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Abstract—Occupational diseases present a significant global
challenge, affecting a vast number of workers. Accurate pre-
diction of occupational disease incidence is crucial for effec-
tive prevention and control measures. Although deep learning
methods have recently emerged as promising tools for disease
forecasting, existing research often focuses solely on patient body
parameters and disease symptoms, potentially overlooking vital
diagnostic information. Addressing this gap, our study introduces
a Deep Graph Convolutional Neural Network (DGCNN) designed
to detect occupational diseases by utilizing demographic infor-
mation, work environment data, and the intricate relationships
between these data points. Experimental results demonstrate that
our DGCNN method surpasses other state-of-the-art methods,
achieving high performance with an Area Under the Curve (AUC)
of 96.2%, an accuracy of 98.7%, and an F1-score of 75.2% on
the testing set. This study not only highlights the effectiveness of
DGCNNs in occupational disease prediction but also underscores
the value of integrating diverse data types for comprehensive
disease diagnosis.
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I. INTRODUCTION

Occupational diseases has been a major concern for many
years, which are caused by harmful working conditions and
production processes that affect the health of workers. Before
the common era, Hippocrates (460-377 BC) discovered lead
poisoning. In the first century, Pliny the Elder discovered the
harmful effects of dust on the human body. In the second
century, Galen described the diseases that miners suffered
from. In the following centuries, mercury poisoning and other
occupational diseases were discovered.

The best way to prevent and control occupational diseases
is to detect them early. If dangerous occupational diseases are
not detected and treated in time, they can cause permanent
damage to humans or even death. However, currently, in
developing countries, such as Vietnam, the examination and
detection of occupational diseases are still limited. Thousands
of workers are usually routinely screened in batches to detect
disease or the risk of disease. To screen for the risk of occupa-
tional diseases, workers are first examined in general through
clinical signs, such as questioning, studying medical records,
etc. If it is determined that there is a risk of occupational
diseases, workers will be prescribed in-depth paraclinical tests,
such as chest X-ray, hearing test, FEV1 pulmonary function
test, etc. However, due to the small number of occupational

disease doctors, the examination of thousands of workers at
the same time leads to low efficiency, long waiting time, and
expensive costs. Therefore, a solution for early detection of
the risks of occupational diseases is necessary.

Owning to the development of machine learning, many
methods have been proposed for disease diagnosis, including
K-nearest neighbors (KNN), support vector machines (SVM),
random forests (RF), and artificial neural networks (ANN),
CNN, RNN [1], [2], [3], [4]. Although these studies have
achieved promising results in disease diagnosis, they are diffi-
cult to apply in practice due to their strict data requirements.
The data must be complete and have a common structure for
all patients, which is often not the case with medical data. Such
data is often incomplete and heterogeneous among patients.

Recently, the rise of Graph Neural Network has made
it easier to solve problems related to heterogeneous data
like medical data. The network treat each data sample as a
graph with nodes representing the relevant features of the
sample. The model then uses the data from the nodes and
the relationships between them to synthesize the output data
and label the sample. The idea of using GCNs for disease
diagnosis is similar [5]. Each patient is treated as a graph
with nodes representing the patient’s features. The nodes are
connected to each other based on the relationships between
them. The output data is then synthesized based on the nodes
and the relationships between them. In GCNs, each graph does
not need to be the same as the other graphs. This means that
feature selection is not necessary. This means that important
features will not be lost. This model increases the flexibility of
the model in processing data. We can also expand and upgrade
the dataset arbitrarily without fear of the model failing.

In this paper, we propose the use of a deep graph con-
volutional neural network (DGCNN) for disease diagnosis.
DGCNNs are a type of neural network that is designed to
work with graphs. Graphs are a natural way to represent data
that has relationships between the data points. For example,
a graph can be used to represent the relationships between
genes in a genome, or the relationships between symptoms in
a disease [6].

