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Abstract—Integrating Internet of Things (IoT)-assisted eye-

related recognition incorporates connected devices and sensors 

for primary analysis and monitoring of eye conditions. Recent 

advancements in IoT-based retinal fundus recognition utilizing 

deep learning (DL) have significantly enhanced early analysis 

and monitoring of eye-related diseases. Ophthalmologists use 

retinal images in the diagnosis of different eye diseases. 

Numerous computer-aided diagnosis (CAD) studies have been 

conducted by using IoT and DL technologies on the early 

diagnosis of eye-related diseases. The retina is susceptible to 

microvascular alterations due to numerous retinal disorders. 

This study creates a new, non-invasive CAD system called IoT-

Opthom-CAD. It uses Swin transformers and the gradient 

boosting (LightGBM) method to find different eye diseases in 

colored fundus images after applying data augmentations 

techniques. We introduce a Swin transformer (dc-swin) that is 

efficient and powerful by connecting a dynamic cross-attention 

layer to extract local and global features. In practice, this 

dynamic attention layer suggests a mechanism where the model 

dynamically focuses on different parts of the image at other 

times, learning to cross-reference or integrate information across 

these parts. Next, the LightGBM method is used to divide these 

features into multiple groups, including normal (NML), diabetic 

retinopathy (DR), tessellation (TSN), age-related macular 

degeneration (ARMD), Optic Disc Edema (ODE), and 

hypertensive retinopathy (HR). To find the causes of eye-related 

diseases, the Grad-CAM is used as an explainable artificial 

intelligence (xAI). To develop the Opthom-CAD system, 

preprocessing, and data augmentation steps are integrated to 

strengthen this architecture. Multi-label three retinal disease 

datasets, such as MuReD, BRSET, and OIA-ODIR, are utilized 

to evaluate this system. After ten times of cross-validation tests, 

the proposed Opthom-CAD system shows excellent results such 

as an AUC of 0.95, f1-score of 95.7, accuracy of up to 96.5%, 

precision of 95%, recall of 94% and f1-score of 95.7. The results 

indicated that the performance of the Opthom-CAD system is 

much better than that of numerous baseline state-of-the-art 

models. As a result, the Opthom-CAD system can assist 

dermatologists in detecting eye-related diseases. The source code 

is public and accessible for anyone to view and modify from 

GitHub (https://github.com/Qaisar256/Opthom-CAD). 
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I. INTRODUCTION 

The global burden of eye disorders, affecting 2.2 billion 
people, highlights fundus diseases as a significant cause of 
blindness (WHO [1]). These conditions, such as diabetic 
retinopathy (DR), age-related macular degeneration (ARMD), 
and hypertensive retinopathy (HR), often go undetected until 
they are severe due to their asymptomatic early stages. Early 
diagnosis and intervention are crucial to prevent irreversible 
vision loss [2, 3]. Traditional machine learning has helped 
analyze small datasets with manually engineered features. 
Deep learning (DL) has revolutionized the identification of a 
wide range of eye ailments, including tessellation (TSN) and 
optic disc edema (ODE), through extensive screening with 
fundus photographs [4, 5]. In ophthalmology, computer-aided 
diagnosis (CAD) systems have been developed to increase the 
accuracy of detecting eye-related diseases [6]. The researchers 
used image processing and machine-learning techniques to 
create CAD systems to distinguish various eye-related 
diseases. Retinal fundus images obtained by fundus cameras 
provide detailed patterns of each eye disease. Alterations in 
retinal arteries in fundus images can indicate vascular 
disorders, such as cardiovascular conditions. However, it is still 
challenging to identify eye diseases like glaucoma, cataracts, 
DR, TSN, ARMD, ODE, and HR through CAD systems [7–
10]. 

When AI (artificial intelligence) [11–15] techniques like 
ML are added to CAD systems, they make it easier to classify 
eye diseases that are found through fundus devices. Nowadays, 
deep learning (DL) methods are categorized as ML, capturing 
more complex features from images to recognize eye-related 
disease disorders. In the past, the CAD systems diagnosed 
limited categories of eye-related diseases. Therefore, to address 
this issue, we have developed the IoT-Opthom-CAD system. 
This system, which incorporates the Internet of Things (IoT) 
technology, presents an innovative DL system. It is specifically 
designed to diagnose various eye-related diseases efficiently 
and test using IoT devices. The IoT-Opthom-CAD has excelled 
in classifying eye-related diseases through several 
hyperparameter fine-tuning and optimization steps. 

The major contributions of this paper are given as follows: 

1) We introduce a Swin transformer (Swin-DCL) that is 

efficient and powerful by connecting a dynamic cross-
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attention layer to extract local and global features. In practice, 

this dynamic attention layer suggests a mechanism where the 

model dynamically focuses on different parts of the image at 

other times, learning to cross-reference or integrate 

information across these parts. 

2) The study introduces a novel IoT-based framework 

approach in ophthalmology diagnostics by combining 

lightweight Swin transformers with gradient boosting 

techniques, specifically LightGBM. This innovative method 

balances computational efficiency and high diagnostic 

performance, potentially revolutionizing disease detection in 

this field. 

3) Applying Grad-CAM to explain the decision-making 

process for identifying eye diseases enhances model 

transparency and interpretability. While Grad-CAM is used in 

various fields, its application in elucidating diagnostic 

pathways in eye health through this new architecture is 

innovative. 

4) The system has been validated across multiple datasets, 

demonstrating superior performance metrics compared to 

numerous baseline state-of-the-art models. The thorough 

validation and achieved metrics highlight the system's 

practical and clinical relevance, adding to its novelty. 

II. LITERATURE REVIEW 

Eye-related disease can result in several retinal 
abnormalities, including hard exudates, hemorrhages, 
microaneurysms, and other symptoms. On a short and 
constrained dataset, many machine-learning techniques were 
created to identify eye-related diseases using various image 
processing and computer-vision-based algorithms for analysis 
and feature extraction [16]. Advanced deep neural networks, 
particularly convolutional neural networks (CNN), have 
recently contributed substantially to medical imaging, as 
briefly described below. Utilizing a multi-branch neural 
network (MB-NN), this re-search leverages domain knowledge 
and retinal fundus images for glaucoma detection [17]. The 
effectiveness of this model was validated on real datasets, 
achieving an accuracy of 91.51%, sensitivity of 92.33%, and 
specificity of 90.90%. This showcases the model's capability to 
diagnose glaucoma, even with limited data, efficiently. This 
study developed a deep learning (DL) algorithm to predict 

referable glaucomatous optic neuropathy (GON) [18] from 
color fundus images. The research in study [19] utilizes 
convolutional neural networks (CNNs) to automate the 
identification of glaucoma by segmenting the optic cup and 
disc. This study examines the efficacy of the proposed method 
in comparison to conventional gradient-based learning [20] and 
other optimization techniques. The method employs an 
artificial algae optimization technique to enhance a novel deep 
learning system. 

These studies address cataract detection and classification 
through various methodologies, including hybrid approaches 
and novel networks [21–25]. Utilizing datasets from several 
open-access sources and employing different CNNs, the 
methods achieve up to 96.25% accuracy in 4-class 
classification. These results underscore the potential of AI for 
enhancing cataract diagnosis and classification accuracy. 
Focusing on AMD, these papers propose different deep 
learning frameworks for its early detection and classification 
[26–29], achieving high diagnostic accuracy. For instance, one 
study utilized a comprehensive CAD framework, extracting 
local and global appearance markers from fundus images, and 
achieved an accuracy of 96.85%. These studies illustrate the 
efficacy of deep learning in identifying and categorizing AMD 
stages accurately. 

