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Abstract—Active player tracking in sports analytics is crucial 

for understanding team dynamics, player performance, and 

game strategies. This paper introduces an innovative approach to 

tracking active players in handball videos using a fusion of the 

Multi-Deep SORT algorithm and a Generative Adversarial 

Network (GAN) model.  The novel integration aims to enhance 

player appearance for robust and precise tracking in dynamic 

gameplay. The system starts with a GAN model trained on 

annotated handball video data, generating synthetic frames to 

improve the visual quality and realism of player appearances, 

thereby refining the input data for tracking. The Multi-Deep 

SORT algorithm, enhanced with GAN-generated features, 

improves object association and continuous player tracking. This 

framework addresses key challenges in active player tracking, 

handling occlusions, variations in player appearances, and 

complex interactions. Additionally, GAN-based enhancements 

improve accuracy in distinguishing active from inactive players, 

facilitating precise localization and recognition. Performance 

evaluation demonstrates the system's efficacy in achieving high 

tracking accuracy, robustness, and differentiation between 

player activity levels. Metrics such as Average Precision (AP), 

Average Recall (AR), accuracy, and F1-score affirm the system's 

advancement in active player tracking. This pioneering fusion of 

Multi-Deep SORT with GAN-based player appearance 

enhancement sets a new standard for precise, robust, and 

context-aware active player tracking in handball videos. It offers 

comprehensive insights for coaches, analysts, and players to 

optimize team strategies and performance. This paper highlights 

the novel integration's advancements and benefits in the domain 

of sports analytics. Notably, the proposed method achieved 

enhanced efficiency with an average precision of 94.99%, recall 

of 93.67%, accuracy of 93.89%, and F-score of 94.33%. 

Keywords—Handball recognition; multi-deep SORT; GAN; 

deep learning; computer vision 

I. INTRODUCTION 

Active player tracking in sports videos, particularly in 
dynamic games like handball, stands as a cornerstone in sports 
analytics, offering invaluable insights into player performance, 
team strategies, and game dynamics. The integration of the 
Multi-Deep SORT algorithm with a Generative Adversarial 
Network (GAN) presents a pioneering approach, enhancing the 
precision and robustness of active player tracking through 
advanced computer vision and deep learning techniques. At its 
core, this integration represents a paradigm shift, emphasizing 

the refinement of player representations within video frames. 
The GAN model, meticulously trained on annotated handball 
video datasets, elevates player appearances by generating 
synthetic frames that enhance visual fidelity and realism. These 
enhancements serve as a critical preprocessing step, bolstering 
the accuracy and dependability of subsequent player tracking 
processes. 

Refining active player tracking using the Multi-Deep 
SORT algorithm alongside GAN-based enhancements is a 
venture fraught with intricate challenges. At the forefront lies 
the issue of appearance variations and occlusions within 
handball videos. Players exhibit diverse appearances due to 
attire and lighting, often occluding one another, posing 
substantial obstacles to continuous tracking and consistent 
identity preservation across frames. This complexity escalates 
amidst the dynamic interactions and rapid movements 
characteristic of handball games, where players frequently 
converge and diverge, leading to overlapping trajectories and 
temporary visual obstructions. Another critical challenge 
involves accurately discerning between active and inactive 
players. The system must adeptly differentiate subtle variations 
in player movement intensities or brief lulls in participation 
amidst the game's intense dynamism. Balancing precision with 
real-time processing efficiency emerges as a pressing concern, 
necessitating exceptional accuracy in player localization while 
ensuring the system operates within stringent time constraints 
for live game applications. 

Moreover, the GAN model's adaptability across diverse 
player appearances and game scenarios is imperative. Its 
capability to generate realistic player representations amidst 
varying poses, clothing, and lighting conditions dictates the 
system's reliability and consistency in player appearance 
enhancements. Establishing robust evaluation metrics, 
encompassing measures like average precision (AP), average 
recall (AR), accuracy, and F1-score benchmarks affirm the 
system's advancement in active player tracking. Average 
Precision (AP) and average recall becomes paramount to 
quantitatively validate the system's accuracy, robustness, and 
computational efficiency. Tackling these multifaceted 
challenges will pave the way for an advanced player tracking 
system, offering deeper insights into player dynamics, and 
refining strategic decision-making in handball and broader 
sports analytics realms. 
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Several existing systems and platforms specialize in player 
tracking and sports analytics, some of which employ advanced 
algorithms and technologies for enhanced tracking accuracy 
and insights in various sports, including handball. Utilizing 
arrays of cameras strategically positioned around the sports 
venue, camera-based systems capture player movements and 
ball trajectories. Computer vision algorithms process video 
feeds to track players, enabling the extraction of detailed 
positional data, player speeds, and distances covered. Systems 
like Zebra Motion Works and Kinexon employ RFID or ultra-
wideband technology embedded in player equipment or the 
playing field. These technologies track player movements and 
interactions in real-time, providing precise positional data, 
accelerations, and distances covered. Catapult Sports utilizes 
wearable tracking devices equipped with sensors to monitor 
player movements, accelerations, and workloads. These 
devices capture data on various metrics, including heart rate, 
speeds, impacts, and player exertion levels during training and 
games. 

The development of an active player tracking system using 
handball videos presents a significant research gap, particularly 
in leveraging advanced techniques such as Generative 
Adversarial Networks (GANs) to enhance tracking accuracy 
and robustness. Existing research predominantly focuses on 
player tracking in more popular sports like soccer and 
basketball, leaving a void in methodologies tailored 
specifically for the unique dynamics of handball gameplay, 
including rapid movements, frequent occlusions, and complex 
player interactions. Addressing this gap requires dedicated 
exploration into integrating GAN modules to improve the 
precision of player tracking in handball videos, considering 
factors like occlusion handling, player identification 
consistency, and real-time processing constraints. Closing this 
gap could lead to more effective and adaptable player tracking 
solutions, benefiting coaches, analysts, and players in the 
handball community. 