DGCNNs have been shown to be effective for a variety
of tasks that involve graphs, including image classification
and natural language processing. In this paper, we show that
DGCNNs can also be used for disease diagnosis. We use a
DGCNN to learn the relationships between symptoms and
diseases, and then use the learned relationships to predict the
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disease for a new patient

II. RELATED WORKS

The study focuses primarily on the methods of disease
diagnosis based on a number of machine learning (ML) algo-
rithms, so in this section, some studies using medical records
to diagnose the disease of the subject will be mentioned.

In principle, disease diagnosis is based on a dataset of many
patients with relevant information fields related to the disease
diagnosis process. The data that affect the diagnosis of the
disease, so it needs information related to the patient’s health:
weight, body mass index, glucose quantification, etc.

Recently, the problem of disease diagnosis is often ap-
proached using classical ML algorithms specialized for la-
beling problems. With the increasingly development of deep
learning (DL) algorithms along with their versatility and
convenience, these methods are gradually being used in many
different types of problems, including disease diagnosis. How-
ever, these classical methods all have a common drawback that
they are very much affected by the dataset as well as the weak-
nesses of the dataset. The lack of many important information
fields or unbalanced data is very likely to negatively affect the
performance of the diagnostic model.

In the past, most studies in the field of disease prediction
have been approached using simple modern machine learning
methods such as Naive Bayes, K-Nearest Neighbors (KNN),
Decision Tree, or more ancient methods such as traditional
statistical methods [7]. In statistical methods, the predictor will
rely on the statistical parameters and charts of the dataset to
make a judgment. This method has a big disadvantage that the
result depends on the predictor and the data. If the dataset is
not good and the predictor does not have much experience, the
result is very likely to be inaccurate.

Naive Bayes is a simple classification model that is easy
to install and has a fast processing speed. However, it has a
big disadvantage that it requires the input features to be inde-
pendent, i.e. the information fields do not have a relationship
with each other. This is difficult to happen in reality and will
reduce the quality of the model.

KNN is the simplest and easiest-to-use labeling algorithm.
The model uses the K coefficient to identify the K nearest
samples to the object and then uses the labels of these samples
to proceed with the classification for the object to be predicted.
The most obvious advantage of this model is that it does not
take time for the training process. However, for large datasets,
the algorithm takes more time for the calculation process. KNN
is very sensitive to noise when the K coefficient is small. The
performance of the model depends largely on the quality of
the dataset and the K coefficient.

It was not until Deep Learning, a subfield of machine
learning, became popular, that disease diagnosis problems were
applied to this method. These types of models have the same
installation and operation process, they will all use the input
dataset to proceed with the training model, the data is split
or repeated several times to improve the model after each
training. In other words, Deep Learning models allow it to
self-learn and improve its accuracy, hence achieving high
accuracy. For example, Mohammed Ismail and colleagues [8]

presented a deep learning technology in the diagnosis of heart
disease by using an artificial neural network (ANN) model.
Junaid Rashid and colleagues [9] last year also proposed
the ANN model and compared its efficiency with traditional
machine learning models. Or most recently, the paper on
the application of advanced deep learning models using two
models simultaneously CNN and LSTM also in the problem
of heart disease diagnosis of Sudha and Kumar [10] .

GCN models actually appeared early, however, they have
not been widely applied due to their complexity and difficulty
in installation, requiring users to have a certain understanding
in the field of Deep Learning [11], [12], [13]. In 2019, Ping
Xuan and colleagues successfully applied a model combining
GCN and CNN (Convolutional Neural Network) in the diagno-
sis of IncRNA disease [14] . Recently, Haohui Lu and Shahadat
Uddin also presented on the application of GNN (Graph Neural
Networks) in the field of disease diagnosis based on electronic
data [15]. These models take advantage of the relationship
between objects to build a network of relationships between
them, so when predicting a sample, the model not only relies
on the information fields of that sample but can also use the
information fields of other samples related to the sample to be
labeled, unlike the old methods, which can only use the unique
attributes of the sample to predict the result of that sample.