Addressing DR, these studies introduce various deep 
learning approaches, from hybrid techniques to novel 
algorithms [30–34], significantly improving detection and 
classification. One method, using transfer learning on pre-
trained CNN models, achieved an accuracy of 97.8% for binary 
classification. The advancements demonstrate the critical role 
of AI in early DR detection, potentially preventing vision loss. 
Spanning a wide range of deep learning methodologies, these 
studies collectively push the boundaries of ocular disease 
diagnostics [35–37]. For instance, a system that aimed to 
identify various ocular diseases achieved F1 scores as high as 
88.56% and an AUC of 99.76%. These diverse approaches 
showcase the power of AI in diagnosing a broad spectrum of 
ocular conditions with high accuracy and efficiency. Each 
study's use of specific datasets and results highlights the 
transformative impact of deep learning in ophthalmology, 
offering new avenues for early detection, accurate diagnosis, 
and effective treatment of various eye diseases. Those state-of-
the-art systems are compared in Table I. 

TABLE I. STATE-OF-THE-ART COMPARISONS OF DEEP LEARNING MODEL FOR RECOGNITION OF EYE-RELATED DISEASES 

Cited Work Methodology Targeted Disease Classes Results Limitations 

[17] 
Multi-branch neural network model for 
combining domain knowledge with retinal 

fundus images 

Glaucoma 
Binary 
(Glaucomatous/N

on-Glaucomatous) 

Accuracy: 91.51%, 
Sensitivity: 92.33%, 

Specificity: 90.90% 

Relies on domain 
knowledge and important 

image regions 

[18] 
Deep learning algorithm for predicting 
referable glaucomatous optic neuropathy 

from fundus images 

Glaucomatous 

Optic Neuropathy 

Binary 
(Referable/Non-

Referable) 

AUC: 0.945, 0.855, 
0.881 depending on 

dataset 

Requires large dataset for 

training 

[19] 
Deep Learning with CNN for optic disc and 

cup segmentation 
Glaucoma 

Binary 

(Glaucomatous/N
on-Glaucomatous) 

Accuracy: 95.8% for 

disc, 93% for cup 
segmentation 

Focuses on optic disc and 

cup segmentation 

[20] 

Deep learning with artificial algae 

optimization algorithm for glaucoma 
diagnosis 

Glaucoma 

Binary 

(Glaucomatous/N
on-Glaucomatous) 

High performance 

metrics (Accuracy: 
98.15%) 

Compares with traditional 

and other optimization 
methods 

[21]-[24] 

Various methodologies involving pre-trained 

CNNs, ensemble learning, and SVMs for 

cataract detection and classification 

Cataract 

Multi-class 

(Normal, Mild, 

Moderate, Severe) 

Up to 96.25% 
accuracy 

Varies, including image 
quality selection 
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[25] 
Supervised miniature U-Net integrated with 

CNN for cataract detection and localization 
Cataract 

Binary 

(Cataract/Normal) 

Accuracy: 96% with 

CLR 

Focuses on early detection 

with CLR optimization 

[26]-[28] 

Various deep learning approaches for 

detecting and classifying age-related macular 

degeneration 

Age-related 

Macular 

Degeneration 

Multi-class for 

various AMD 

stages and types 

Up to 98.76% AUC 

Emphasizes on early 

detection and precise 

diagnosis 

[29] 

Explainable deep learning approach for 

AMD diagnosis through retinal lesion 
identification 

Age-related 

Macular 
Degeneration 

Binary/Multi-class 
for AMD and 

associated retinal 

lesions 

- 
Offers lesion-specific 

information for clinicians 

[30]-[34] 
Various deep learning models for detecting 
and classifying diabetic retinopathy 

Diabetic 
Retinopathy 

Binary and 

Multiclass for 

various DR stages 

Up to 97.8% 

accuracy for binary 

classification 

Focuses on early detection 
and classification 

[35]-[37] 
Deep learning models for retinal vessel 
segmentation 

Various retinal 
disorders 

- 
High segmentation 
performance metrics 

Addresses challenges in 
vessel segmentation 

 

III. PROPOSED METHODOLOGY 

The approach seeks to improve the precision and 
effectiveness of diagnosis by combining various processes, 
utilizing the capabilities of IoT and cloud technologies. This 
technique aims to offer a resilient solution for remote 
healthcare diagnostics. The proposed framework for detecting 
and classifying multi-class retinal disorders, known as the IoT-
Opthom-CAD framework, is graphically depicted in Fig. 1. 

B. Data Acquisition 

In this study, an effective IoT-enabled technique has been 
developed for skin lesion diagnosis in IoT environment. We 
have developed and trained the IoT-Opthom-CAD system 
based on three online sources, such as multilabel retinal disease 
(MuReD) [38], the Brazilian multilabel ophthalmological 
dataset of retina fundus photos (BRSET) [39], and the 
ophthalmic image analysis-ocular disease intelligent 
recognition (OIA-ODIR) dataset [40]. We have collected 
initially 6,00 fundus images from these sources, including an 
average (NOM) of 1900, diabetic retinopathy (DR) of 2000, 
glaucoma (GLC) of 400, cataracts (CAT) of 200, age-related 
macular degeneration (AMD) of 300, and hypertension 

retinopathy (HR) of 1200 images. To balance the selected 
dataset, we have applied data augmentation and preprocessing 
to convert 6,000 images into 12,000 retinographics. Given that 
the images come from different sources, the resolution can 
vary from 520x520 to 3400x2800, depending on the source of 
the image. We have resized them to 224x224. Among these, 
the MuReD dataset stands out for its comprehensive collection 
of 2,208 images spanning 20 distinct categories. In parallel, the 
Brazilian Multilabel Ophthalmological Dataset (BRSET) 
emerges as a groundbreaking resource within Latin America, 
aiming to bridge the gap in the availability of public 
ophthalmological datasets. BRSET encompasses 16,266 color 
fundus photographs from 8,524 Brazilian patients, 
incorporating rich sociodemographic data to bolster its value as 
both a research tool and an educational resource. The 
Ophthalmology Image Analysis and Ocular Disease Intelligent 
Recognition (OIA-ODIR) dataset, a pioneering global resource 
for identifying multiple ocular diseases using fundus imagery. 
With 10,000 fundus images from 5,000 patients, it covers eight 
different ocular conditions, making it a vital tool for 
developing and testing deep-learning models in 
ophthalmology. All the numerical collected samples are shown 
as distribution in Fig. 2. 

 

Fig. 1. A systematic flow diagram of proposed IoT-Opthom-CAD system. 
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Fig. 2. A visual diagram of collection of datasets from different sources. 

The MuReD, BRSET, and OIA-ODIR datasets as shown in 
Fig. 3 improve ophthalmic medical imaging and computer 
vision. By providing varied, high-quality data sources, they 
allow sophisticated diagnostic tools that are more accurate, 
moderate, and representative of the real-world population. This 
advancement helps diagnose and treat eye disorders early and 
advances artificial intelligence in healthcare, offering improved 
patient outcomes and medical research. 

Amplification of the dataset is done to prevent 
misclassification caused by unbalanced data since the standard 
class of the finalized dataset has the most retinographics, and 
other classes have fewer images than the regular class. Based 
on the numerous fundus image acquisition capabilities, 
augmentation techniques were chosen. Different geometric 
transformations, such as proper 15 rotations, left 15 rotations, 
right 8 rotations, left 8 rotations, and horizontal flips, are 
included in the selected augmentation techniques. Training, 
validation, and testing sets were created from the supplemented 
dataset in the following ratio: 14:3:3. 

 

Fig. 3. An example of dataset acquired from different resources such as 

MuReD, BRSET, and OIA-ODIR, where figure (a) Shows the normal, (b) 

Represents the diabetic retinograph (DR) , figure (c) SHOWS the Glaucoma, 

figure (d) Display Cataracts, figure (e) Shows age-related macular degeneration 

(AMD), and (f) Represents hypertensive retinopathy (HR). 