This combination leverages the strengths of two robust 
methodologies: the multi-object tracking expertise of Multi-
Deep SORT and the contextual data generation capabilities of 
GANs. Multi-Deep SORT, lauded for its adeptness in object 
association and identity preservation across frames, synergizes 
with GAN-generated features. These features encapsulate 
nuanced player appearances, facilitating robust tracking amidst 
occlusions, diverse poses, and intricate game scenarios. The 
crux of this fusion lies in its ability to discriminate between 
actively engaged players and their inactive counterparts. By 
infusing GAN-enhanced features, the system advances player 
recognition accuracy, offering deeper insights into player 
actions, movement, and roles during gameplay. Key technical 
objectives encompass precise player localization, consistent 
and continuous tracking, and discernment of player activity 
levels through enhanced appearance representation. 
Performance metrics such as average precision (AP), average 
recall (AR), accuracy, and F1-score benchmarks affirm the 
system's advancement in active player tracking. Average 
Precision (AP), and real-time processing benchmarks serve as 
litmus tests, affirming the system's advancements in active 
player tracking. Ultimately, this integration of Multi-Deep 
SORT with GAN-based player appearance enhancements 

redefines active player tracking in handball videos. Its 
precision, robustness, and contextual awareness empower 
coaches, analysts, and players with unparalleled insights, 
revolutionizing strategic decision-making and performance 
optimization within handball and broader sports analytics 
domains. Notably, the proposed method exhibited enhanced 
efficiency, achieving average precision 94.99%, average recall 
93.67%, accuracy 93.89% and F-score 94.33% respectively. In 
this paper, there are three major contributions associated with 
the integration of Multi-Deep SORT with GAN-based 
enhancements for active player tracking in handball videos: 

 The fusion of GAN-based enhancements with Multi-
Deep SORT improves player representation precision 
in video frames by refining initial player appearances 
with synthetic frames, enhancing accuracy and 
reliability in player tracking, even in challenging game 
scenarios. 

 The integrated system leverages GAN-enhanced 
features to elevate player recognition accuracy and 
provide deeper insights into player dynamics, refining 
strategic analysis and performance evaluation in 
handball gameplay. 

 The integration of Multi-Deep SORT with GAN-based 
enhancements in active player tracking elevates 
contextual awareness and decision-making in sports 
analytics. 

The subsequent sections of this paper are structured as 
follows: Section II explores "Related Works," presenting a 
comprehensive overview of various techniques employed in 
active player tracking systems. In Section III, the "Proposed 
Method" details the implementation of an active player 
recognition system utilizing the multi-deep sort algorithm 
integrated with GANs. Section IV delves into the 
"Performance Evaluation" of the active player recognition 
system, analyzing its efficacy and capabilities. Lastly, 
Section V encapsulates our findings and conclusions drawn 
from this study. 

II. RELATED WORKS 

Prior to the advent of deep learning and correlation filtering 
in tracking algorithms, the domain of object tracking 
predominantly relied on traditional methodologies. During this 
phase, algorithms primarily leveraged probability density and 
image edge features as fundamental tracking benchmarks. 
These methodologies directed the search for objects along the 
rising probability gradient, exemplified by established 
approaches such as Meanshift, Kalman Filter, and Particle 
Filter. 

Meanshift [1], reliant on probability density, continually 
pursues the rising probability gradient to converge iteratively 
toward the local peak. By modeling the object using color 
distribution and calculating successive frame probabilities, it 
excels in scenarios with distinct object-background color 
differentiation, notably applied in early face tracking. Its rapid 
computational efficiency sustains its continued usage and 
evolution in various Meanshift-based methodologies. The 
Kalman filter [2] focuses on modeling an object's motion rather 
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than its specific characteristics, estimating its position in 
subsequent frames. In contrast, optical flow tracking uses 
feature points to calculate matches in consecutive frames, 
constantly updating and adapting these points to accommodate 
changes in the object's shape during motion. Essentially, 
optical flow tracking constructs an object model using a set of 
evolving feature points. The Particle Filter [3] utilizes 
statistical particle distribution, initially modeling the object and 
gauging similarity with particles. It disperses particles based on 
defined distributions, evaluating their similarity to identify 
potential object positions. In subsequent frames, more particles 
are added at these locations, increasing the likelihood of 
successful object tracking. 

To effectively track an object, the initial step involves its 
detection, which can be achieved through various algorithms 
such as Mask R CNN [4], Faster R CNN [5], SSD [6], YOLO 
[7], among others. Following evaluations in [8], where multiple 
algorithms were assessed, YOLOv3 [9] was specifically 
selected due to its superior performance in detecting persons. 
DeepSORT, introduced by Wojke et al. [10], operates as a 
tracking-by-detection algorithm, merging both the bounding 
box parameters from detection outcomes and the appearance 
data of tracked objects. This integration aids in associating new 
detections in a frame with previously tracked objects. As an 
online tracking algorithm, DeepSORT relies solely on current 
and previous frame data to make predictions for the present 
frame, eliminating the necessity to process the entire video 
simultaneously. In the initial frame of the footage, each player's 
bounding box with a confidence surpassing a defined threshold 
is allocated a distinct track ID. Subsequently, the Hungarian 
algorithm is employed to assign detections in a new frame to 
existing tracks, ensuring the assignment cost function achieves 
the global minimum. 

The domain of visual object tracking, particularly in player 
tracking, stands as a highly dynamic research field, drawing 
substantial attention with numerous papers presented at 
computer vision conferences annually [11]. Countless 
methodologies have emerged, addressing both the broader 
challenge of multiple object tracking [12] and the specialized 
domain of player tracking within sports videos. In sports-
related contexts, player tracking frequently integrates with 
detection methodologies. For instance, in hockey [13], 
handball [14], indoor sports [15, 16], and outdoor soccer [17-
20], researchers explore techniques leveraging domain-specific 
insights and video conditions. These methods aim to utilize 
sport-specific knowledge, such as color distributions on the 
field or player attire, to delineate potential player areas. 
Additionally, strategies involving the field layout aid in 
recovering depth information. Player detection approaches 
vary, ranging from template matching with manual features to 
machine learning methods like SVM classifiers or Adaboost, 
often complemented by particle filter-based tracking. 

Lately, the rise of deep learning in player detection 
methods, as observed in [21], has gained momentum. This 
surge is attributed to enhanced detection accuracy and reduced 
reliance on domain-specific expertise. Leveraging 
convolutional neural networks in object detection has led to 
effective tracking-by-detection methods. For instance, 

employing the Hungarian algorithm to match detected 
bounding boxes with tracks solely based on box dimensions 
has showcased notable success in tasks like multiple object 
tracking [22], including scenarios like tracking the foremost 
player [23]. This study adopts a comparable approach. 

