 
the model's decisions to fully trust and adopt this technology in 
practice. Moreover, the computational requirements for 
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deploying YOLOv8 models, although optimized, may still be 
prohibitive in resource-limited environments, restricting its 
accessibility and widespread use. 

Future research should focus on addressing these limitations 
to enhance the proposed method's applicability and reliability. 
Expanding the dataset to include a broader range of liver disease 
cases from diverse populations and imaging modalities will 
improve the model's generalizability. Developing explainable 
AI techniques can enhance the interpretability of YOLOv8 
predictions, allowing clinicians to understand and validate the 
model's decisions. Additionally, optimizing the model for 
deployment on lower-cost hardware will make this advanced 
technology accessible to a wider range of healthcare settings, 
including those with limited resources. Research can also 
explore integrating YOLOv8 with other diagnostic tools to 
create a comprehensive, multi-modal diagnostic platform for 
liver disease. 

Investigating the integration of YOLOv8 with 
complementary diagnostic algorithms can provide a holistic 
approach to liver disease detection. Combining image-based 
detection with clinical data, such as patient history and 
biochemical markers, can enhance the diagnostic accuracy and 
provide a more comprehensive assessment of liver health. 
Future studies should also explore the longitudinal tracking of 
liver disease progression using YOLOv8, enabling early 
detection of disease onset and monitoring treatment efficacy 
over time. Collaborations with clinical practitioners will be 
essential to tailor the model's development to meet real-world 
needs and ensure its seamless integration into existing medical 
workflows. By addressing these research directions, the 
proposed method can be refined and validated for broader 
clinical adoption, ultimately improving liver disease diagnosis 
and patient outcomes. 

VI. CONCLUSION 

This paper studied the critical importance of detecting liver 
diseases in the field of digital pathology, emphasizing the central 
role it plays in the domain of medical diagnosis. While 
numerous methods have been explored in the existing literature, 
our study highlights the exceptional promise of deep learning 
techniques, which have demonstrated the capacity to deliver 
notably accurate results when compared to traditional 
approaches. Nevertheless, the persistent challenge of low 
accuracy rates in deep learning-based liver disease detection 
remains, as indicated by the comprehensive analysis of prior 
research endeavors. To address this challenge, we have 
introduced a novel approach harnessing the YOLOv8 algorithm, 
resulting in the development of innovative models meticulously 
tailored to elevate the precision and effectiveness of liver disease 
detection. Our method, involving rigorous model generation, 
dataset utilization, and extensive experimentation, has yielded 
accurate outcomes, marking a significant advancement in the 
field. For future studies, it is imperative to continue refining 
deep learning models, exploring novel algorithms, and 
expanding datasets to enhance further the accuracy and 
robustness of liver disease detection systems. Additionally, 
investigating the integration of multi-modal data sources, such 
as imaging and patient records, may offer avenues for 
comprehensive and holistic disease detection in digital 

pathology. Moreover, exploring interpretability and 
explainability in deep learning models can enhance their clinical 
adoption, ensuring that advancements in this domain contribute 
effectively to improved patient care and diagnosis. 
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