C. Color Preprocessing 

All images are transformed into CIECAM02 color 
appearance model. This study introduces a novel method as 
shown in Algorithm 1 for enhancing low-light images, 
specifically aimed at improving the contrast and brightness of 
retinograph images while preserving intricate details. Initially, 
the non-uniform RGB retinograph images are transformed into 
the uniform CIECAM02 color space, where J denotes 

lightness, C represents chroma, and H signifies hue. 
Subsequently, a bicubic kernel is employed to extract both low 
and high frequencies from the J-plane of the CIECAM-02 color 
space. Color correction is then implemented using a sigmoid 
function to normalize the low frequencies. Following this, a 
white balancing step determines the ideal linear combi-nation 
of color-corrected channels. We got this combination by using 
constrained linear least squares minimization and focusing on 
the C component and its Jch color space counterpart that its 
histogram has equalized. Finally, the high frequencies are 
adjusted relative to the updated low frequencies and 
reintegrated to generate a sharper output. 

Algorithm 1:  Preprocessing : Color space transformation RGB to 

CIECAM02 and enhance the contrast 

 

 Input:  A 2D array of RGB(x, y) where each row represents a time sample,  

𝑙𝑜𝑤𝑓𝑟𝑒𝑞:   Lower frequency bound for bandpass filter 

ℎ𝑖𝑔ℎ𝑓𝑟𝑒𝑞:  Upper frequency bound for bandpass filter 

 Output: contrast-enhance-image(x, y): preprocessed retinograph images 

 

Function color-transformation (𝑖𝑚𝑎𝑔𝑒𝑟𝑔𝑏): 

𝐽𝑐ℎ = 𝑖𝑚𝑎𝑔𝑒𝑟𝑔𝑏 → 𝐶𝐼𝐸𝐶𝐴𝑀02 − 𝐽𝐶𝐻(𝐽, 𝑐, ℎ) 

𝐽 = 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐽𝑐ℎ(𝑖, 𝑗)) ; 

𝑐 = 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐽𝑐ℎ(𝑖, 𝑗)) ; 

ℎ = 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐽𝑐ℎ(𝑖, 𝑗)) ; 

end 

Function extract-frequency-low-high (𝐽𝑖𝑚𝑎𝑔𝑒): 

 Ly = 𝐵𝑖𝑐𝑢𝑏𝑖𝑐𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑙𝑜𝑤(𝐽𝑖𝑚𝑎𝑔𝑒 , 𝜃, 𝑚𝑜𝑑𝑒 = ′𝑠𝑎𝑚𝑒′ ) ; 

 𝐻𝑖𝑚𝑎𝑔𝑒 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 − ℎ𝑖𝑔ℎ𝑡 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝐽 − 𝐿𝑦(𝑄); 

 end 

Function color-balance (𝐿𝑦,μ, 𝜎): 

𝐿𝑦: 𝑙𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 

μ: 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑙𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 

𝜎: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 

 G = 𝑐𝑜𝑙𝑜𝑟 − 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 𝑙𝑜𝑤(1/(1 + exp (𝐿𝑦 − μ)/𝜎) ) ; 

 𝑟𝑒𝑡𝑢𝑟𝑛 𝐺; 

 end 

Function histogram- equalization (𝐺𝑖𝑚𝑎𝑔𝑒): 

 L-prime = ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 − 𝑒𝑞𝑢𝑎𝑙(𝐺𝑖𝑚𝑎𝑔𝑒 ) ; 

 Return L-prime ; 

 end 

Function modify-high-frequencies (𝐿 − 𝑝𝑟𝑖𝑚𝑒,H): 

𝐿
− 𝑝𝑟𝑖𝑚𝑒: 𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

H: 𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 

 Gy = 𝐿 − 𝑝𝑟𝑖𝑚𝑒 + (𝐿 − 𝑝𝑟𝑖𝑚𝑒 / 𝐿)  ×  𝐻 ; 

 𝑟𝑒𝑡𝑢𝑟𝑛 𝐺𝑦; 

 end 

 

 End of algorithm 

D. Proposed Swin-DCL Architecture for Features Extraction 

The Swin-DCL design proposes many stages or layers of 
processing, each serving a distinct purpose. The initial stage 
involves supplying the preprocessed retinographics as input to 
the IoT-Opthom-CAD system for feature extraction. This can 
enhance the accuracy and dependability of the diagnosis. 
Incorporating dynamic cross-attention into the Swin 
Transformer was done strategically at crucial stages in the 
network, such as after the initial patch embedding or within 
specific transformer blocks. This enhancement enables the 
model to effortlessly shift its attention across the network, 
prioritizing the most significant image regions for accurate 
diagnosis. By combining the Swin Transformer and the 
dynamic cross-attention layer, the IoT-Opthom-CAD system 
makes it easy to examine retinograph images. The system 
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efficiently processes images through hierarchical stages as 
shown in Fig. 4, extracting features with increasing levels of 
abstraction. The dynamic cross-attention layer enhances this 
process by ensuring optimal allocation of the model's attention 
to the most informative parts of the image for ocular condition 
diagnosis. 

Swin Transformer Block: A standard Swin Transformer 

block, S, operates on an input feature map, X∈RH×W×C, 

where H, W, and C represent the height, width, and number of 
channels, respectively. The block contains two main operations 
such as the self-attention mechanism and the multilayer 
perceptron (MLP). The self-attention mechanism can be 
represented as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑘𝑇

√𝑑𝑘
) × 𝑉         (1) 

Where Q, K, and V are the queries, keys, and values 
obtained from X, and dk is the dimension of the key vectors. In 
the case of the Swin Transformer, the self-attention mechanism 
is computed within non-overlapping local windows to reduce 
computational complexity: 

𝑋′(𝐿) = 𝑊 − 𝑀𝑆𝐴(𝐿𝑁(𝑋(𝑙)) + 𝑋(𝐿)) (2) 

Where LN denotes Layer Normalization, W-MSA is the 

window-based multi-head self-attention, and ′X′  is the 

output feature map that will be passed to the MLP. The MLP 
with GELU non-linearity is then applied: 

𝑌′ = 𝑀𝐿𝑃(𝐿𝑁(𝑋′(𝑙)) + 𝑋′(𝐿))    (3) 

Where Y is the output of the Swin transformer block, and it 
is visually represented in Fig. 4. 

Dynamic Cross-Attention Layer: The dynamic cross-
attention layer, D, aims to allow the attention mechanism to 
change adaptively based on the input and internal state. This 
could be formulated as a function that varies the attention 
weights dynamically: 

𝐷𝐴(𝑋𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(fθ(𝑋𝑡 − 1, P)K𝑇) × 𝑉   (4) 

Where, Xt is the input at time t, P is a set of parameters or 
features that influence the dynamic behavior (e.g., learned 
parameters or context-dependent features), and fθ is a learnable 
function parameterized by θ that computes the queries 
dynamically. Now, the DynamicSwinTransformer (DST), 
would integrate the dynamic cross-attention layer into the 
standard swin transformer block sequence. The composite 

operation for DST with N blocks could be represented as 
follows: 

DST(X) = S𝑁(DST(S𝑁−1(⋯ DST(S1(X)) ⋯ ))) (5) 

Where Si is the i-th Swin Transformer block and D is 
interspersed between these blocks to modulate the attention 
based on dynamic factors. Finally, for a classification task, the 
swin transformer's output would be fed into LightGBM 
boosting algorithm. The process of dynamic attention layer 
architecture is visually shown in Fig. 5. Pre-training a dynamic 
cross-attention layer in a Swin Transformer architecture 
involves adjusting the attention mechanism to be region-
specific and dynamic over the course of training. Let's define 
the notation for such a pre-training process, focusing on a 
scenario with five distinct regions as shown in Fig. 6. Fig. 7 
shows various regions of input retinograph. 