Xiaolong Sun et al. [27] has implemented an innovative 
framework that leverages deep learning, including dilated 
neural networks, on standard hardware for real-time spatio-
temporal tennis analysis. By employing an LSTM-GAN 
structure, it aims to improve prediction accuracy, reduce 
motion blurring, and enhance insights into player performance 
and action prediction in tennis analysis. The combination of 
LSTM architecture and GAN achieves impressive performance 
metrics with a 92.1 Precision, 91.2 Recall, 94.5 F-1 score, and 
95.0 Accuracy in recognizing and predicting tennis actions. 
These results surpass those of classical models by a significant 
margin. [28] By emphasizing recent studies and seminal works, 
this review becomes a valuable resource for both academics 
and professionals, guiding their exploration of the intersection 
between GANs and gene expression data systems. JaeWon 
Kim et al.[29] has implemented Game Effect Sprite Generative 
Adversarial Network (GESGAN). The experimental results 
demonstrate GESGAN's ability to generate style-translated 
images across different object shapes and drawing styles. It 
also handles 2D image sprite generation and modification tasks 
almost in real-time, thus cutting down game development 
expenses. 

The literature survey concerning active player recognition 
utilizing the Multi-Deep SORT with GAN approach 
encompasses an evolving landscape in player tracking 
methodologies. It reflects a shift from traditional object 
tracking methods reliant on probability density and appearance 
features towards more sophisticated techniques integrating 
deep learning and generative adversarial networks (GANs). 
Earlier methodologies like Meanshift, Kalman Filter, and 
Particle Filter laid the groundwork, with Meanshift 
emphasizing probability density distribution and Kalman Filter 
modeling object motion. Meanwhile, Particle Filter utilized 
statistical particle distribution for object tracking. 

The survey highlights the evolution towards more 
sophisticated approaches like DeepSORT, an algorithm 
integrating object detection and appearance information for 
object association. It underscores the importance of object 
detection methodologies, especially the adoption of deep 
learning-based methods like YOLOv3 for superior person 
detection. Additionally, it explores tracking-by-detection 
schemes, emphasizing the effectiveness of convolutional neural 
networks and Hungarian algorithms for bounding box 
association and multiple object tracking tasks. 

Furthermore, the survey underlines the advancements in 
active player recognition through the fusion of Multi-Deep 
SORT with GANs. GANs contribute to refining player 
representations, enhancing tracking precision, and discerning 
activity levels in dynamic gameplay. The survey's 
comprehensive analysis highlights the shift towards 
sophisticated deep learning techniques and their integration 
into object tracking and player recognition systems, paving the 
way for more precise and contextually aware player tracking 

https://www.researchgate.net/scientific-contributions/Xiaolong-Sun-2261722753?_sg%5B0%5D=Kx3u9qVwv_qhHkbNPFrCrIx6iKt8fVGZ1b2PmTPcOKih5g45C-gzq3QccA6xLhFh_abunP0.8YaGI6w50XmRc2Im44Vi8Dp8AtzaqVbd0QViedaURt9YRH78ulBhKLLkWL48uLJcUMLIFS-Q7v7xoiRiGPPH5w&_sg%5B1%5D=86gVwPfnpKahF4E--z45C-NJtMjXBAzF_iSasvpU4pqZoDy5FOfS_L8XyzPO6SlWIE_nYaU.LUdJ5kxJPf43wM0zGXzec5_vyiFPYiZFlnPANxmS_Mk44I86jWk0gT8_bQ4uvodc3FjLNwdAA4ibYsDQ-rqC1g&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
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methodologies. Table I. represents recent works in Handball 
for detection and tracking. 

TABLE I.  OVERVIEW OF THE RECENT WORKS 

Reference Techniques Description & Findings 

[1] 

Probability 

Density using 
Color 

Distribution 

and various 
Meanshift-

based methods 

- The Meanshift algorithm uses probability 

density and color distribution modeling to 

converge iteratively towards local peaks, 
particularly effective in scenarios with 

distinct object-background color 

differentiation like early face tracking. 

- Its rapid computational efficiency 

sustains its usage and evolution in various 

Meanshift-based methodologies. 

[2] Kalman filter 

- The Kalman filter models an object's 

motion, estimating its position across 

frames, while optical flow tracking 

updates feature points in consecutive 
frames to accommodate changes in the 

object's shape. 

-  Optical flow tracking effectively 

constructs an evolving object model 
using feature points. 

[3] Particle Filter 

- The Particle Filter employs statistical 

particle distribution to model and gauge 

similarity with particles, dispersing them 
based on defined distributions to identify 

potential object positions.  

- It adds more particles at successful 
locations in subsequent frames, 

enhancing object tracking likelihood. 

[4]-[9] 

Mask R CNN, 
Faster R CNN, 

SSD, YOLO,  

YOLOv3 

- To effectively track an object, the initial 

step involves its detection. 

- superior performance in detecting persons 

[10] 
DeepSORT 

algorithm  

- Deep-SORT merges bounding box 
parameters with appearance data for 

object tracking, operating online and -  - - 

Utilizing the Hungarian algorithm for  

   optimal assignment of detections to 

   existing tracks. 

[11] 
Visual Object 

Tracking 

- Player tracking in visual object tracking 

is a dynamic research domain, attracting 
significant attention and numerous papers 

at computer vision conferences each year. 

[12] 

Multiple Object 

Tracking using 
sports videos 

- In sports contexts, player tracking 

integrates with detection methods across 
various sports such as hockey[13], 

handball[14], indoor sports[15,16], and 

outdoor soccer[17-20].  

- It employ techniques leveraging domain-

specific insights and video conditions to 

utilize sport-specific knowledge for 

player delineation and depth recovery.  

- Detection approaches range from manual 

features to machine learning methods, 

often combined with particle filter-based 
tracking. 

[21] 
Deep Learning 

Models 

- The recent surge in deep learning for 

player detection methods has gained 

momentum due to improved accuracy 
and reduced need for domain-specific 

expertise. 

- Utilizing convolutional neural networks 

(CNNs) in object detection has led to 
effective tracking-by-detection methods.  

- This study adopts a similar approach, 

employing the Hungarian algorithm for 
matching detected bounding boxes with 

tracks, showcasing success in multiple 

Reference Techniques Description & Findings 

object tracking scenarios [22,23]. 

[27] 
LSTM-GAN 

structure 

- It introduced a deep learning framework 

with dilated neural networks for real-time 

tennis analysis, utilizing an LSTM-GAN 

structure.  

- This approach achieved high precision 

and accuracy in tennis action recognition, 

outperforming classical models. 

[28] 

Crossroads of 

GANs & gene 
expression data 

By emphasizing recent studies and 
seminal works, this review becomes a 

valuable resource for both academics and 
professionals, guiding their exploration of 

the intersection between GANs and gene 

expression data systems. 

