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Abstract—Conformance checking techniques are usually used
to determine to what degree a process model and real execution
trace correspond to each other. Most of the state-of-the-art
techniques to calculate conformance value provide an exact
value under the circumstance that the reference model of a
business system is known. However, in many real applications,
the reference model is unknown or changed for various reasons,
so the initial known reference model is no longer feasible,
and only some historical event execution traces with its corre-
sponding conformance value are retained. This paper proposes
a log drivened conformance checking method, which tackles
two perspective issues, the first is presenting an approach to
calculate the approximate conformance checking value much
faster than the existing methods using machine learning method.
The second is presenting an approach to conduct conformance
checking in probabilistic circumstances. Both kinds of approaches
are from the perspective of no reference model is known and
only historical event traces and their corresponding fitness can
be used as train data. Specifically, for large event data, the
computing time of the proposed methods is shorter than those
align-based methods, and the baseling methods includes k-nearest
neighboring, random forest, quadratic discriminant analysis,
linear discriminant analysis, gated recurrent unit and long short-
term memory. Experimental results show that adding a machine
learning classification vector in the training set as preprocessing
for train data can obtain a higher conformance checking value
compared with the training sample without increasing the clas-
sification vector. Simultaneously, when conducted in processes
with probabilities, the proposed log-log conformance checking
approach can detect more inconsistent behaviors. The proposed
method provides a new approach to improve the efficiency and
accuracy of conformance checking. It enhances the management
efficiency of business processes, potentially reducing costs and
risks, and can be applied to conformance checking of complex
processes in the future.
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I. INTRODUCTION

Process mining mainly extracts valuable process informa-
tion from events. It is a supplement and innovation to business
process management methods. Process mining is mainly com-
posed of three parts, namely, discovery, conformance checking,
and enhancement [1]. Conformance checking is designed to
check the conformity of discovered process model with the
event executions, so conformance checking value or fitness is
used to describe the degree that the event execution conforms
to the process model.

Two problems and two major challenges are encountered
in conformance checking studies [2]. The two problems are
described as follows: (1) Does the process execute the process
model in the manner recorded in the model? (2) How much

flexibility does the log trace allow in the execution of the pro-
cess in the case of violation of the rules? The two challenges
are described as follows: (1) How to improve the performance
of conformance checking when the models and logs become
larger? (2) How to balance between precision and deliberate
vagueness?

For the two challenges, we do not need to obtain a specific
value for conformance checking in several cases as long as
we can acquire an approximate value to meet our needs.
Therefore, studying efficient approximate consistency methods
is important for large-scale log situations or situations where
the reference model is unknown.

The state-of-the-art studies on conformance checking meth-
ods are mostly based on rule checking [20], token-based
replay [7], and alignment [9]. The main starting points of
these existing methods are based on the assumption that the
process reference model is known. However, in some real
cases, the process reference model is unknown for some
reasons, such as some changing operations are introduced
as software maintenance and business integrations. In such
cases, the initial reference model is no longer suitable for
current use, and the process reference model is not saved for
further use in some other situations. Thus, considering how to
efficiently measure conformance checking value only on the
basis of historical event execution traces with the absence of
the process reference model is crucial.

This paper proposes a new approach to calculate the confor-
mance checking value through machine learning method from
event logs. The designed method uses some machine learning
and deep learning algorithms to calculate the approximate
conformance checking value, and a collection of experiments
is implemented. The results show two fold conclusions. On
the one hand, our method provides an approximate one but
quicker, specifically in large event data for the reason of
introducing machine learning algorithm compared with the
alignment method that usually provides a precise conformance
value and takes long computation time. On the other hand,
adding a machine learning classification vector in the training
set can obtain an approximate conformance checking value
with higher precision compared with the training sample
without introducing the classification vector obtained by ma-
chine learning. Furthermore, a series of experiments were
also conducted in probabilistic processes. A stochastic process
miner was used to mine models from real event logs, and
the generated stochastic process model was used to simulate
event logs, which were then subjected to a series of variations.
The real logs were compared with the simulated logs through
a conformance check to obtain a conformance score, which
was then compared with alignment methods. This approach
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does not require maintaining organizational process models but
instead detects noncompliant process traces based on historical
data. The results indicate that when considering probabilities,
the conformance checking technique detects more inconsistent
behaviors.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work. Section III reviews some basic
concepts and notations. Section IV introduces the proposed
method. Section V conducts experiments and analyzes the
results. Section VI provides the conclusions and presents some
future work.