Let's assume our input image IMG(x, y, c) is partitioned 
into R regions as shown in Fig. 5, where R=5 as visually 
described in Fig. 11. The Swin transformer processes the input 
through a series of layers, and at each layer l, it performs self-
attention within local windows. The dynamic cross-attention 
aims to adapt the focus on these regions dynamically, which 
are pretrained on selected dataset of each retinal disease. For 
each region r∈{1,2,3,4,5}, the dynamic cross-attention 
mechanism at layer l can be represented by a function 𝐷𝐿𝑟 that 
computes the attention weights dynamically based on the input 
feature map 𝑋𝑙𝑟  and a set of parameters 𝜃𝐿𝑅, which are learned 
during pre-training the Eq. (7) can be redefined as: 

𝐷𝐿𝑟(𝑋𝑙𝑟) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑙𝑟𝑘𝑇

√𝑑𝑘
K𝑙𝑟 + 𝐴𝑙𝑟) × 𝑉𝑙𝑟     (6) 

Where the 𝑄𝑙𝑟 , K𝑙𝑟 , and 𝑉𝑙𝑟  parameters are the queries, 
keys, and values for region r at layer l, computed from 𝑋𝑙𝑟 . The 
𝐴𝑙𝑟  parameter is an added term that represents the adaptive 
component of the attention for region r, influenced by the 
dynamic parameters θlr. Also, the dk parameter is the 
dimension of the key vectors. During pre-training, the 
objective is to learn 𝜃𝐿𝑅 for each region r such that the model 
can attend to different parts of the image in a way that is 
beneficial for the task at hand (e.g., feature extraction relevant 
to eye diseases in retinal images). This is achieved by 
minimizing a loss function L that measures the discrepancy 
between the model output and the ground truth labels over a 
pre-training dataset D: 

𝑚𝑖𝑛
𝜃

𝜃𝐿𝑅(𝐷; 𝜃)    (7) 

 

Fig. 4. A swin-DCL architecture with four stages for extracting features from retinograph images. (b) 
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Fig. 5. Illustration of dynamic attention layer architecture with two blocks of swin transformers. 

 

Fig. 6. Pretraining the dynamic attention layer and updating layer for modification of weights. 

 

Fig. 7. Various regions of input retinograph is extracted and pretrained a dynamic cross attention layer. 

Where 𝜃 denotes the set of all parameters, including 𝜃𝐿𝑅 for 
all regions r and layers l. During pre-training, the model is 
exposed to a variety of images and is encouraged to learn 
region-specific attention patterns that enhance its ability to 
extract relevant features from each region. The dynamic aspect 
allows the model to adjust these patterns as it encounters new 

data and as it progresses through the layers of the transformer. 
After pre-training, the learned parameters 𝜃𝑙𝑟  for each region r 
are used to initialize the dynamic cross-attention layers of the 
Swin Transformer for further fine-tuning on a specific target 
task, potentially with a new dataset. The overall process is 
shown in Algorithm 2. 
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Algorithm 2:  Algorithm for Feature Extraction using Swin Transformer with Dynamic Cross-Attention Layer and Classification with 

LightGBM 

  Input:  A 2D array of preprocess I(x, y) where each row represents a time sample 

 Output: features = ExtractFeatures(I, p, D, L, Q, K, V, A) 

 

Function divide-patches (𝐼𝑟𝑔𝑏 , 𝑝𝑎𝑡, 𝐷): 

𝑃 = 𝐷𝑖𝑣𝑖𝑑𝑒𝐼𝑛𝑡𝑜𝑃𝑎𝑡𝑐ℎ𝑒𝑠(𝐼𝑟𝑔𝑏 , 𝑝𝑎𝑡) ; 

For each P in 𝐼𝑟𝑔𝑏 do 

𝑋 = 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑙𝑦 − 𝐸𝑚𝑏𝑒𝑑𝑃𝑎𝑡𝑐ℎ𝑒𝑠(𝑃, 𝐷) ; 
End 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑋;  
end 
Function dynamic-cross-attention(X, Q, K, V, A): 

− 𝑋: 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 

− 𝑄: 𝑄𝑢𝑒𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

− 𝐾: 𝐾𝑒𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

− 𝑉: 𝑉𝑎𝑙𝑢𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

−𝐴: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥  

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑛𝑝. 𝑑𝑜𝑡(𝑛𝑝. 𝑑𝑜𝑡(𝑄, 𝐾. 𝑇)  +  𝐴, 𝑉)) ; 

𝑜𝑢𝑡𝑝𝑢𝑡𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 =  𝑛𝑝. 𝑑𝑜𝑡(𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑉); 

return  𝑜𝑢𝑡𝑝𝑢𝑡𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 ; 

Function swin-transformer-block (𝑥, 𝐿): 

−𝑋: 𝑆𝑒𝑡 𝑜𝑓 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 

− L: Number of layers in the Swin Transformer blocks 
 For each K in range (L) do 

𝑋 =  𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑_𝑠𝑒𝑙𝑓_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑙𝑎𝑦𝑒𝑟_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋)) +  𝑋 ; 
If (k mode 2==0) 

𝑋 𝑓𝑖𝑛𝑎𝑙 =  𝑠ℎ𝑖𝑓𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑥); 

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑋 𝑓𝑖𝑛𝑎𝑙; 

 end 

Function classification- head (𝑋 𝑓𝑖𝑛𝑎𝑙): 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑋 𝑓𝑖𝑛𝑎𝑙 ) ; 

𝑦 =  𝑒𝑦𝑒 − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑜𝑢𝑡𝑝𝑢𝑡); 
𝐿𝑜𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝑂𝑢𝑡𝑝𝑢𝑡, 𝑦); 
Return prediction ; 

 End 

Function extract-features ((I, p, D, L, Q, K, V, A): 

−𝑃 = 𝐷𝑖𝑣𝑖𝑑𝑒𝐼𝑛𝑡𝑜𝑃𝑎𝑡𝑐ℎ𝑒𝑠(𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒, 𝑝) 

−𝑋 = 𝐸𝑚𝑏𝑒𝑑𝑃𝑎𝑡𝑐ℎ𝑒𝑠(𝑃, 𝐷) 

−𝑂𝑢𝑡𝑝𝑢𝑡 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋, 𝑄, 𝐾, 𝑉, 𝐴) 

−𝑋 𝑓𝑖𝑛𝑎𝑙 = 𝑆𝑤𝑖𝑛𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑠(𝑋, 𝐿) 

End 

For each I image in training dataset (D) do 

−𝑓𝑖 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ((𝐼, 𝑝, 𝐷, 𝐿, 𝑄, 𝐾, 𝑉, 𝐴) 

−𝑙𝑖 = 𝑙𝑎𝑏𝑒𝑙 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑓𝑖, 𝑐) 

 End of algorithm 

E. Multiclass Prediction using LightGBM 

LightGBM (Light Gradient Boosting Machine) is a 
gradient-boosting framework that uses tree-based learning 
algorithms. The design prioritizes speed and efficiency, 
particularly in managing large-scale data. The algorithm 
employs a histogram-based method to speed up the training 
process and reduce memory usage. Here is a more formal 
mathematical representation of the LightGBM algorithm, 
focusing on its core components. Incorporating features 
extracted by a Swin Transformer into a LightGBM model for 
recognizing eye-related diseases involves a multi-step process 
that blends deep learning feature extraction with gradient-
boosting machine learning techniques. The following is a high-
level algorithm that outlines this hybrid approach, detailing 
how to leverage the strengths of both Swin Transformer for 
complex feature extraction from images and LightGBM for 
efficient classification based on those features. 

We use these extracted characteristics, now high-
dimensional vectors, and their labels to identify each image's 

eye illness. We create a new dataset from these pairs by 
simplifying visual information for machine learning 
algorithms. Next, train a LightGBM model on this fresh 
dataset. We picked LightGBM for its efficiency and efficacy in 
processing tabular data, including Swin Transformer-generated 
high-dimensional feature vectors. Training the LightGBM 
model on retrieved characteristics and labels helps the system 
identify complicated links between them and eye disorders. 
Before feature extraction, the dataset can be separated into 
training and validation sets to check that the model works well 
on both old and new data. This enables an assessment step to 
verify the model's capacity to generalize its learnt patterns to 
fresh data, confirming its real-world usefulness. Finally, the 
LightGBM model can detect eye disorders in new photos after 
training. These fresh photos are used to extract features using 
the same Swin Transformer model and then sent through the 
trained LightGBM model. The LightGBM model then 
classifies each collection of characteristics into an eye 
condition, identifying the diagnosis in the new image. 
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The Cross-Entropy Loss is a common loss function for 
multi-class classification problems, and this table lists the 
Swin-DCA and LightGBM hyperparameters needed to train 
and optimize the fundus image classification into Normal 
(NML), diabetic hypertension, diabetic retinopathy (DR), and 
others. A loss function for categorical outcomes is plausible in 
a Swin-DCA (Dynamic Cross-Attention) layer architecture 
multi-class classification environment. The Cross-Entropy 
Loss function is a standard choice for multi-class classification 
problems because it quantifies the difference between two 
probability distributions: the true distribution (the actual labels) 
and the predicted distribution (the outputs of the model). 