[29] 

Game Effect 
Sprite 

Generative 

Adversarial 

Network 

(GESGAN) 

- The experimental results demonstrate 

GESGAN's ability to generate style-
translated images across different object 

shapes and drawing styles.  

- It also handles 2D image sprite 

generation and modification tasks almost 
in real-time, thus cutting down game 

development expenses. 

III. PROPOSED METHOD 

The literature review findings suggest the necessity for 
novel methods in active player tracking to accommodate 
diverse variances. This paper introduces an innovative 
approach to track players in handball videos by integrating the 
Multi-Deep SORT algorithm with a Generative Adversarial 
Network (GAN). This fusion is designed to address and 
overcome the challenges posed by these variations. 

Fig. 1 illustrates an overview of the proposed method. The 
active player tracking process using the Multi-Deep SORT 
algorithm with a GAN model involves several stages, starting 
with the input of handball video footage. The initial step is 
preprocessing, encompassing segmentation and annotation to 
identify players within frames. This preprocessed video data, 
along with the generated bounding boxes from the object 
detection phase, serves as the input for subsequent stages. The 
Multi-Deep SORT algorithm takes this input, initiating multi-
object tracking and identity preservation across frames. 
Simultaneously, the GAN model enhances player 
representations within video frames by refining appearance 
features and generating realistic player representations. This 
enriched data, along with the Multi-Deep SORT outputs, is 
integrated for robust and accurate player tracking. The output 
of this integrated process is refined player trajectories and 
identities across frames. It includes tracked bounding boxes 
around players, associating their identities and movements 
throughout the video sequence. Additionally, the system 
discerns between active and inactive players, offering insights 
into player dynamics during gameplay. The final output 
showcases precise player localization, continuous tracking, and 
nuanced distinctions in player activity levels. Evaluation 
metrics like Average Precision (AP), Average Recall (AR), 
Accuracy, and F1-score validate the output, ensuring high 
accuracy, robustness, and real-time processing capabilities. 
Ultimately, the refined output empowers analysts, coaches, and 
players with comprehensive insights, facilitating strategic 
decision-making and performance optimization in handball and 
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sports analytics. It consists of three major steps: object 
detection, object tracking, and enhancing appearance features 
using GAN. 

 

Fig. 1. Overview of proposed method. 

A. Active Player Detection using YOLOv8 

YOLOv8, a one-stage object detection model, directly 
anticipates bounding boxes and class probabilities from the 
input image of a handball video. Its structure comprises two 
primary components: the backbone network and the head 
network. 

1) Backbone network: YOLOv8 employs a one-stage 

object detection model for handball video, featuring a 

backbone network based on the Cross Stage Partial Networks 

(CSPNet) architecture. CSPNet, recognized for its lightweight 

and efficient design, proves particularly suitable for object 

detection tasks without compromising accuracy. The CSPNet 

architecture involves splitting the feature map of each layer 

into two parts and processing them independently, reducing 

computational requirements while maintaining high accuracy. 

The input image undergoes convolutional layers, with each 

layer's feature map divided. One part undergoes a regular 

convolutional layer, while the other traverses a dense block. 

The outputs from both are concatenated, forming the input for 

the subsequent layer. The dense block, a pivotal element of 

CSPNet, interconnects all layers within the block, enabling the 

acquisition of intricate features beyond the capacity of regular 

convolutional layers. This architectural approach has 

demonstrated superior performance in various benchmarks, 

offering state-of-the-art results in object detection and image 

classification tasks, all while achieving notable computational 

efficiency. 

The dense block can be mathematically represented as 
follows: 

𝑋_𝐼 = 𝐻_𝐼(𝑋_{𝐼 − 1}) + 𝑋_{𝐼 − 1} (1) 

Where, 𝑋_𝐼  is the output of the 𝐼th layer in the dense block 
and 𝐻_𝐼 is the convolutional layer in the Ith layer of the dense 
block. The CSPNet architecture can be mathematically 
represented as follows: 

𝐹_𝐼 = 𝐶_𝐼(𝑋_{𝐼 − 1}) + 𝐷_𝐼(𝑋_{𝐼 − 1}) (2) 

Where, 𝐹_𝐼  is the output of the Ith layer in the CSPNet. 

𝐶_𝐼 is the convolutional layer in the Ith layer in the  CSPNet. 

𝐷_𝐼  is the dense block in the Ith layer in the CSPNet. 

2) Head network: Utilizing the output features from the 

backbone network, YOLOv8's head network predicts 

bounding boxes and class probabilities for objects in the 

image. The head network is segmented into three branches: 

the Bounding Box branch forecasts object coordinates, the 

Objectness branch predicts the likelihood of a bounding box 

containing an object, and the Class Probability branch 

estimates the probability of an object belonging to a specific 

class. The output of the head network is a tensor of shape is 

follows: 
[𝐵, 𝑆, 𝑆, (𝐶 + 5)]  (3) 

Where, 𝐵 is the batch size. 𝑆 is the size of the output grid. 

𝐶is the number of object classes. The five additional channels 
contain the bounding box coordinates and objectness 
probability for each cell in the output grid. The general 
formulation of YOLOv8 can be summarized as follows: 

𝑦 = 𝑓(𝑥   (4) 

Let 𝑥 denote the input image depicting a handball scene, 𝑦 
represent the output tensor produced by the head network, and 

𝑓  signify the YOLOv8 model. Function 𝑓  processes input 

image 𝑥, forecasting bounding boxes and class probabilities for 
each object. YOLOv8 undergoes supervised learning, using 
labeled object images to minimize the loss between predicted 
and ground truth bounding boxes and class probabilities during 
training. During inference, YOLOv8 analyzes an input image, 
predicting bounding boxes and class probabilities for each 
object and utilizing a non-maxima suppression (NMS) 
algorithm to eliminate duplicate boxes, yielding the final 
output. 

B. Active Player Tracking using Multi-Deep Sort Algorithm 

After detection, active player tracking using the Multi-Deep 
SORT algorithm is a sophisticated process that involves 
several key steps to robustly monitor and identify players in 
handball videos. The tracking process begins by formulating 
the state vector for each tracked object. This vector typically 

includes parameters like position (𝑥, 𝑦), velocity (𝑣𝑥, 𝑣𝑦), 
and others. 