II. RELATED WORK

For the first question posed in the previous section of
the conformance checking study is as follows: are the logs
executed in the manner the model records it? The state-of-
the-art research has provided relatively complete methods and
conclusions. The early research of conformance checking is
dedicated to determining whether a given process instance
conforms to a given process model [3], [4], [5], that is, whether
the process log conforms to the model is quantified through
discrete values 0 and 1, where 0 indicates that the log does
not conform to the process model, and 1 indicates that the log
fully conforms to the process model. In [6], a recurrent neural
network (RNN) is used to classify the traces in the log, where
the discrete values 0 and 1 are used for classification. Some
scholars aimed to provide diagnosis at the event log level, that
is, to observe the extent to which the log instance violates the
process model rather than simply providing a simple yes/no
answer. This type of method usually assigns a value between
0 and 1 to quantify the degree to which the process log
conforms to the process model. The larger the value, the
higher the degree to which the process log conforms to the
model, thereby solving the second problem of the conformance
checking research. The method proposed in [7] can accurately
point out where the deviations occur more frequently and the
severity of process instances that do not conform to the process
model. The early work of conformance checking is mostly
based on token-based replay [8]. This technology replays each
trace of the event log in the process model by executing
tasks in accordance with the sequence of each event and by
observing the process during the replay. The final state of the
model can determine whether and to what extent the tracking
actually corresponds to the effective execution sequence of
the model. However, this method may be constrained by its
dependence on the final model state, which might not capture
all the subtle nuances of process deviations. Alignment was
introduced in [9] and quickly developed into the mainstream
of conformance checking technology, and many alignment-
based extension methods were developed. The work in [10]
proposed an incremental method to check the consistency of
the process model and the event log. It may still face challenges
when dealing with extremely large datasets. The work in
[11] presented a conformance checking method based on
multiperspective declarative, adding other perspectives, such
as data or time for consistency testing, such as describing
process behavior. Most conformance checking techniques us-
ing alignments provide an exact solution for fitness values.
However, in many applications, having an approximation of
the conformance value is sufficient. Specifically, for large
event data, the computing time for alignments is considerably

long by using current techniques, making them inapplicable in
reality [12].

Some studies have investigated approximate consistency
calculation methods. The work in [12] used subset selection
and edit distance for conformance checking, thereby improv-
ing the performance of the conformance checking method
compared with alignment. But the selection of subsets may
ignore some key process behaviors. The work in [13] applied
bound approximation guides for the selection of the relevant
subsets of the process model behavior, further improving the
approximate accuracy of the consistency calculation value.
The work in [14] presented a statistical approach to ground
conformance checking in trace sampling and conformance
approximation. This type of method significantly reduces the
running time while still ensuring the accuracy of the estimated
conformance checking results, And the author has improved it
in the latest work [15]. The work in [16] used the simulation
behavior of the process model to approximate the conformance
checking value. The simulation method generates a trace that
is more similar to the behavior recorded in the event log
and uses these simulated traces and edit distance functions
to approximate the conformance checking value. The work
in [17] developed an approximation method for calculating
the fitness value by applying the relaxation labeling to the
process partial order representation of the model. The work
in [18] proposes a method to compute the alignment of logs
to a reference process using trie data structures to improve
efficiency through compact representation of process proxy
behavior and attempts to reduce the search space. The work
in [19] proposes an online approximate consistency detection
method that clusters event logs and selects representative traces
to construct support sets for consistency detection. However,
the clustering quality directly affects the detection accuracy.

III. PRELIMINARIES

In this section, we give a brief introduction to basic process
mining, especially the conformance checking terminology and
notation that can improve the readability of this paper.

A. Log Trace and Log

An event trace (or event executions) over an alphabet of
activity names Σ is a finite word σ ∈ Σ∗ that corresponds to
an event sequence. A log is a collection of log traces.