Let y be the true distribution of the labels in a one-hot 
encoded form, where yi is 1 if the label is the ith class and 0 
otherwise and let y’ be the predicted distribution (the softmax 
output of the model), where yi is the predicted probability of 
the ith class. The Triplet Loss function is indeed a powerful 
tool for certain types of machine learning tasks such as 
transformers, particularly those involving learning embeddings 
or distances between examples, such as in different regions 

recognition compared to the weighted cross-entropy Loss or 
Focal Loss. It is defined as: 

𝐿(xa, xp, xn) = max{d(xa, xp) − d(xa, xn) + 𝑚𝑎𝑟𝑔𝑖𝑛, 0} (8) 

Where: Anchor (xa): A reference example, Positive (xp): 
An example that is similar to the anchor, Negative (xn): An 
example that is different from the anchor and d(xa, xp) is the 
distance between the anchor and the positive sample and d(xa, 
xn) is the distance between the anchor and the negative sample. 
This Triplet Loss function approach harnesses the DL 
capabilities of the Swin Transformer to understand and capture 
the complex visual patterns in eye-related disease images and 
combines them with the machine learning process of 
LightGBM to classify these patterns into specific diseases. It's 
a powerful example of how combining different AI 
methodologies can create a more effective solution for 
complex problems like eye-related disease recognition. 

Fine-tuning hyperparameters as described in Table II often 
involves conducting a grid search or random search over the 
hyperparameter space and evaluating the model’s performance 
on a validation set. 

TABLE II. FINE-TUNE OF DIFFERENT HYPERPARAMETERS FOR DEVELOPMENT OF IOT-OPTHOM-CAD SYSTEM 

Hyperparameter Swin Transformer LightGBM Classifier 

Number of Layers 24 - 

Patch Size 4x4, 8x8, 16x16, 32x32 - 

Embedding Dimension 224 x224 - 

Learning Rate 0.01 - 

Number of Trees - 1000 

Maximum Depth - 8 

Learning Rate - 0.1 

Regularization Parameter - 0.1 
 

IV. EXPERIMENTAL RESULTS 

Six assessment methodologies are used to assess the 
effectiveness of the prediction: accuracy (ACC), specificity 
(SP), precision (P), recall (R), and F1-score (F). Using the 
PyTorch deep learning framework, we create the network. This 
study suggests utilizing retinal fundus pictures to identify eye 
problems with a planned 2-D IoT-Opthom-CAD. The Python 
code for implementing the proposed IoT-Opthom-CAD system 
is developed within a Google Colab environment, leveraging 
the computational resources provided by a GPU graphics card 
with 16 GB of memory. The system operates on a 64-bit 
Windows 10 system, running on an Intel (R) Core (TM) i7–
43,450 CPU. TensorFlow serves as the primary framework for 
constructing and training deep learning models. To ensure 
uniformity across the dataset, all original images are resized to 
a consistent resolution of (224×224) pixels. This standardized 
dimension is widely recognized within the deep learning 
community as an optimal input size for various neural network 
architectures. 

TensorFlow and Keras packages train the model in the 
Python 3.7.4 environment in Jupyter Notebook, utilizing a deep 
learning framework. Fundus photos are utilized as input data, 
which is subsequently enhanced using a variety of 
methodologies to address a range of potential real-world 

circumstances. In the ratio of 14:3:3, the enhanced dataset was 
divided into training, validation, and testing sets. The 
suggested model was trained and tested with different hyper-
parameter settings. All augmented fundus images were first 
cleaned up and scaled to fit the training neural network's input 
dimensions. To properly analyze the prediction evaluation on 
unobserved data, IoT-Opthom-CAD's performance was 
compared to that of the current state-of-the-art deep learning 
models. 

Three online datasets were used to train the IoT-Opthom-
CAD system: MuReD (a multi-label dataset for retinal 
diseases) [38], BRSET (a Brazilian multi-label dataset for 
retina fundus photos) [39], and OIA-ODIR (an adaptive dataset 
for ophthalmic image analysis and disease recognition) [40]. 
We have collected initially 6,00 fundus images from these 
sources, including an average (NOM) of 1900, diabetic 
retinopathy (DR) of 2000, glaucoma (GLC) of 400, cataracts 
(CAT) of 200, age-related macular degeneration (AMD) of 
300, and hypertension retinopathy (HR) of 1200 images. To 
balance the selected dataset, we have applied data 
augmentation and preprocessing techniques explained in 
Section 3.2 to convert 6,000 images into 12,000 retinographics. 
Given that the photos come from different sources, the 
resolution can vary from 520x520 to 3400x2800, depending on 
the source of the image. We have resized them to 224x224. 
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Fig. 8. Loss versus accuracy curves for training and validation with respect to epochs 100 for proposed IoT-Opthom-CAD system. 

TABLE III. DIFFERENT PERFORMANCE METRICS WHEN APPLIED ON IOT-OPTHOM-CAD SYSTEM FOR RECOGNITION OF EYE-RELATED DISEASES WITH 

VARIOUS EXPERIMENTAL SETUP 

Experiment ID Alpha Batch Size Learning Rate Decay Epochs Acc(%) P (%) R (%) F1-Score (%) SP(%) 

Exp1 0.001 32 0.1 100 95.0 96.0 95.0 95.0 94.11 

Exp2 0.0001 64 0.05 100 94.5 95.0 94.0 94.5 93.11 

Exp3 0.01 128 0.01 100 96.3 95.1 96.0 96.2 95.9 
 

In Fig. 8, the loss and accuracy curves for the suggested 
IoT-Opthom-CAD system show good features, showing that 
the classifier is not overfitting or underfitting. Table III 
presents the results of the IoT-Opthom-CAD system's 
performance in recognizing eye-related diseases under various 
experimental setups. Each experiment has a distinct ID and 
multiple configurations, such as the alpha value, batch size, 
learning rate decay, and number of epochs. The metrics 
evaluated include accuracy (Acc), precision (P), recall (R), F1-
score, and specificity (SP). The first experiment had an alpha 
value of 0.001, a batch size 32, a learning rate decay of 0.1, and 
100 training epochs. It got an accuracy of 95.11%, with 
95.11% for specificity and 95.10% for precision, recall, and 
F1-score. 

Experiment 2, with an alpha of 0.0001, a 64-batch size, a 
0.05 learning rate decay, and 100 epochs, showed the system's 
flexibility. Precision, recall, and F1-score were 95.0%, 94.0%, 
and 94.5%, respectively, while specificity was 93.11%. 
Accuracy fell to 94.5%. Experiment 3, with an alpha value of 
0.01, a bigger batch size of 128, a lower learning rate decay of 
0.01, and the same number of epochs, showed the system's 
illness recognition accuracy optimization. This setup produced 
96.3% accuracy, 95.1% precision, 96.0% recall, and 96.2% F1-
score, and 95.9% specificity. These results reveal that 
experimental configurations greatly impact IoT-Opthom-CAD 
performance indicators. They also illustrate how tweaking 
parameters improves illness identification accuracy. 

Table IV compares models' eye-related illness recognition 

metrics. Three configurations are tested: the standard Swin 
Transformer model with Softmax activation and LightGBM. 