𝑋 = [𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦, … ]  (5) 

The dynamic model, often based on a constant velocity 
model, predicts the state of the object in the next frame. It 
describes the object's motion using a dynamic model. 
Commonly, a constant velocity model is employed: 

𝑋𝑘 = 𝐹. 𝑥𝑘−1 + 𝑊𝑘  (6) 

Where, 𝐹  is the state transition matrix and 𝑊𝑘  is the 
process noise. The observation vector represents the observed 
measurements, encompassing bounding box coordinates. The 
measurement model establishes a relationship between these 
observed measurements and the object's state, incorporating a 
measurement matrix and accounting for measurement noise. 
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Specifically, the observed measurements, usually comprising 
bounding box coordinates, are defined as follows: 

𝑧𝑘 = [𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡] (7) 

𝑧𝑘 = 𝐻. 𝑥𝑘 + 𝑣𝑘   (8) 

Where, 𝐻  is the measurement matrix and 𝑣𝑘  is the 
measurement noise. Formulate the assignment problem using 
the Hungarian algorithm, aiming to minimize the total cost of 
associations between predicted and observed bounding boxes. 
This step ensures correct matching between objects across 
frames. Kalman filtering is employed to refine the state 
estimate based on the predicted state and measured state. 
Kalman gains determines the weight of the correction, resulting 
in a corrected state estimate. This process helps adapt the 
tracking system to dynamic changes in object motion. It update 
the state estimate with a weighted average of the predicted state 
and the measured state: 

𝐾𝑘 = 𝑃𝑘|𝑘−1. 𝐻𝑇 . (𝐻. 𝑃𝑘|𝑘−1. 𝐻𝑇 + 𝑅𝑘)
−1

 (9) 

𝑋̂𝑘 = 𝐹. 𝑋̂𝑘|𝑘−1 + 𝐾𝑘 . (𝑧𝑘 − 𝐻. 𝐹. 𝑋̂𝑘|𝑘−1) (10) 

Where, 𝑃𝑘|𝑘−1 is the predicted error covariance matrix and 

𝑅𝑘 is the measurement noise covariance matrix. Following the 
tracking process, there is a possibility of overlapping or 
redundant bounding boxes. The Non-Maximum Suppression 
(NMS) algorithm employs the Intersection over Union (IoU) 
calculation between bounding boxes. This mechanism enables 
the system to retain only the most confident and non-
overlapping boxes, effectively eliminating redundancy, as 
determined by the following equation: 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (11) 

Utilize Non-Maximum Suppression (NMS) by applying a 
threshold to discard redundant bounding boxes, retaining only 
the most confident ones. Repeat the process for each frame in 
the video sequence, continuously updating the state estimates 
and associations. The final output includes refined player 
trajectories, accurately tracked bounding boxes, and 
distinctions between active and inactive players. Fig. 2 shows 
active player tracking system using multi-deep sort algorithm. 

 

Fig. 2. Active player tracking system using multi-deep sort algorithm. 

C. Enhancement of Active Player Features through 

Integrated-GAN Fusion 

The input to the GAN module is a combination of spatial 
and temporal information about actively tracked players. It 
involves both the visual context of player appearance and the 
temporal evolution of these appearances over consecutive 

frames. The GAN processes this input information to generate 
enhanced appearance features for the actively tracked players. 
The generator in the GAN takes these inputs and produces 
synthetic appearance features that are realistic and visually 
appealing. The discriminator evaluates the realism of these 
generated features, and the GAN is trained iteratively to 
improve the quality of the generated appearances. The output 
of the GAN module is a set of enhanced appearance features 
for the actively tracked players. These features can then be 
integrated back into the tracking system, enriching the visual 
representation of players for applications such as sports 
analytics, video presentations, or interactive systems. 

Algorithm: Multiple Object Tracking using Deep-SORT with GAN (MOD-

GAN) 

Input: 
       Sequence of frames, Random Noise Images  

Output: 

           Generated synthetic frames 

Step 1: Object Detection: 

            Obtain object detections using YOLOv8 algorithm 

Step 2: Feature Extraction: 

            Extract appearance features for each detected object using a pre-
trained deep neural network. 

Step 3: Data Association: 

            Associate detections with existing tracks using Kalman filtering based 
on proximity and  

            appearance similarity. 

Step 4: State Estimation (Kalman Filter): 
             // Kalman Filter Initialization 

                       Initialize the state vector 𝑥 and covariance matrix 𝑃  for each 

track. 

             Define the process noise covariance matrix 𝑄 and measurement noise 

covariance matrix 𝑅. 
             // Prediction Step: 

                      Predict the next state estimate 𝑋̂𝑘|𝑘−1using the state transition 

matrix 𝐹 and motion model. 

                      Predict the covariance 𝑃̂𝑘|𝑘−1  using the process noise 

covariance matrix 𝑄. 
             // Measurement Update Step: 

                      Compute the Kalman gain 𝐾𝑘  using the predicted covariance 

𝑃̂𝑘|𝑘−1, measurement matrix 𝐻, 

                      and measurement noise  covariance 𝑅. 

                    Update the state estimate 𝑋̂𝑘 using the predicted state 𝑋̂𝑘|𝑘−1 and 

the measurement 𝑧𝑘. 

               Update the covariance 𝑃̂𝑘  using the kalman gain 𝐾𝑘  and the 

measurement matrix 𝐻. 

Step 5: Integrate the GAN module into the MOS algorithm pipeline to 
generate synthetic data for training 

            and augmenting the object detection and feature extraction stages. 

                  𝐼𝑛𝑝𝑢𝑡 = {𝐼𝑡 , {𝐵𝑡
𝑖, 𝐴𝑡

𝑖 , 𝐼𝐷𝑡
𝑖}

𝑖=1

𝑁
,  𝑇𝑡} 

                // The output appearance features, denoted as 𝐴̂𝑡
𝑖 , are generated 

based on the input                

                   Output:  𝐴̂𝑡
𝑖 = 𝐺(𝐼𝑡, 𝐵𝑡

𝑖 , 𝐴𝑡
𝑖 , 𝐼𝐷𝑡

𝑖 , 𝑇𝑡) 

The input to the GAN module for active player tracking, let 
𝐼𝑡  denote the image frame at time 𝑡 . The bounding box 
coordinates for each actively tracked player are represented by 

𝐵𝑡
𝑖 , where 𝑖 indexes the player. The appearance features within 

these bounding boxes, denoted as 𝐴𝑡
𝑖 , capture aspects like facial 

expressions, clothing details, and body posture. Additionally, 
the temporal context is considered, with 𝑇𝑡  representing the 
sequence of frames. Optionally, player identity information can 

be denoted by 𝐼𝐷𝑡
𝑖  . Therefore, the input at time 𝑡 is represented 

as: 
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𝐼𝑛𝑝𝑢𝑡 = {𝐼𝑡 , {𝐵𝑡
𝑖 , 𝐴𝑡