Denoting L = {τ0, τ1, τ2, · · · , τn, } as an event log, and τi
as a log trace. Each event in the process is recorded in a trace,
that is, τ = {e1e2e3 · · · en}. len(τ) indicates the number of
cases recorded in the trace, and τ(j) indicates the j− th event
in τ .

As shown in Table I, 6676 event traces constitute log
L, ⟨A,C,G7, H,D, F, I⟩is an event trace in L, and Σ =
{A,B,C,D,E, F,G,H, I} is the set of activities correspond-
ing to events. The labels 0 and 1 denote the a binary output.

B. Classification Learning Method

1) Quadratic Discriminant Analysis (QDA): The idea of
QDA classification is to first construct a discriminant function
F and use it to determine the decision boundary between
classes. The discriminant function F is used to establish the
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TABLE I. AN EVENT LOG EXAMPLE

ID Event sequence label

1 ⟨D,B,D,E, I⟩ 0
2 ⟨A,C,D,A,C, F, I⟩ 0
3 ⟨A,C,B,H, F, I⟩ 0
4 ⟨A,C4, D,G, F, I⟩ 0

. . . . . . . . . . . . . . . . . .
6673 ⟨A,C,G7, H,D, F, I⟩ 1
6674 ⟨A,C,G7, D,H, F, I⟩ 1
6675 ⟨A,C,G7, D,G, F, I⟩ 1
6676 ⟨A,C,G8, D, F, I⟩ 1

decision boundary for distinguishing different categories into
different regions [21].

Assuming that the data follow the Gaussian mixture model,
the observations in the category conform to the multivariate
Gaussian distribution of mean and covariance, that is,

x ∈ Ci ⇔ x = µi +
∑1/2

i z, with z ∼ N(0, Ip) (1)

where Ip represents the size of the p× p unit matrix.

Let πi, i ∈ {0, 1} denote the prior probability that x
belongs to class Ci. The classification rules related to QDA
classifier are given as (Eq. 2).

WQDA(x) = −1
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The number of training observations for each class Ci, i ∈
{0, 1} is denoted as ni, i ∈ {0, 1} , and T0 = {xl ∈ C0}n0

l=1

and T1 = {xl ∈ C1}n0+n1

l=n0+1 are used to represent their respec-
tive samples.

µ̂i =
1

ni

∑
l∈Ti

xl, i ∈ {0, 1} (3)

Σ̂i =
1

ni − 1
(xl − µ̂i)(xl − µ̂i)

T , i ∈ {0, 1} (4)

{
x ∈ C0, if WQDA > 0
x ∈ C1, otherwise

(5)

2) AdaBoost: AdaBoost [22] is a popular integrated learn-
ing technology due to its adaptability and simplicity. AdaBoost
has been successfully extended to the field of pattern recogni-
tion, computer vision, and has been used in many fields, such
as two class and multiclass scenes. The main idea of AdaBoost
is to build a series of weak learners by using different training
sets, which are obtained by resampling the original data. These
learners are combined through weighted voting to predict the
class label of the new test instance.

3) Long Short-term Network (LSTM) network: LSTM net-
work is an improvement of RNN [23], which effectively solves
the gradient disappearance and gradient explosion of RNN by
adding a gate structure. The LSTM network is widely used
in time series forecasting and has been utilized in process
monitoring and forecasting in recent years.

4) Gated Recurrent Unit (GRU): The GRU network is a
variant of the LSTM network [24], which combines the forget
gate and the input gate in the LSTM network into one gate,
which is called the update gate. It has two door structures,
the update door and the reset door. The update gate is used to
determine the degree of retention of the state information at the
previous moment in the current moment of learning. The larger
the update gate value, the greater the degree of retention. The
reset gate is used to control the degree of combination between
the state information at the previous moment and the state
information at the current moment. The larger the reset gate
value, the greater the degree of combination. A simplified GRU
network maintains the LSTM effect, has a simpler structure,
fewer parameters, and a better convergence model.