GCNs have many advantages in the field of disease predic-
tion, but they also have some limitations. All of these models
require the design and structure of a graph of relationships
between samples or between attribute fields. This requires
users to have a deep understanding of the problem as well as
the relationships in the dataset. Poorly constructed relationship
graph can also reduce the accuracy of the model by not only
not taking advantage of important information but also creating
noise. The dataset also needs to have enough samples, if
not, it will not take advantage of the strengths of the GCNs
model because the relationship diagram is too small, with few
relationship edges. A large graph means that the model is
more complex, making it difficult for users to visualize or
fully understand the model.

Methods using GCNs are showing to be effective in disease
diagnosis problems than traditional machine learning methods.
These models take advantage of the understanding of the
dataset as well as the ability to reuse data in the prediction
process. However, current methods require users to design
the relationship graph for the entire dataset, requiring a deep
understanding of the problem. This makes the model very
complex and difficult to control. With the DGCNN [6] model,
we consider each sample as a graph with child nodes as
attribute fields and edges as relationships between them. Thus,
we only need to initialize the relationship diagram frame for
each sample without having to design the total link diagram
between samples. However, this does not reduce the ability
to take advantage of the relationships between samples, on the
contrary, it makes the model more clear and easy to understand.

These studies have shown the ability of ML algorithms in
diagnosing diseases based on medical records. However, these
studies still have some limitations, such as:

The datasets used in these studies are small in scale, so the
results of these studies may not be well generalized to larger
datasets. These studies primarily use classical ML models, so
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these models may be affected by the weaknesses of the dataset.
In the future, studies on disease diagnosis based on medical
records need to use larger datasets and newer ML models to
improve the accuracy of diagnostic models.

III. MATERIAL AND METHODS

In this study, we focus on occupational disease data, which
is typically heterogeneous and lacks explicit information. Im-
puting missing data with arbitrary values can hinder model
training performance due to discrepancies between imputed
and actual values. In this context, with missing data, traditional
methods that often rely on statistical models do not explicitly
capture the relationships between different features.

GCNs, on the other hand, are well-suited for modeling
complex relationships between data points. This makes them
a promising approach for occupational disease forecasting,
where the data is inherently complex and interrelated.

This challenge can be effectively addressed by employing
a graph-based data structure, such as the Graph Convolutional
Network (GCN). GCNs have demonstrated their ability to
construct relational graphs from individual health records and
transform the data into a format that excludes missing values.

Therefore, we propose a novel approach to occupational
disease forecasting using graph convolutional neural networks
(GCNN). Our approach synthesizes information related to
body parameters, working environments, and disease symp-
toms to predict the likelihood of a worker developing an
occupational disease.

In our approach, we define the relationships between differ-
ent features in terms of their level of influence and correlation.
We then use this information to calculate and adjust the data
field values before using them for prediction. This allows us
to better capture the complex relationships between features
and improve the accuracy of our predictions.

Considering the importance of the working environment
in occupational disease prediction, we also combined such
information with patient’s medical reports to build our GCNN.
Inspired by the work of [6], we propose a new deep graph CNN
(DGCNN) to deal with such complex data. We have updated
the network to increase the number of units in each layer.
Besides, the new architecture allow us in better handling the
input data, avoiding underfitting and reducing the training cost.

To handle inconsistent and insufficient data, we organize
each patient’s medical report as an information graph network.
After the data runs through the graph network, we concatenate
the outputs generated from the last graph layer. These are
then passed to two fully connected and dropout layers before
diagnosing whether the patient is sick or not.

In the next section, we will present in detail the used
features and the architecture of our proposed network.

A. Data Selection and Re-sampling

This study utilizes health data primarily derived from
subjects’ self-reported information and health measurements
compiled into reports. This inherent data structure introduces
the potential for missing values due to incomplete reporting or
subject uncertainty. While some fields with high missing rates

may not directly influence the outcome variable, they could
still exhibit subtle relationships with other factors, making
traditional data cleaning processes cumbersome.