𝑖 , 𝐼𝐷𝑡
𝑖}

𝑖=1

𝑁
, 𝑇𝑡}  (12) 

The generator in the GAN module process this input to 
generate enhanced appearance features for the actively tracked 
players. Let 𝐺(. ) Denote the generator function. The output 

appearance features, denoted as 𝐴̂𝑡
𝑖 , are generated based on the 

input: 

𝐴̂𝑡
𝑖 = 𝐺(𝐼𝑡 , 𝐵𝑡

𝑖 , 𝐴𝑡
𝑖 , 𝐼𝐷𝑡

𝑖 , 𝑇𝑡)   (13) 

Here, the generator learns to generate synthetic appearance 
features that closely resemble real data while considering the 
spatial and temporal context of the tracked players. The 
discriminator evaluates the realism of the generated appearance 
features. Let 𝐺(. )  represent the discriminator function. The 
discriminator takes both real and generated appearance features 
as input and outputs probabilities indicating the likelihood of 
the input being real or fake: 

𝑃(𝑅𝑒𝑎𝑙|𝐴𝑡
𝑖 ) = 𝐷(𝐴𝑡

𝑖 )    (14) 

𝑃(𝐹𝑎𝑘𝑒|𝐴𝑡
𝑖 ) = 𝐷(𝐴̂𝑡

𝑖 )  (15) 

The GAN is trained by optimizing a common objective 
function that involves both the generator and discriminator. 
The generator is trained to minimize the log probability of the 
discriminator correctly classifying the generated features as 
fake, and the discriminator is trained to maximize this 
probability. This adversarial training process is mathematically 
expressed as: 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔 (1 − 𝐷(𝐴̂𝑡
𝑖 ))  (16) 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔 (𝐷(𝐴𝑡
𝑖 )) − 𝑙𝑜𝑔 (1 − 𝐷(𝐴̂𝑡

𝑖 ))(17) 

The enhanced appearance features generated by the 

𝐺𝐴𝑁(𝐴̂𝑡
𝑖 )  are then integrated back into the active player 

tracking system. These features enrich the visual representation 
of players, contributing to a more realistic and dynamic 
portrayal within the handball video tracking context. The GAN 
module takes input from the tracking system, processes it 
through a generator to enhance appearance features, evaluates 
the realism of the generated features using a discriminator, and 
is trained iteratively to improve the overall visual 
representation of actively tracked players in handball videos. 
Fig. 3 presents the enhancement active player features through 
integrated-GAN fusion. 

 

Fig. 3. Enhancement of active player features through integrated-GAN 

fusion. 

IV. EXPERIMENTS 

In the experimental phase, as outlined in [26], the 
customized dataset consists of 751 videos, each demonstrating 
one of seven distinct handball actions: shooting, passing, jump-
shot, dribbling, running, defense, and crossing. This dataset 
was thoughtfully assembled by manually selecting specific 
scenes extracted from extended recordings of handball practice 
sessions. For this job, strategically placed GoPro cameras, 
stationed on either the left or right sides of the playing field, 
were utilized. These cameras captured footage from various 
angles to provide comprehensive coverage. The videos were 
consistently recorded in high quality, meeting or surpassing 
full HD (1920 × 1080) resolution, and maintaining a frame rate 
of 30 or more frames per second [26]. Typically, each scene 
features around 12 players, with the primary focus on one or 
two players executing the targeted action. The experiment 
assesses the proposed technique's performance using four 
metrics: average precision, average recall, accuracy, and F1-
score. Table II shows experimental setup for the proposed 
method. 

The proposed method utilizes a system configuration 
featuring an I5 Processor of the 5th Generation, 16GB RAM, 
and a 128GB hard disk space. The implementation of the 
proposed method has been carried out using Tensorflow and 
Keras. Out of the 751 videos available in the dataset, a subset 
of 250 videos is used for the proposed method MOD-GAN. 
Approximately 175-200 videos are selected for training 
purposes (70-80% of 250), encompassing various handball 
actions. The remaining 50-75 videos are reserved for testing 
(20-30% of 250). Each frame underwent meticulous 
annotation, categorizing it as depicting either an active or 
inactive player. Training parameters comprised a learning rate 
set at 0.001, a momentum of 0.9, and a decay rate of 0.0005. 
Video frames inputs were standardized to a fixed size of 640 × 
640 pixels. Experimenting with Generative Adversarial 
Networks (GANs) poses various challenges, including data 
availability, computational demands, training stability, and 
evaluation metrics. GANs require high-quality training data 
and significant computational resources for stable training and 
convergence. Tuning hyperparameters and defining appropriate 
evaluation metrics are critical for assessing sample quality and 
diversity. Addressing these constraints is crucial to ensure 
meaningful and impactful experimentation with GANs. 

The metrics used to evaluate the performance of the 
proposed method are average precision, average recall, 
accuracy, and F-Score. The performance metrics are as 
follows: 

1) Average Precision (AP): is defined as the mean of the 

precision values at each threshold where recall increases. It is 

calculated as the area under the precision-recall curve, where 

precision is the ratio of true positive predictions to the total 

number of positive predictions, and recall is the ratio of true 

positive predictions to the total number of actual positives. 

The formula for the  Average Precision is: 

𝐴𝑃 = ∑ (𝑅𝑖 − 𝑅𝑖−1)𝑛
𝑖=1 𝑃𝑖   (18) 
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Where 𝑃𝑖  is the precision at the 𝑖 -th threshold, 𝑅𝑖  is the 
recall at the 𝑖-th threshold, and 𝑅𝑖−1 is the recall at the previous 
threshold. 

2) Average Recall (AR): is defined as the mean of the 

recall values at different recall thresholds. Recall, also known 

as sensitivity, is the ratio of true positive predictions to the 

total number of actual positives. The formula for the Average 

Recall is: 

𝐴𝑅 =
1

𝑛
∑ 𝑅𝑖

𝑛
𝑖=1    (19) 

Where 𝑅𝑖 is the recall at the threshold, 𝑛 is the number of 
recall thresholds considered. 

3) Accuracy: is defined as the ratio of the number of 

correct predictions to the total number of predictions. The 

formula for the accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  (20) 

4) F1-score: is a measure of a test's accuracy, combining 

both precision and recall into a single metric. It is the 

harmonic mean of precision and recall. The formula for the 

F1-score is: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (21) 

Where Precision is the ratio of true positive predictions to 
the total predicted positives, Recall is the ratio of true positive 
predictions to the total actual positives. 