C. Regression Learning Method

1) Light Gradient Boosting Machine (LGBM): Light GBM
is a gradient boosting framework originally developed by
Microsoft and uses a tree-based learning algorithm. Its main
idea is to use weak classifiers (decision trees) for obtaining the
optimal model through iterative training. This framework has
good training effect, difficult overfitting, and is widely used to
solve regression problems.

2) Random forest: Random forest is an ensemble learning
method for classification and regression [25]. It runs by
constructing a large number of decision trees during training.
The random forest regression model is a model obtained
by synthesizing the results obtained from several established
decision tree models, and the final prediction result is obtained
by averaging the prediction results of all decision tree models.

D. One-hot Encoding Method

One-Hot encoding, also known as one-bit effective encod-
ing, mainly uses N-bit status registers to encode N states. Each
state has its own independent register bit, and only one bit is
valid at any time. One-hot coding represents the categorical
variables as binary vectors.

IV. LOG-DRIVEN APPROXIMATE CONFORMANCE
CHECKING VALUE CALCULATION METHOD

A. Method Framework

The method proposed in literature [6] has some common-
alities with this paper in that they are based on classifying logs
and error logs to obtain the conformance checking values. The
difference is that the values in literature [6] use RNN methods
for classification to obtain global accuracy and recall between
logs and models, whereas our proposed method obtains the
approximate conformance checking values for each trace in
the logs. In this paper, we propose a method to approximate
the conformance checking values by using machine learning.
The results are improved by adding an intermediate vector for
the classification to the original data’s method for fitting.
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Fig. 1. Overall implementation framework of the proposed method.

Fig. 1 shows the overall framework of the proposed method
proposed. In accordance with the existing event log and its
consistency training samples, the traces in the log are divided
into “correct traces” and “error traces,” and label values of
1 and 0 are assigned, respectively. The two types of trace
data are preprocessed. For simplicity of expression, the set
of “correct traces” is recorded as Log, and the set of “error
traces” is recorded as Antilog. To better maintain the order
relationship of the traces in the log, this article uses one-hot
encoding to process all the traces. The use of GRU, LSTM,
k nearest neighbor, Gaussian process, decision tree, random
forest, AdaBoost, and QDA learning with algorithms, such as
LDA, can obtain the classification accuracy of the “correct
trace” and “wrong trace” in the log. On the basis of the
classifier, the approximate value of the consistency is further
obtained.

Let all gather event executions as set L = {LT , LX},
where LT denotes the trace set that all event execution trace
in it have conformance checking value between 0 and 1, and
LX denotes the trace set that all event trace in it have no
conformance checking value.

B. Metric Method

In this paper, the accuracy [26] is used to evaluate the
classification algorithm, and the conformance checking value
of fitting is measured in terms of mean absolute error (MAE),
mean square error (MSE), and R-squared [27]. The related
evaluation index calculation methods are expressed as Eq. (6),
(7), (8) and (9).

For binary classification problems, the samples can be
divided into true positive (TP) in accordance with their true
categories and the predicted categories of the classifier. The
true category and the predicted category are positive examples.
False positive (FP): The true category is negative, and the
predicted category is positive. False negative (FN): The true
category is positive, and the predicted category is negative.
True negative (TN): The true category is a negative case, and
the predicted category is a negative case. The accuracy rate is
calculated, as shown in Eq. (6).

accuracy =
TP +NP

TP + TN + FP + FN
(6)

yi is the true value of the i−th sample, and ŷi is the observed
value of the i− th sample.

The MAE is used to measure the average value of the
absolute difference between the predicted value and the true
value. The smaller the MAE, the better the model. The
calculation method is shown in Eq. (7).

Algorithm 1: Conformance checking value approxi-
mate calculation method

Input: log L = {LT , LX}, Fit = {ci | ci ∈ [0, 1]∧
ci = fitness(πi) ∧ πi ∈ LT }

Output: the fitness value of each trace in the trace set
Lx.

Procedures:
Step 1: In accordance with the fitness value in Fit, if
the fitness value of a trace is less than 1, then mark
its classification label as 0, else if the fitness value
equals 1, then set its classification label to 1.

Step 2: The traces in L are processed by using
one-hot encoding and machine learning algorithms. k
nearest neighbor, decision tree, random forest, and
QDA are used to classify the traces in accordance
with the labels in step 1.