To address these challenges, we leverage DGCNN archi-
tecture. Unlike conventional approaches that establish rela-
tionships between subjects, DGCNN treats each data sample
as a relational graph composed of the individual data fields
associated with that subject. This allows us to utilize data
samples regardless of their inherent structure, eliminating the
need for extensive data cleaning.

To implement DGCNNs effectively, we define a relational
graph for each data point. Since not all data categories share
inherent relationships, the only object each category is directly
connected to is its corresponding subject (through the sample
ID). We further refine the graph by connecting categories that
exhibit apparent relationships based on domain knowledge.
This approach leverages the inherent structure of the data with-
out requiring pre-defined relationships between subjects, mak-
ing it particularly well-suited for our heterogeneous dataset.

While DGCNN’s data structure allows it to handle im-
balanced data to some extent, we further improve model
training performance by applying re-sampling techniques to
the training dataset. Due to the disparity in data sets and the
variable feature shapes across different samples, we cannot
apply re-sampling algorithms that rely on the original data
to generate new data, like Condensed Nearest Neighbors or
SMOTE [16]. Instead, we employ two methods to address such
class imbalance, including Random Under Sampler for under-
sampling [17] and Random Over Sampler for over-sampling
[18] [19].

Consequently, we propose two DGCNN models, each using
a different type of re-sampling method: one with Random
Over Sampling (DGCNNv1) and another with Random Under
Sampling (DGCNNv2). This allows us to compare the impact
of different re-sampling approaches on model performance in
the context of imbalanced data and identify the most effective
strategy for our specific dataset.

B. Deep Graph Convolutional Neural Network for Occupa-
tional Disease Detection

The first DGCNN architecture, named DGCNNv1 as illus-
trated in Fig. 1, employs Random Over-sampling to achieve
a balanced class distribution with a 1:10 ratio. This technique
retains all samples from the majority class while duplicating
instances from the minority class until the desired ratio is
reached. DGCNNv1 utilizes a DeepGraphCNN layer as its core
component, encompassing four child GCN layers. Each GCN
layer has a size of 256 channels, except the final layer, which
has only one channel and solely serves a sorting purpose. The
output tensor from this DeepGraphCNN layer has 400 rows.

The output of the DeepGraphCNN layer is fed into a
convolutional layer with 128 channels. Since this layer pri-
marily synthesizes data from the first layer, its kernel size
and stride are set equal to the sum of the DGCNN layer
channels. Subsequently, a MaxPool and a Dropout layer are
applied. Following the data synthesis from the first layer, a new
Conv1D layer is introduced as a feature extractor. The network
output is then flattened to a single dimension for processing
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Fig. 1. DGCNN V1 model architecture.

Fig. 2. DGCNN V2 model architecture.

by two consecutive Dense layers. These layers employ ReLU
and Sigmoid activation functions, respectively (Table I).

TABLE I. DETAILED DGCNN V1 NETWORK

Deep Graph CNN

Layer Configuration Output
DGCNN k: 400 256x256x256

layer size:
[256, 256, 256, 1]
activations:
[tanh,tanh,tanh,tanh]

CNN

Conv1D kernel: 769 400x128
stride: 769
chanel: 128

MaxPool1D pool size: 2 200x128
Dropout rate: 0.1 200x128
Conv1D kernel: 50 150x128

stride: 1
chanel: 256

Flatten In: 150x128 19200
Dense units:512, ReLU 512
Dropout rate: 0.1 512
Dense units:1, Sigmoid 1

The second proposed model, DGCNNv2 as presented in
Fig. 2, shares a similar structure with DGCNNv1. However,
all settings are adjusted to accommodate the training dataset
that has been pre-processed with Random Under-sampling
to achieve a 5:100 class ratio. Under-sampling serves the
same purpose as over-sampling but instead of replicating the
minority class, it removes samples from the majority class to
achieve the desired ratio (Table II).

Considering the reduced size and significantly higher neg-
ative label rate of the under-sampled training data, DGCNNv2
implements several modifications to prevent overfitting and
decrease training costs. To mitigate the risk of overfitting,
where nearly all predictions become negative, one child GCN
layer is removed from the DeepGraphCNN layer. Additionally,
the number of output rows in the DeepGraphCNN layer is
reduced to 135, and the size of the GCN layers is lowered to
128.