TABLE II.  EXPERIMENTAL SETUP FOR THE PROPOSED METHOD 

Dataset Various Handball Action 
*.mp4 
format 

No of videos taken 
for experiment 

Custom 
dataset -  

751 

videos   

Crossing 129 60 

Dribbling 24 15 

Defense 16 16 

Passing 104 50 

Jump-shot 370 60 

Shot 102 50 

Running 09 09 

Total 751 250 

A. Results and Comparison with Other Existing Methods 

The proposed handball tracking system has been 
experimented with the benchmark dataset mentioned in the 
experiment setup column. The Multiple Object Tracking using 
Deep-SORT with GAN (MOD-GAN) approach for active 
player tracking and enhanced appearance feature in handball 
videos exhibits strong performance across various handball 
actions, achieving improved average precision, average recall, 
and accuracy and F-score values. Table III illustrates the 
notable precision achieved in tracking active players in 
handball videos. Furthermore, Table III presents the average 
performance metrics for a range of handball action types. 
These results, as shown in Fig. 4, reflect the promising 

outcomes produced by the algorithm for active player tracking 
using the MOD-GAN approach. 

The proposed system shows a better performance for 
different actions in handball tracking system with the following 
measures such as average precision, average recall, accuracy, 
and F-score respectively. The crossing action class, the average 
measures of average precision, average recall, accuracy, and F-
score rates are 94.18%, 93.34%, 92.98% and 93.76% 
respectively. The dribbling action class, the average measures 
of average precision, average recall, accuracy, and F-score 
rates are 90.19%, 90.02%, 90.01% and 90.10% respectively. 
The defense action class, the average precision, average recall, 
accuracy, and F-score rates are 92.16%, 91.96%, 91.79% and 
92.06% respectively. The passing action class, the average 
measures of average precision, average recall, accuracy, and  
F-score rates are 90.55%, 90.01%, 90.14% and 90.28% 
respectively. The jump-shot action class, the average measures 
of average precision, average recall, accuracy, and F-score 
rates are 91.01%, 90.88%, 90.62% and 90.94% respectively. 
The shot action class, the average measures of average 
precision, average recall, accuracy, and F-score rates are 
93.48%, 92.73%, 92.93% and 93.10% respectively. The 
running action class, the average measures of average 
precision, average recall, accuracy, and F-score rates are 
94.99%, 93.67%, 93.89% and 94.33%, respectively. 
Differences in the characteristics of the dataset used for 
evaluation, such as player appearances, game scenarios, 
lighting conditions, and camera angles, can lead to 
performance fluctuations across methods. 

TABLE III.  COMPREHENSIVE EFFECTIVENESS OF THE PROPOSED METHOD 

Various 

Handball Action 

Avg. 
Precision 

(%) 

Avg. Recall 

(%) 

Accuracy 

(%) 

F1-Score 

(%) 

Crossing 94.18 93.34 92.98 93.76 

Dribbling 90.19 90.02 90.01 90.10 

Defense 92.16 91.96 91.79 92.06 

Passing 90.55 90.01 90.14 90.28 

Jump-shot 91.01 90.88 90.62 90.94 

Shot 93.48 92.73 92.93 93.10 

Running 94.99 93.67 93.89 94.33 

 

Fig. 4. Average performance measures for the proposed method MOD-GAN. 
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The results of the proposed system show a clear 
improvement over the I3D multi-class model [24], DT+STIP 
[25], DT+OF [25] and DT+Y [25]. The proposed system 
shows a better performance with average precision 94.99%, 
average recall 93.67%, accuracy 93.89% and F-score 94.33% 
respectively. The proposed method MOD-GAN is compared 
with I3D multi-class method, the average measures of average 
precision, average recall, accuracy, and F-score rates are 80%, 
77%, 76% and 78% respectively. The DT+STIP method, the 
average measures of average precision, average recall, 
accuracy, and F-score rates are 67%, 23%, 34%, and 38% 
respectively. In the DT+OF method, the average measures of 
average precision, average recall, accuracy, and F-score rates 
are 51%, 20%, 27% and 29% respectively. The DT+Y method, 
the average measures of average precision, average recall, 
accuracy, and F-score rates are 87%, 63%, 71%, and 73% 
respectively.  Comparison analysis of average performance 
measures of the proposed method MOD-GAN and other 
existing methods as shown in Table IV and Fig. 5. 

TABLE IV.  COMPARISON OF AVERAGE PERFORMANCE MEASURES OF 

PROPOSED METHOD MOD-GAN AND OTHER METHODS 

Method 

Avg. 

Precision 

(%) 

Avg. 

Recall  

(%) 

Accuracy 
(%) 

F-Score 
(%) 

I3D multi-class model 

[24]  
80 77 76 78 

DT+STIP [25]  67 23 34 38 

DT+OF [25]  51 20 27 29 

DT+Y [25]  87 63 71 73 

MOD-GAN                  

(proposed method) 
94.99 93.67 93.89 94.33 

 

Fig. 5. Comparison of average performance measures of proposed method 

MOD-GAN and other methods. 

Fig. 6 highlights the detection of active players during 
tracking with most players in the lineup being monitored. 

 

Fig. 6. Active Player detection on tracking – Crossing, and defense the ball. 

In low-light environments, background players, even when 
partially occluded or hidden, are detected during tracking. 
Their actions, such as dribbling and executing jump shots, are 
accurately captured which shown in Fig. 7. 

 

Fig. 7. Background players, partially occluded or hidden, remain undetected 

on tracking with low light environments – actions include dribbling, and jump-

shot. 

Fig. 8 illustrates the challenge of tracking a player within 
scenes. Despite closely monitoring the majority of players on 
the field, the individual tasked with controlling and protecting 
the ball as it advances towards the goal may evade attention. 
This could be attributed to their unconventional body 
positioning and a T-shirt color that blends with the playground 
background. 

 

Fig. 8. Background players, partially occluded or hidden, remain undetected 

on tracking– actions include passing, and shooting. 