Step 3: Perform one-hot encoding on the trajectory in
L, and use the LSTM and GRU deep learning
algorithms to classify in accordance with the label in
step 1, where the coding of each activity is inputted
into each time step.

Step 4: Use the classification model with the highest
score in Steps 2 and 3 (known as the QDA
algorithm), and apply the classification model to all
the trajectories in L to obtain the classification
vector.

Step 5: Add the classification vector to the original
data.

Step 6: Use regression algorithm to fit and obtain the
fitness value of each trace.

MAE =
1

n

∑n
i=1 |(yi − ŷi)| (7)

The MSE represents the average of the squared difference
between the original value and the predicted value in the data
set. It measures the variance of the residuals. The smaller the
value, the better. The calculation method is shown in Eq. (8).

MSE =
1

n

∑n
i=1(yi − ŷi)

2 (8)

R-squared represents the coefficient of the degree of fit
between the predicted value and the original value. The larger
the value, the better the model. The calculation method is
shown in Eq. (9).

R2 = 1−
∑n

i=1(ŷi − yi)
2∑n

i=1(ȳ − yi)
2 (9)

C. Probabilistic Log-Driven Stochastic Process Conformance
Checking

First, using the stochastic process miner from the [34] and
the Prom tool, a probabilistic stochastic process model was
mined from the real event log L. Then, the generated model
was simulated using Pm4py to produce event logs, which
underwent a series of variations to obtain the simulated event
log L

′
. The real event log L and the simulated event log L

′
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were then subjected to a Log-Log conformance check using
the method from the [35] to obtain the conformance value.
The specific steps are as follows:

Algorithm 2: Probabilistic log-driven stochastic pro-
cess conformance checking

Input: Event log L, L
′

Output: L− L
′

conformance score
Procedures:
Step 1: Mine a probabilistic stochastic process model
M from the real event log L.

Step 2: Use the Pm4py tool to simulate event logs
using M , and apply a series of variations (including
some traces that do not conform to the model) to
obtain the log L

′
.

Step 3: Compute the reallocation matrix for L and L
′
.

Step 4: Compute the distance matrix for L and L
′
.

Step 5: Calculate the L− L
′

conformance score
based on the reallocation matrix and distance matrix
of L and L

′
.

V. EVALUATION

A. Artificial Log Acquisition and Preprocessing

No benchmark case library can be used for the calcula-
tion and evaluation method of the approximate conformance
checking value based only on logs. Therefore, this paper adopts
the following methods to generate the associated manual
integration log. A process is customized by using the Petri net
model SN , and then the token replay technology in pm4py
library [28] is used to generate the “correct traces” set (Log)
that conforms to the process model for the process model SN .
We then mutate these traces to make them noncompliant with
the process model “error traces” set (Antilog) and use the
alignment technology in pm4py to calculate the consistency
value of each trace with respect to the model. These traces
and their fitness are used as the data set of the experimental
work in this paper.

This paper obtains two real event case datasets from the
public datasets, a real event log of a sepsis case [29] and a real
event log of the information system for managing road traffic
fines [30]. No traces in these real logs that do not conform
to the real process model. Therefore, we first use the mining
algorithm to obtain a model of real logs and then use the real
model to simulate real logs as the dataset for the experimental
work.

Fig. 2, 3 and 4 show the three Petri net models used in this
paper, respectively. This paper uses the models in Fig. 2, 3 and
4 to generate Log1, Log2, and Log3, respectively. The three
models contain different loops and concurrent behavior that
can be used to test the applicability of the proposed method to
various behavior. As shown in Table I, the set of “correct trace”
and “error trace” is generated by model 1. Given that cycles
are found in the model and generating all traces is impossible,
we categorize the log into two disjoint parts, which are L=K

and L<K , where L<K denotes the completeness log set under
the k constraint, that is, the trace length is k, and L<K contains
all traces of the model that have length less than k.

Fig. 2. Petrinet model SN1.

Fig. 3. Petrinet model SN2.

Fig. 4. Petrinet model SN3.