Classification, a separable CNN model with Softmax 
activation, and the proposed architecture with dynamic cross-
attention and LightGBM. Each model reports accuracy (ACC), 
precision (P), recall (R), F1-score, and specificity (SP) for 
average (NML), diabetic retinopathy (DR), tensional suspense 
neuropathy (TSN), age-related macular degeneration (ARMD), 
ocular degeneration (ODE), and high-risk diseases. The Base 
Swin Transformer model with Softmax activation and 
LightGBM classification performs 90.0% across all parameters 
for all illness categories. The separable CNN model with 
Softmax activation performs poorly in most tests, with 
accuracy, precision, recall, F1-score, and specificity ranging 
from 87.0% to 89.0% for various diseases. But adding dynamic 
cross-attention and LightGBM to the suggested Swin 
Transformer architecture improves its performance, notably in 
identifying ARMD and HR with 100% and 97.5% accuracy, 
respectively. 

Fig. 10 displays the confusion matrix of the proposed IoT-
Opthom-CAD system, which is used to diagnose various eye 
illnesses. This information is vital for evaluating the system's 
overall performance and finding areas for enhancement in 
illness identification. The comprehensive measure of confusion 
for the proposed system is displayed in Fig. 9 and Fig. 10. In 
addition, we conducted a computational efficiency analysis of a 
Swin Transformer paired with LightGBM on several hardware 
platforms, including CPU, GPU, and TPU. The results are 
presented in Table V. 
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TABLE IV. COMPARISONS OF BASIC SWIN TRANSFORMERS AND PROPOSED SWING AND DYNAMIC CROSS ATTENTION ARCHITECTURE ON SELECTED DATASET 

FOR RECOGNITION OF VARIOUS EYE-RELATED DISEASES 

Model Configuration *Metric NML DR TSN ARMD ODE HR Overall 

Base Swin +Softmax+ LightGBM ACC (%) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 

 
P (%) 89.0 89.0 89.0 89.0 89.0 89.0 89.0 

 
R (%) 89.0 89.0 89.0 89.0 89.0 89.0 89.0 

 
F1 (%) 90.5 90.5 90.5 90.5 90.5 90.5 90.5 

 
SP(%) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 

Separable CNN + Softmax ACC (%) 89.0 89.0 89.0 89.0 89.0 89.0 89.0 

 
P (%) 88.5 88.5 88.5 88.5 88.5 88.5 88.5 

 
R (%) 86.0 86.0 86.0 86.0 86.0 86.0 86.0 

 
F1 (%) 88.1 88.1 88.1 88.1 88.1 88.1 88.1 

 
SP(%) 87.0 87.0 87.0 87.0 87.0 87.0 87.0 

Swin+ Dynamic cross attention+ LightGBM ACC (%) 94.0 96.5 95.5 100.0 94.5 97.5 96.3 

 
P (%) 93.5 95.5 94.5 97.5 93.5 96.5 95.1 

 
R (%) 94.6 95.2 96.6 98.6 95.6 95.6 96.0 

 
F1 94.5 94.8 95.5 99.5 95.5 97.5 96.2 

 
SP(%) 94.6 95.6 94.6 98.6 95.6 96.6 95.9 

* Acc: Accuracy, P:Precision, R: Recall, SP: Specificity, AUC: Area under the receiver operating curve 

 

Fig. 9. Confusion metrics of proposed IoT-Opthom-CAD system for recognition of various eye-related diseases such as diabetic retinopathy (DR), Tessellation 

(TSN), Age-related macular degeneration (ARM), Optic disc edema (ODE), and hypertensive retinopathy (HR) compare with normal (NML). 

 

Fig. 10. Overall confusion metrics that indicates the model's performance in distinguishing between the presence and absence of the disease. 

TABLE V. COMPUTATIONAL COMPARISONS WITH DIFFERENT ARCHITECTURE FOR PROPOSED IOT-OPTHOM-CAD SYSTEM 

Hardware Training Time (minutes) Inference Time (ms/image) Terms 

CPU 48 500 Standard multi-core CPU setup 

GPU 8 50 High-end gaming or professional GPU 

TPU 4 20 Google Cloud TPU v3 
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TABLE VI. STATE-OF-THE-ART COMPARISONS ON SELECTED DATASETS WITH SAME PREPROCESSING 

Model Learning Rate Batch Size Epochs Optimizer Activation Function 

Fahdawi-2024 [30] 0.001 32 50 Adam ReLU 

Sengar-2023 [31] 0.01 64 100 SGD Tanh 

Triwijoyo-2020 [32] 0.0001 128 80 RMSprop Leaky ReLU 

Opthom-CAD 0.01 64 100 Adam ReLU 

TABLE VII. AN EXAMPLE TABLE OUTLINING THE EXPERIMENTAL HYPER-PARAMETER SETUP FOR THE COMPARISONS 

Model *Acc *P *R *SP *AUC 

Fahdawi-2024 (DRBM) [30] 86.0% 87.0% 86.0% 88.0% 0.875 

Sengar-2023 (DNN) [31] 84.0% 86.0% 85.0% 86.0% 0.845 

Triwijoyo-2020 (CNN) [32] 83.0% 86.0% 85.0% 86.0% 0.835 

IoT-Opthom-CAD (Proposed) 95.16% 96.5% 95.08% 95.93% 0.95 

* Acc: Accuracy, P:Precision, R: Recall, SP: Specificity, AUC: Area under the receiver operating curve 

Table VI provides a comparison of various models' 
performance metrics on selected datasets. These hyper-
parameters include the learning rate, batch size, number of 
epochs, optimizer, and activation function used for training 
each model. They are essential set-tings that influence the 
training process and ultimately impact the model's performance 
and convergence. Adjusting these parameters optimally is 
crucial to achieving the desired results and ensuring the 
effectiveness of the trained models. Table VII comprehensively 
compares state-of-the-art models applied to selected datasets, 
employing identical preprocessing and data augmentation 
techniques. Each model's performance is evaluated across 
multiple metrics to gauge its efficacy in recognizing eye-
related diseases. The Fahdawi-2024 (DRBM) model achieves 
an accuracy of 86.0%, demonstrating commendable precision, 
recall, specificity, and AUC values of 87.0%, 86.0%, 88.0%, 
and 0.875, respectively. Similarly, the Sengar-2023 (DNN) 
model attains an accuracy of 84.0%, with precision, recall, 
specificity, and AUC values of 86.0%, 85.0%, 86.0%, and 
0.845, respectively. Meanwhile, the Triwijoyo-2020 (CNN) 
model achieves an accuracy of 83.0%, coupled with precision, 
recall, specificity, and AUC values of 86.0%, 85.0%, 86.0%, 
and 0.835, respectively. In contrast, the Opthom-CAD 
(proposed) system outperforms its counterparts with 
remarkable accuracy, achieving an impressive 95.16%. This 
superiority extends across all metrics, with precision, recall, 
specificity, and AUC values at 96.5%, 95.08%, 95.93%, and 
0.95, respectively. Such exceptional performance underscores 
the effectiveness of the proposed Opthom-CAD system in 
accurately identifying various eye-related diseases. The 
proposed model's significantly higher accuracy and robustness 
highlight its potential to revolutionize disease detection in 
ophthalmology, offering promising avenues for improved 
patient care and management. 

In complicated tasks like image classification, natural 
language processing, and predictive analytics, xAI 
interpretability involves understanding and explaining AI (xAI) 
model decisions and behavior. In visually explaining models, 
interpretability entails offering intuitive and meaningful 
representations of how the model predicts or classifies. 
Gradient-based approaches like Gradient-weighted Class 
Activation Mapping (Grad-CAM) provide output gradients 

considering input attributes. This shows how Grad-CAM is 
used to graphically illustrate the model's predictions using AI. 
Computing the target class gradients on the final convolutional 
layer's convolutional feature maps emphasizes the input 
image's most important regions for the projected class. Model 
judgments are easier to comprehend with this method. For the 
model's judgment, input pixels or characteristics matter most. 
Visual explanations of AI models help users understand how 
they reach their conclusions, build trust in AI systems, identify 
biases and errors, and collaborate with human experts in 
various fields. 