Furthermore, DGCNNv2 adopts a convergent architecture
for the data synthesis layer, where the size of each hidden
layer progressively decreases. Additionally, the Dropout rate
is increased from 10% to 20% to further prevent overfitting.

C. Features and Fusion

We utilize four types of features extracted from patients’
medical reports:

• Subject’s body parameters: These are mainly single,
linear values representing various physiological mea-
surements.

• Workplace information: Categorical data describing
the patient’s work environment and potential occupa-
tional hazards.

• Habits: Categorical data capturing the patient’s
lifestyle choices and habits.

• Disease symptoms: Both visible and invisible symp-
toms reported by the patient, classified as categorical
data.
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Fig. 3. Relationship graph architecture.

These features are collected from hospital-generated medi-
cal reports, ensuring data consistency and quality. While body
parameters are primarily numerical, the remaining features are
categorized, allowing them to adapt their scope based on the
number of unique values encountered.

To effectively capture the relationships between these fea-
tures, we reorganize the patient data into an adjacency matrix,
represented as a relational graph. Each graph comprises nodes
and edges corresponding to individual data points and their
relationships. The unique patient ID serves as the root node,
distinguishing each subject. This root node connects to the four
aforementioned feature categories.

Furthermore, we define edges between relevant features to
capture intricate relationships. For example, if a patient reports
chest pain, we also have information about the pain level,
location, duration, and contributing factors. By establishing

TABLE II. DETAILED DGCNN V2 NETWORK

Deep Graph CNN

Layer Configuration Output
DGCNN k: 135 128x128

layer size:
[128, 128, 1]
activations:
[tanh,tanh,tanh]

CNN

Conv1D kernel: 257 135x256
stride: 257
chanel: 256

MaxPool1D pool size: 2 67x256
Dropout rate: 0.2 67x256
Conv1D kernel: 50 18x128

stride: 1
chanel: 128

Flatten In: 18 x 128 2304
Dense units:64, ReLU 64
Dropout rate: 0.2 64
Dense units:1, Sigmoid 1

TABLE III. DEMOGRAPHIC INFORMATION, PERCEIVED SYMPTOMS
SYMPTOMS AND PPE OF STUDIED SUBJECTS

Healthy Positive

Demographic information

Age (Average) 42.6 52.3
Gender (Male/Female) 6379/1440 173/33
Seniority (year) 10.7 20.6

Perceived symptoms

Cough 1700 149
Sputum 1638 150
Dyspnea 766 144
Chest pain 845 151
Nasal discharge 685 39
Hoarseness 563 36
Wheezing 262 21
Tiredness 982 105
Weight loss 358 30

Personal Protective Equipment (PPE)

Helmet (Yes/No) 6275/1544 184/27
Boots 6413/1406 167/44
Gauze mask 7553/266 207/4
Gloves 6396/1423 155/56
Goggles 3184/4635 117/94
Employment insurance 6930/889 188/23

edges between these nodes, we enable information propagation
within the graph, allowing each node to leverage the infor-
mation contained within its neighbors. The resulting graph
structure is similar to the illustration in Fig. 3.

These graphs are then utilized for feature extraction. Spatial
graph convolutions are applied to extract vertex features,
followed by a SortPooling layer to arrange them in a consistent
order. This process generates a sorted graph representation
with a fixed size, enabling Convolutional Neural Networks
to efficiently process and learn from the data in a consistent
manner [16].

IV. EXPERIMENT AND DISCUSSION

A. Dataset

The dataset utilized in this study consists of 8,030 samples.
Each sample includes a binary output class indicating whether
the subject is healthy or diagnosed with an occupational
disease. The dataset exhibits a significant class imbalance,
with 7,819 negative (healthy) samples and 211 positive (ill)
samples, resulting in an output data ratio of 37:1. To address
this imbalance, we employed appropriate data pre-processing
techniques for each model, as detailed in the corresponding
experiments.