B. Practical Logs

The experiments implemented here uses five different types
of event logs, three of which are manually generated logs
(named Log1, Log2 ,and Log3 produced in last section), and
the other two are real event logs (named sepsis and road
fine). The data presented in this study are openly available
in at https://pan.baidu.com/s/1TFEobiqrXTWjQF4R-cLHwQ
(extract code: aidw).

Taking Log1 for an example. As shown in Table I, the first
log contains 6667 different traces. Its consistency is marked as
1 and 0 in accordance with whether the trace conforms to the
process in the data. The detailed information of the five logs
is shown in Table II.

C. Classification Result Analysis

We selected two types of learning algorithms for classi-
fication experiments, which are deep learning algorithm and
machine learning algorithm. The use of machine learning
and deep learning methods require different processing of the
generated logs. To better preserve the sequence relationship in
the logs, we perform one-hot encoding on the log.

The traces in Log1 (Table I) are taken as an exam-
ple. Log1 has a total of nine activities, and the longest
trace length is 18. The length of trace ⟨D,B,D,E, I⟩
is 5. In the procedure of one-hot encoding, the char-
acter “0” is filled to make the trace with a length of
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TABLE II. INFORMATION ABOUT THE FIVE LOGS

Log Complete- Num. Max. Min. cases cases
ness activities case case Normal Deviant

length length

Log1 true 9 18 1 4098 2578
Log2 true 10 20 1 4862 4005
Log3 true 10 15 1 2240 2025
Sepsis false 16 14 3 41143 17397

Road fine false 11 14 3 21868 11378

18, that is, ⟨D,B,D,E, I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0⟩ af-
ter filling. One-hot encoding is performed for each ac-
tivity of the trace. Given that 10 elements are found in
the activity table [A,B,C,D,E, F,G,H, I, 0], each ele-
ment of the activity table can be represented by 10 bits.
For example, A is represented by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
and B is represented by [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], and sim-
ilar means for other elements. Therefore, each trace
is filled as a vector of 180 dimensions. The trace
⟨D,B,D,E, I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0⟩ is represented
by a 180 bit as [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0. . . . . . . . . . . .0, 0, 0, 0, 0, 0, 0, 0, 0, 1].

For deep learning, we directly use the encoded vector,
each trace has a label, and each activity is inputted into the
LSTM and GRU as an event step. We use LSTM and GRU
for classification experiments, which are different from [6].
Our training data have more variables than [6], and the length
of the trace is longer than that used in [6]. RNN specializes
in processing time series data. The disadvantage of RNN is
that it cannot handle long-term dependencies, whereas LSTM
and GRU can handle long-term dependencies well. We use the
LSTM and GRU network in Pytorch library [31] for training.
For machine learning, we use the PCA dimensionality reduc-
tion algorithm to reduce the dimensionality of the data after
one-hot encoding and then we use several typical methods,
such as random forest, secondary discrimination, decision tree,
and k nearest neighbors. These algorithms are integrated into
the sklearn library [32] in Python and can be easily used. The
supposed framework is shown in Fig. 5.

In this paper, we conduct two type of experiments. In the
first experiment, we perform a classification experiment on
three different logs. These logs are divided into two categories.
The first category is in line with the process model and is
marked as 1. Another type of log that does not conform to the

Fig. 5. Supposed framework.

Fig. 6. Comparison of the classification accuracy of various methods.

process model is marked as 0. We use machine learning and
deep learning methods to classify these data, so we can obtain
a classification method with a higher accuracy score.

In the second experiment, we use the method with the best
classification effect in experiment 1 to process the log and
obtain the classification vector of each trace in the log. The
classification vector and the original trace vector are used to
fit the fitness, so that we can obtain a good fitting effect.

In the classification experiment of different labels, for
three different logs, we divided the training set of 5%, 10%,
20%, and 40%, and the rest is the test set. Fig. 6 shows the
classification results under 5%of the training set. We use a line
chart to easily observe the effect of the classification model.
The QDA classification method has the highest accuracy by
observing the different classification methods in Fig. 6 for
the three different log classification results. It can obtain 99%
accuracy under 5%of the training set, and the QDA method
is better than the method ranked as second. The classification
accuracy is higher, indicating that the QDA method can better
classify the logs generated by the Petri net structure. Therefore,
we use the QDA classifier to generate a classification vector for
the classification to fit the conformance checking value. The
vector is added to the PCA dimensionality reduction vector,
and then the fit method is used to fit the fitness value, as
shown in the next section.