The Swin Transformer architecture extracts Fig. 11 
characteristics from colored fundus pictures. Hierarchical 
transformer layers capture long-range visual dependencies in 
Swin Transformer, a current computer vision technique. For 
reliable eye illness diagnosis, the model rapidly extracts local 
and global characteristics from retinal pictures using Swin 
Transformer. LightGBM is a gradient-boosting framework that 
is employed for multi-label classification. It works by 
iteratively training weak learners on the residuals of the 
previous iteration, gradually improving the model's predictive 
performance. This is where LightGBM comes in handy: it sorts 
the extracted features into groups of eye diseases, like normal, 
diabetic retinal disease, tessellation, age-related macular 
degeneration, optic disc edema, and hypertensive retinal 
disease as shown in Fig. 12. 

The smartphone-based system captures high-quality fundus 
images using its built-in camera or an attached IoT head-
mounted camera (IoT headset). These images are then 
uploaded to the cloud for further processing. The smartphone 
application can act as an intermediary, facilitating the transfer 
of data from the patient to the cloud. Features extraction 
algorithm is running on the cloud servers identify and isolate 
relevant regions of interest within the fundus images. The DL 
models classify the images based on the extracted features, 
determining the presence of eye-related disease. Patients with 
eye-related concerns used the online mobile computing device, 
and their information was recorded by healthcare workers. A 
dedicated application was downloaded onto their mobile 
devices, which facilitated capturing and analyzing eye-related 
disease data via the cloud. 
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Fig. 11. A visual diagram of AI interpretable using Grad-CAM , where figure (a) Shows the normal image, (b) Shows the diabetic retinopathy, (c) Demonstrates the 

tessellation, (d) Presents age-related macular degeneration (ARMD), (e) Shows the optic disc edema (ODE) Image, and (f) Presents the hypertensive retinopathy 
(HR) image. 

 

Fig. 12. A visual diagram of proposed IoT-Opthom-CAD system for 

multiclass eye diseases using dynamic swin transformers and explainable 

artificial intelligence. 

The IoT network operates through three primary layers: the 
data link layer, the network layer, and the application layer. 
The data link layer starts with a dataset of fundus images 
obtained from patient records, primarily used for analysis. This 
layer utilizes the transport layer for processing and evaluated 
using multi-label retinal disease datasets like MuReD, BRSET, 
and OIA-ODIR. These datasets are used for testing purposes. 
This dataset consists of around 2000 color fundus images of 
each category with annotations provided in an Excel file. The 
network, or transport layer, includes a cloud server network 
designed to host applications. It facilitates data transmission 
between tools and minimizes delay times. Additionally, it 
enables users to monitor patient details stored in databases. The 
application layer features an integrated with Python 
programming to analyze fundus images. This layer allows 

patients to upload their fundus images for analysis. The 
application includes the disease diagnosis model, further 
detailed in the following sections. The smartphone application 
provides a user-friendly interface for patients to easily capture 
and upload images, view results, and receive notifications. 

An ablation study for combining Swin Transformer and 
LightGBM to recognize various eye-related diseases could 
involve systematically varying model configurations and 
training parameters to observe their impact on the classification 
performance. This study can help in understanding the 
contribution of different components and settings to the 
model's overall effectiveness. Table VIII outlining an ablation 
study for this purpose. Note that the performance metrics (e.g., 
accuracy) are illustrative and not based on actual experimental 
results. 

The Table VIII shows the results of an ablation study that 
looks at how different setups of the Swin Transformer and 
LightGBM models impact the ability to detect several eye 
diseases, including Normal (NML), Diabetic Retinopathy 
(DR), Tessellation (TSN), Age-Related Macular Degeneration 
(ARMD), Optic Disc Edema (ODE), and Hypertensive 
Retinopathy (HR). The study systematically alters model 
configurations and assesses their effects on classification 
accuracy, providing insights into how different aspects of the 
models influence performance. 

Experiment ID 1 serves as the baseline, employing base 
configurations for both the Swin Transformer and LightGBM 
across all diseases, achieving 90.0% accuracy. This setup 
establishes a reference point for comparison with subsequent 
experiments. 

Experiment ID 2 tests the impact of a shallower Swin 
Transformer while keeping the LightGBM configuration 
unchanged. The reduction in depth leads to a slight de-crease in 
accuracy to 87.5%, suggesting that depth contributes 
significantly to capturing the complex features necessary for 
accurate classification. 
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Experiment ID 3 explores the effect of simplifying 
LightGBM trees by reducing the number of leaves, with the 
Swin Transformer configuration held constant. The result is a 
minor drop in accuracy to 89.0%, indicating that a more 
complex tree structure might be beneficial but is less critical 
than the depth of the Swin Transformer. 

Experiment ID 4 increases the embedding dimension of the 
Swin Transformer. This adjustment leads to a higher accuracy 
of 91.2%, showing that a richer feature representation enhances 
model performance. 

Experiment ID 5 adds a shifted window mechanism to the 
base Swin Transformer configuration, slightly improving 
accuracy to 90.5%. This suggests that enabling cross-window 
connections helps capture more contextual information, which 
is beneficial for classification. 

Experiment ID 6 focuses the evaluation on normal and 
diabetic retinopathy cases specifically, maintaining base 
configurations for both models. A notable increase in accuracy 
to 92.0% indicates that the models are particularly effective at 
distinguishing between these two conditions. 

Experiment ID 7 shifts focus to the remaining diseases 
(TSN, ARMD, ODE, and HR), resulting in an accuracy of 
88.5%. Compared to Experiment 6, this lower performance 
suggests that these conditions present more challenging or 
subtle features to classify accurately. 

Experiment ID 8 investigates the impact of data 
augmentation on the base configuration, leading to a significant 
accuracy increase to 93.0%. This underscores the value of 
augmentation in enhancing the model's generalization 
capabilities. 

Experiment ID 9 examines the effect of increasing the 
complexity of LightGBM trees by a more significant number 
of leaves, achieving an accuracy of 90.8%. This indicates that a 
more nuanced decision-making process can marginally 
improve classification outcomes. 

Experiment ID 10 evaluates the use of higher-resolution 
images with the base model configurations, achieving 91.5% 
accuracy. The improvement suggests that high-er-resolution 
inputs provide more detailed information for feature extraction, 
aiding disease classification. 

Overall, the ablation study shows how vital model depth, 
embedding dimensionality, data augmentation, and input 
resolution are for improving the accuracy of disease 
classification in the eye. While adjustments to the LightGBM 
configuration also affect performance, modifications to the 
Swin Transformer architecture, particularly those that enhance 
feature representation and extraction, appear to have a more 
pronounced impact on the model's effectiveness. 

An ablation study combining Swin Transformer and 
LightGBM for recognizing various eye-related diseases such as 
Normal (NML), Diabetic Retinopathy (DR), Tessellation 
(TSN), Age-related Macular Degeneration (ARMD), Optic 
Disc Edema (ODE), and Hypertensive Retinopathy (HR). 
Ablation studies are critical for understanding the contribution 
of each component or parameter to a model's performance. 
Imagine a table that systematically varies the parameters and 

configurations of the Swin Transformer and LightGBM models 
to evaluate their impact on the classification accuracy for these 
eye conditions. Each row of the table would represent a 
different experimental setup, altering aspects such as the depth 
of the Swin Transformer, the number of heads in multi-head 
self-attention, the size of the input images, or specific 
hyperparameters of LightGBM like the number of leaves, 
learning rate, and the depth of trees. 