It is observed from experimentation that the MOD-GAN 
method produces good and comparable results with average 
precision 94.99%, average recall 93.67%, accuracy 93.89% 
and F-score 94.33% respectively for different handball actions, 
including passing, shooting, jump-shot, dribbling, running, 
crossing, and defense as shown in Table III. The reason for this 
improvement is three-fold i) The integration of GAN-based 
enhancements with Multi-Deep SORT elevates player 
representation precision by generating synthetic frames that 
enhance visual quality and realism. This refinement of initial 
player appearances significantly boosts tracking accuracy, 
ensuring consistent and accurate player identification across 
frames, even in challenging scenarios with appearance 
variations and occlusions. ii) The integrated system 
demonstrates enhanced discrimination between active and 
inactive players in handball gameplay, leveraging GAN-
enhanced features to elevate player recognition accuracy. This 
improvement provides deeper insights into player actions, 
movements, and roles, refining strategic analysis and 
performance evaluation through precise identification and 
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classification of player engagement levels. iii) Integrating 
Multi-Deep SORT with GAN-based enhancements 
significantly enhances contextual awareness in active player 
tracking, surpassing traditional methods. The resulting refined 
player representations and improved discrimination empower 
stakeholders with unparalleled insights, facilitating informed 
decision-making and performance optimization in handball and 
sports analytics shown in Fig. 9. 

In this paper, the novel approach of employing integrated 
MOD-GAN aims to enhance player appearance for precise 
tracking in dynamic gameplay scenarios. Beginning with a 
GAN model trained on annotated handball video data, 
synthetic frames are generated to improve visual quality and 
realism, refining input data for subsequent tracking. Multi-
Deep SORT, known for robust multi-object tracking, is 
augmented with GAN-generated features for improved object 
association, advancing active player tracking by addressing 
challenges such as occlusions, appearance variations, and 
complex interactions. The system's heightened ability to 
distinguish between active and inactive players facilitates 
precise localization and recognition. 

 

Fig. 9. Sample results for enhancement of active player features through 

integrated-GAN fusion. 

V. ANALYSIS OF PROPOSED METHOD MULTIPLE OBJECT 

TRACKING USING DEEP-SORT WITH GAN (MOD-GAN) 

1) Performance evaluation: The performance of the 

proposed handball tracking system, Multiple Object Tracking 

using Deep-SORT with GAN (MOD-GAN), has been 

thoroughly evaluated using a benchmark dataset. The system 

demonstrates strong performance across various handball 

actions, achieving high average precision, recall, accuracy, 

and F-score values. Specifically, the tracking system excels in 

scenarios involving dynamic player movements and 

interactions, as reflected in Table III. The quantitative 

assessments, illustrated in Fig. 4, showcase the system's 

efficacy in accurately tracking active players and maintaining 

consistent player identities across frames. 

2) Comparison with baseline models: The proposed 

MOD-GAN method significantly outperforms several baseline 

models, including I3D multi-class [24], DT+STIP [25], 

DT+OF [25], and DT+Y [25]. The average precision, recall, 

accuracy, and F-score of the MOD-GAN approach are notably 

higher, as detailed in Table IV and Fig. 5. For instance, the 

MOD-GAN method achieves an average precision of 94.99%, 

whereas the I3D multi-class model only reaches 80%. This 

improvement underscores the effectiveness of integrating 

GAN-enhanced features with the Deep-SORT algorithm, 

leading to more accurate and robust tracking results compared 

to traditional methods. 

3) Robustness and generalization: The MOD-GAN 

approach exhibits remarkable robustness and generalization 

across different handball actions, including passing, shooting, 

jump-shot, dribbling, running, crossing, and defense. The 

system effectively handles challenges such as occlusions, 

variations in player appearances, and complex interactions 

within the game. This robustness is attributed to the GAN-

generated synthetic frames, which enhance the visual quality 

and realism of player appearances, thereby refining the input 

data for the tracking phase. The consistent performance across 

various scenarios demonstrates the system's ability to 

generalize well to different types of player actions and 

gameplay conditions. 

4) Impact of data augmentation: Data augmentation plays 

a crucial role in enhancing the performance of the MOD-GAN 

system. By generating synthetic frames using a GAN model 

trained on annotated handball video data, the system improves 

the visual quality and realism of player appearances. This 

augmentation leads to better feature representation and 

tracking accuracy. The GAN-based enhancements enable the 

system to maintain precise and consistent player identities, 

even in challenging scenarios with significant appearance 

variations and occlusions. This results in more robust and 

reliable tracking performance, providing deeper insights into 

player actions, movements, and roles within the handball 

game. 

VI. CONCLUSION 

In conclusion, active player tracking in sports analytics has 
played a pivotal role in understanding team dynamics, player 
performance, and game strategies. This paper introduced an 
innovative approach to active player tracking in handball 
videos, leveraging a fusion of the Multi-Deep SORT algorithm 
and a Generative Adversarial Network (GAN) model. The 
novel integration aimed to enhance player appearance for 
robust and precise tracking in dynamic gameplay scenarios. 
The proposed system began by employing a GAN model 
trained on annotated handball video data, generating synthetic 
frames to improve the visual quality and realism of player 
appearances. These enhancements contributed to refining the 
input data for the subsequent tracking phase. The Multi-Deep   
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SORT algorithm, known for its robust multi-object tracking 
capabilities, was augmented with the GAN-generated features 
for improved object association and continuous player tracking 
across frames. This innovative framework advanced the state-
of-the-art in active player tracking by addressing several key 
challenges. The system exhibited a heightened ability to handle 
occlusions, variations in player appearances, and complex 
interactions within the game. Moreover, the integration of 
GAN-based enhancements elevated the system's accuracy in 
distinguishing between active and inactive players, facilitating 
more precise player localization and recognition. Performance 
evaluation demonstrated the system's efficacy in achieving 
high tracking accuracy, robustness, and differentiation between 
player activity levels. 

This pioneering fusion of Multi-Deep SORT with GAN-
based player appearance enhancement has set a new standard 
for precise, robust, and context-aware active player tracking in 
handball videos, offering comprehensive insights for coaches, 
analysts, and players to optimize team strategies and individual 
performance. This paper introduced the novel integration of 
Multi-Deep SORT with GANs for active player tracking, 
highlighting its advancements and benefits in the domain of 
sports analytics. Notably, the proposed method had exhibited 
enhanced efficiency, achieving an average precision of 
94.99%, average recall of 93.67%, accuracy of 93.89%, and F-
score of 94.33%, respectively. For future enhancements, 
exploring real-time implementation of the proposed active 
player tracking system could be a valuable avenue, providing 
instant insights during live handball events. Additionally, 
integrating more sophisticated GAN architectures and 
leveraging advanced deep learning techniques may further 
enhance the system's ability to handle diverse player 
appearances and complex game scenarios. Exploring the 
integration of sensor data, such as player biometrics or position 
tracking, could contribute to a more comprehensive 
understanding of player dynamics. Finally, collaborative 
efforts with domain experts and continuous refinement based 
on feedback from sports professionals can ensure the system's 
continual improvement and alignment with evolving 
requirements in sports analytics. 
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