Prior to model training, the dataset was split into two
subsets: 70% for training and 30% for validation. The entire
original dataset is used for testing to provide a comprehensive
evaluation of the models’ performance. Table III presents de-
tailed demographic and clinical information about the subjects
included in the study.

B. Pre-processing

Given the heterogeneity and imbalance of medical data,
thorough pre-processing is crucial for such studies. To address
these challenges, we implemented a comprehensive pipeline
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focusing on data cleaning, missing value handling, and class
imbalance correction.

Firstly, to ensure optimal training performance, we cleaned
the dataset by removing 39 empty columns (0.17%) lacking
informative value. For remaining fields with missing data,
we employed appropriate imputation techniques based on
data type and context, preserving valuable information while
minimizing bias. Notably, we retained encoded fields with
numerous unique values, acknowledging their potential noise
but opting for alternative mitigation strategies during training
to capitalize on their valuable information.

Secondly, to address the class imbalance (3 positive to
112 negative samples), we employed the Condensed Nearest
Neighbors [20], [21], [22] under-sampling technique from
Imbalanced-learn. This approach strategically removed redun-
dant majority class samples while preserving all minority class
data, resulting in a more balanced 3:7 ratio. This balanced
dataset facilitated fair model evaluation and prevented potential
bias towards the dominant class, ensuring accurate and reliable
predictions for both positive and negative cases.

Moreover, to enable a fair comparison with traditional ma-
chine learning models, we adapted our pre-processing pipeline
to their specific needs. While DGCNNs handle diverse data
formats, traditional models require homogeneous input. We
therefore employed additional data cleaning steps, including
imputing missing values with context-aware techniques and
limiting the data to fields with less than 50% missing data
to ensure sufficient information for traditional model training
(Table IV).

TABLE IV. DETAILED GRAPH INFORMATION

Graph statistic

Nodes (max) 147
Nodes (min) 88
Nodes (avg) 107.77
Edges (max) 172
Edges (min) 94
Edges (avg) 119.28

Graphs 8030

C. Experiment Setup

To comprehensively evaluate the proposed method and
compare the effectiveness of the DGCNN models against
other popular approaches (KNN, SVM, ANN, and LSTM), we
conducted six distinct experiments detailed in Table V. Each
experiment followed a three-stage pipeline:

• Re-sampling: Recognizing the inherent class imbal-
ance in the dataset, as shown in Fig. 4 and 5, we
employed targeted re-sampling techniques to ensure
fair model evaluation. For KNN, SVM, ANN, and
LSTM models, we utilized Condensed Nearest Neigh-
bor (CNN) under-sampling from Imbalanced-learn, as
illstrated in Fig. 7. This technique carefully selected
minority class samples and strategically removed re-
dundant majority class data, resulting in a balanced
3:7 ratio. For DGCNNv1 and v2, we opted for Ran-
dom Under-sampling, maintaining all minority class
samples while randomly eliminating a portion of the

majority class to achieve a 5:100 ratio. This choice
leveraged the DGCNNs’ ability to handle imbalanced
data more effectively due to their graph-based nature,
as shown in Fig. 6.

• Training Model: Each model was trained with the
re-sampled dataset using optimized hyperparameters
determined through grid search. For DGCNNs, this
included configuring graph convolutional layers, acti-
vation functions, and learning rates. The goal was to
achieve optimal performance with minimal overfitting.

• Evaluating Output Model: We assessed the perfor-
mance of each model using a set of relevant metrics
including precision, recall, F1-score, and balanced
accuracy. This provided a comprehensive picture of
each model’s effectiveness in identifying occupational
disease cases, considering both positive and negative
predictions.