The experimental results in Fig. 6 show that using QDA
to classify data can obtain higher classification accuracy.
Therefore, the probability generated by the decision function
of QDA classification is added to the data as a classification
vector for fitting.

D. Analysis of Fitting Experiment Results

This experiment is divided into two groups. The experimen-
tal results of fitting the data without the classification vector
are used as a control, and the consistency calculation of data
after adding the classification vector is analyzed specifically.
In the experiment, 60% of the three artificial log samples are
used as the training set, and the remaining 40% are used as
the test set. To evaluate the fitting effect, we use three fitting
metrics: MSE, MAE, and coefficient of determination (R2).

The experimental results of the three different logs are
shown in Fig. 7, 8 and 9. In the three different logs, the
fitting effect of the various measurement methods after adding
the classification vector is significantly improved than the
one without adding the classification vector. The R2 score
of log1 added to the classification vector is 2 percentage
points higher than that of the unadded vector, and log2 is 4
percentage points higher. The other two measurement methods
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have different degrees of improvement, showing the superiority
of the proposed methods.

This work compares the conformance checking technology
based on token replay in [33] and the proposed method
to evaluate their differences. We still use MAE, MSE, and
R2 metrics to evaluate and calculate the difference between
the proposed method and the alignment, and the difference

Fig. 7. Fitness for Model 1, PCA=40.

Fig. 8. Fitness for Model 2, PCA=40.

Fig. 9. Fitness for Model 3, PCA=40.

Fig. 10. Comparison of manual event log results.

Fig. 11. Comparison of real event log results.

Fig. 12. Comparison of real event log Conformance checking results.

between [33] and the alignment separately. We can obtain a
better approximation effect than the consistency of [33] when
we use the proposed method to train the training set of 5%
manual logs. The comparison between the proposed method
and the method in [33] on the synthetic log results is shown
in Fig. 10. The comparison between the proposed method and
the method in [33] on the real log is shown in Fig. 11. The
proposed method is found to obtain lower MAE and MSE
than the method in [33] on real and synthetic logs for 5%
of the training set and obtain higher R2 scores. Our method
is slightly less effective than the artificial logs for real logs
because the artificial logs are complete logs and the real logs
are noncomplete logs. Our method cannot learn more behavior
from fewer training logs. After evaluating different artificially
generated and real event logs, we verify that the proposed
method can be used to evaluate the consistency of other traces
in the logs when the consistency of some traces in the logs is
known and can be closer to the consistency with the real ones
than other methods.

Probabilistic log-driven stochastic process conformance
checking results are shown in Fig. 12. As seen in the figure, the
results calculated using the probabilistic conformance checking
technique may detect more inconsistent behaviors, resulting in
a lower conformance score.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel method to calculate
the trace approximate conformance checking value based on
logs The proposed method integrates traditional machine learn-
ing in obtaining conformance checking, thereby enabling the
calculation of the trace conformance checking value without
a systematic reference model and extending the breadth of
existing studies. It provides a new approach to improve the
efficiency and accuracy of conformance checking, reducing the
difficulty of conformance verification in complex processes,
enhancing the management efficiency of business processes,
and potentially lowering costs and risks. However, this method
has some limitations. The proposed method belongs to super-
vised learning. The fitness of the training samples must be
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determined in advance to perform related machine learning and
fitting operations. Therefore, the format of the data set has cer-
tain requirements. No enterprise-level, large-scale benchmark
case library is used at present.

The proposed machine learning calculation method for
the approximate conformance checking value can be further
applied to change mining and business process prediction
and monitoring. As the business system progresses over time,
many changes, such as software maintenance, business fusion,
and other factors, are inevitably introduced. Detection of log
behavior deviation and verification through machine learning
and deep learning without a reference model are necessary.
Therefore, machine learning and deep learning will be used to
detect the behavior changes of logs in future studies. Related
analysis and discussion are important branches in the study of
process mining, and they are future extension of the work in
this paper.
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