TABLE V. SIX EXPERIMENTS WITH DIFFERENT INPUTS AND NETWORKS

Exp Re-sample method Train/test Model Others
ratio

1 CNN Condensed 5:5 KNN k: 5
Nearest Neighbour

2 CNN Condensed 5:5 SVM gamma:1/109
Nearest Neighbour

3 CNN Condensed 5:5 ANN learn rate: 0.001
Nearest Neighbour batch size: 64

epoch: 50
4 CNN Condensed 5:5 LSTM learn rate: 0.001

Nearest Neighbour batch size: 64
epoch: 50

5 Random Under 7:3 DGCNN learn rate: 0.0005
Sampler V1 batch size: 100
Ratio: 0.3 epoch: 100

6 Random Under 7:3 DGCNN learn rate: 0.001
Sampler V2 batch size: 100
Ratio: 0.05 epoch: 150

This structured approach, coupled with specific re-sampling
strategies tailored to each model type, allowed us to conduct a
rigorous and fair evaluation of our proposed method compared
to established tools. The results, presented in Table V and fur-
ther analyzed in subsequent sections, reveal valuable insights
into the effectiveness of DGCNNs for analyzing medical data
with its inherent complexities..

The experiments leveraged the computational power of
a 4 GB NVIDIA Quadro M2200 GPU and an Intel(R) 2.8
GHz Xeon(R) microprocessor, running TensorFlow 2.10.0 and
StellarGraph Framework 1.2.1[23] under Python 3.9.12, to
implement and train the various models. This framework
enabled efficient execution of the DGCNN algorithms, while
the powerful GPU-CPU combination facilitated smooth pre-
processing and data analysis tasks.

We used the following parameters and techniques for
training our models:

• The model was compiled using a binary cross-entropy
loss function.

• For optimization, an Adam optimizer was employed
with β1 = 0.9, β2 = 0.999, and ϵ = 1e-07. The initial
learning rate was adjusted to optimize each model.

• The batch size for the ANN and LSTM models was set
at 64 to minimize the cost function. For all DGCNN
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Fig. 4. Missing percentage of data field(s).

Fig. 5. Statistics of original data set output labels.

networks, a minibatch size of 100 was applied to
enhance training performance.

• Since the models were trained without a large num-
ber of epochs, the early stopping technique was not
implemented in the training process.

• To estimate the efficiency of each model fairly, the pre-
diction results on all 8030 samples from the original
dataset were used to calculate the evaluation metrics.

In this study, the performance metrics employed to evaluate

the experimental results include accuracy, loss, F1 score,
precision, recall, and the confusion matrix. The models will
be applied to predict outcomes on the original dataset to
ensure a fair evaluation. These metrics are calculated using
the following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =

classes∑
i

2× classi
totalsamples

× Precisioni ×Recalli
Precisioni +Recalli

where TP is the true positive (number of samples correctly
predicted as “positive”), TN is the true negative (number of
samples correctly predicted as “negative”), FP is the false
positive (number of samples wrongly predicted as “positive”)
and FN is false negative (number of samples wrongly predicted
as “negative”).

www.ijacsa.thesai.org 1328 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

(a) DGCNN V1 network. (b) DGCNN V2 network.

Fig. 6. Under-sampling for DGCNN network.

Fig. 7. Condensed nearest neighbors re-sampling.

TABLE VI. EXPERIMENT RESULTS

Exp Method Precision Recall F1 Score ACC

1 KNN 18.8% 70.14% 29.66% 91.26%
2 SVM 39.4% 82% 53.23% 96.21%
3 ANN 58.14% 83% 68.36% 97.98%
4 LSTM 62.4% 78.67% 69.6% 98.19%
5 DGCNN V1 43.6% 35.8% 39.3% 96.46%
6 DGCNN V2 78% 72.89% 75.23% 98.66%

D. Results and Discussion

The results of the six methods that we have discussed
are presented in Table VI. This table illustrates that all six
models are capable of detecting occupational diseases using
their respective inputs and networks. Among these, the sixth
experiment exhibits the best performance, achieving an accu-
racy of 98.66%, a loss of 1.65%, a recall of 72.89%, a precision
of 78%, and an F1 score of 75.23%. The F1 score, precision,
and recall are not as high as the accuracy, primarily due to
noise arising from elements in the dataset that contain multiple
classification values. The amount of noise is proportional to
the size of the input data. Furthermore, the input samples
used for prediction are imbalanced; therefore, a high rate of
correct predictions does not necessarily indicate that every
class has a similar rate of correct prediction. The fact that
recall, precision, and F1 score are almost equal suggests that
our model’s predictions are more balanced and has accurately
diagnosed many patients.

The progress of training and Mean Receiver Operating

Fig. 8. Training progress.

Characteristic (ROC) curves for the sixth model are displayed
in Fig. 9 and 8, respectively. They indicate that our DGCNN
V2 model architecture, as detailed in Table II, achieved a high
accracy and Area Under the Curve (AUC) of 96.22%. This
demonstrates the model’s strong performance in classifying
negative and positive samples.

Table VII showcases a comprehensive classification com-
parison between sick patients and healthy individuals from
our fourth experiment. In this experiment, the LSTM model
outperformed other conventional methods, demonstrating ef-
fective detection of diseased patients within the overall patient
population in the dataset. Yet, our DGCNN V2 model, as
depicted in Table VIII, exhibits even greater effectiveness,
particularly in the context of the sixth experiment. This model
excels in handling heterogeneous datasets. For the negative
class, precision, recall, and F1 scores are uniformly high at
approximately 99.33%. In contrast, the positive class yields
scores of 77.73% for precision, 72.9% for recall, and 75.23%
for the F1 score. The macro averages are calculated as 88.47%
for precision, 86.14% for recall, and 87.27% for the F1
score, with the weighted averages hovering around 98.63%.
Overall, our model attained an impressive 98.66% accuracy
across the entire dataset. Support numbers stand at 225 for
the occupational diseases category and 7805 for the healthy
category, contributing to a total of 8030 for each accuracy,
macro average, and weighted average metric. A comparison
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Fig. 9. Mean ROC curves for the classifiers on the test set.

Fig. 10. LSTM model prediction confusion matrix.

of the confusion matrices from the LSTM outputs and the
DGCNN prediction results, as shown in Fig. 11 clearly demon-
strates the superior performance of our network over traditional
methodologies (Fig. 10).

TABLE VII. EXPERIMENT 4 - CLASSIFICATION PERFORMANCE

Precision Recall F1 Score Support

class No 99% 99% 99% 7764
class Yes 79% 62% 70% 266

Accuracy 98% 8030
Macro avg 89% 81% 84% 8030

Weighted avg 98% 98% 97% 8030

V. CONCLUSION

In this study, we sought to enhance occupational disease
detection performance. Our proposed approach utilizes a rela-
tionship graph to store and analyze body indicators alongside
information about patients’ working environments and the
interrelations of these parameters. We empirically validated
our method on a collected dataset, demonstrating its superior

TABLE VIII. EXPERIMENT 6 - CLASSIFICATION PERFORMANCE

Precision Recall F1 Score Support

class No 99% 99% 99% 7805
class Yes 78% 73% 75% 225

Accuracy 99% 8030
Macro avg 88% 86% 87% 8030

Weighted avg 99% 99% 99% 8030

Fig. 11. DGCNN model prediction confusion matrix.

efficiency with an accuracy of 98.66%, an F1 Score of 75.23%,
and a ROC (Receiver Operating Characteristic) of 96.22%. Ad-
ditionally, when applied to a commonly used stroke prediction
dataset from Kaggle, our method achieved remarkable results:
an accuracy of 99.69%, an F1 Score of 96.9%, and a perfect
ROC of 100%. These outcomes not only outperformed other
state-of-the-art methods but also surpassed previous solutions
as indicated in various studies [24], [4], [25]. The results
affirm the Deep Graph CNN network’s suitability for handling
heterogeneous data, which is crucial for accurately diagnosing
diseases.

Looking ahead, our future work will focus on developing
an API that integrates this proposed method. This will en-
able medical websites to utilize our approach for diagnosing
occupational diseases, leveraging user-provided occupational
information.
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