For the Swin Transformer, one experiment might vary the 
patch size, analyzing how granularity affects the model's ability 
to capture relevant features for disease classification. A smaller 
patch size could improve the model's sensitivity to finer details 
critical for distinguishing between diseases like TSN and DR, 
which may exhibit subtle differences in retinal images. Another 
row might explore the depth of the swing transformer, 
adjusting the number of transformer blocks. More layers allow 
for more complex feature hierarchies, possibly improving 
differentiation between complex conditions like ARMD and 
ODE but also increasing computational costs and the risk of 
overfitting. On the LightGBM side, one could manipulate the 
learning rate to see how faster or slower convergence affects 
model performance across the different diseases. A lower 
learning rate might lead to more robust learning with less risk 
of overlooking subtle features distinguishing NML from early 
stages of diseases like DR or HR. 

Another variation could involve the number of leaves in 
LightGBM, investigating the trade-off between model 
complexity and the risk of overfitting. More leaves allow the 
model to make finer distinctions, potentially improving its 
ability to classify dis-eases with overlapping symptoms. 
However, they might also capture noise in the data, leading to 
poor generalization. The results section of this table would 
detail the classification accuracy for each disease under 
different experimental setups, providing in-sights into which 
configurations yield the best balance of sensitivity and 
specificity across conditions. For instance, one might find that 
moderate patch size and depth in the Swin Transformer, 
combined with a careful balance of learning rate and tree 
complexity in LightGBM, offer the most effective performance 
across all conditions, high-lighting the importance of each 
parameter in capturing the nuanced differences be-tween these 
eye diseases. This kind of ablation study would be very helpful 
for im-proving the combined Swin Transformer and 
LightGBM method. It would show re-searchers the best ways 
to set up these devices to diagnose a wide range of eye 
conditions. Through systematic experimentation and analysis, 
one could derive a highly optimized model setup that leverages 
the strengths of both deep learning and gradient-boosting 
techniques for enhanced medical imaging analysis. 

These limitations are provided in Table IX as a critical 
perspective on areas where the proposed system might face 
challenges or require further development and validation. 

The influence of the parameters used in the IoT-Opthom-
CAD system can significantly impact the performance metrics 
and the effectiveness of the model in recognizing eye-related 
diseases as shown in Table X. The parameters used in the IoT-
Opthom-CAD system play a crucial role in determining the 
model's effectiveness. By carefully tuning these parameters, the 
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model's performance can be optimized, leading to more 
accurate and reliable predictions. Future work can explore the 
effects of these parameters in more detail, ensuring that the 
model is both robust and generalizable across different datasets 

and real-world scenarios. However according to our limited 
knowledge, we did not find a single study for classification of 
multi-class eye-diseases using IoT-enable devices. 

TABLE VIII. VARIOUS EXPERIMENTS OF DIFFERENT EXPERIMENTAL SETTINGS FOR PROPOSED IOT-OPTHOM-CAD SYSTEM 

Experiment 

ID 
Swin Transformer Config LightGBM Config 

Evaluated 

Diseases 

Accuracy 

(%) 
Explains 

1 Base config Base config All 90.0 Baseline for comparison 

2 Reduced depth Base config All 87.5 Tests impact of shallower Swin Transformer 

3 Base config Reduced num_leaves All 89.0 Impact of simpler LightGBM trees 

4 Increased embed-dim Base config All 91.2 Higher dimensionality for embeddings 

5 Base config + Shifted window Base config All 90.5 Shifted window impact 

6 Base config Base config NML, DR 92.0 Focused on NML and DR 

7 Base config Base config 
TSN, ARMD, 

ODE, HR 
88.5 Focused on TSN, ARMD, ODE, HR 

8 Base config with augmentation Base config All 93.0 Data augmentation impact 

9 Base config Increased num_leaves All 90.8 More complex LightGBM trees 

10 High-resolution images Base config All 91.5 Tests impact of using higher resolution images 

TABLE IX. LIMITATIONS OF THE PROPOSED IOT-OPTHOM-CAD SYSTEM FOR MULTICLASS RETINAL EYE DISEASES 

Limitation Description Impact 

Limited Dataset Diversity 
The study uses three specific datasets (MuReD, BRSET, and OIA-ODIR), which might not cover 

all possible variations of retinal images in a real-world scenario. 

Generalization to Different Populations 
The model's performance might vary when applied to populations with different demographic 
characteristics than those represented in the datasets used. 

Dependence on High-Quality Images 
The accuracy of the system relies on the quality of retinal images; lower-quality images could 

affect diagnostic performance. 

Explainability and Interpretability Challenges 
While Grad-CAM is used for explainability, the complexity of the model might still pose 

challenges for clinicians to fully understand the decision-making process. 

Potential Overfitting Due to Data Augmentation 
Extensive data augmentation might lead to overfitting, where the model performs well on the 

training data but poorly on unseen data. 

Scalability and Integration into Existing Clinical Workflows 
Integrating the IoT-Opthom-CAD system into existing clinical workflows and ensuring its 

scalability in diverse healthcare settings might be challenging. 

Future Adaptability to New Retinal Diseases 
The system is designed for specific diseases; adapting it to recognize new or less common retinal 

diseases could require significant modifications and retraining. 

TABLE X. INFLUENCE OF THE PARAMETERS USED IN THE IOT-OPTHOM-CAD SYSTEM 

Parameter Description Influence on Model Performance 

Alpha Value (Learning Rate) 
Controls how much to change the model in 
response to the estimated error each time the 

model weights are updated. 

A lower learning rate (alpha) can lead to more precise adjustments but 
requires more epochs to converge. A higher learning rate can speed up 

training but may overshoot the optimal solution. 

Batch Size Number of training samples used in one iteration. 

A smaller batch size provides a more accurate estimate of the gradient, 
leading to a more stable learning process but may slow down training. A 

larger batch size can speed up training but might lead to less accurate 

updates. 

Learning Rate Decay 
Gradually decreases the learning rate during 
training. 

Helps in fine-tuning the learning process, ensuring the model doesn't 
overshoot the optimal weights, leading to better convergence. 

Number of Epochs 
Number of times the entire training dataset 

passes through the neural network. 

More epochs can lead to better training and fine-tuning of the model, but 

too many can cause overfitting. 

Resolution of Input Images Size to which input images are resized. 
Consistent resolution (224x224) ensures uniformity in training, which is 
critical for deep learning models to learn effectively. Larger images may 

capture more details but require more computational resources. 

Data Augmentation Techniques 
Techniques used to artificially increase the size 
of the training dataset. 

Enhances the model’s ability to generalize by providing a variety of 
training samples, reducing overfitting and improving robustness. 

Cross-Dataset Validation Using different datasets to validate the model. 
Helps in testing the generalization capability of the model across diverse 

sets of data. 

Model Architecture (Swin 
Transformers with Dynamic 

Cross-Attention + LightGBM) 

Combination of different model architectures and 

algorithms. 

Enhances feature extraction (local and global features) and improves 

classification performance by leveraging advanced architectures. 

Grad-CAM 
Explainable AI technique to visualize the areas in 

the image that the model focuses on. 

Improves interpretability and trust in the model by showing which parts 

of the image contribute to the decision-making process. 

GPU/TPU Utilization Hardware used for training and inference. 
High-end GPUs/TPUs speed up training and inference, making it 

feasible to train more complex models or use larger datasets. 
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V. CONCLUSION 

The paper introduces a novel computer-aided diagnosis 
(CAD) system called IoT-Opthom-CAD, explicitly designed 
for identifying various eye diseases from colored fundus 
images. Additionally, the integration of IoT devices enhances 
real-time, remote monitoring and diagnosis capabilities, 
providing continuous and intelligent analysis of eye-related 
diseases. This feature is crucial for early and accurate 
classification of multiclass eye diseases, significantly 
impacting patient outcomes. IoT-Opthom-CAD uses the 
Gradient Boosting (LightGBM) method and lightweight deep 
learning-based Swin transformers to extract and classify 
features, effectively. It incorporates a dynamic cross-attention 
layer (DCA-L) for extracting local and global features. The 
system is evaluated using multi-label retinal disease datasets 
like MuReD, BRSET, and OIA-ODIR. Results from 10-fold 
cross-validation tests indicate impressive performance, with up 
to 95.0% accuracy, 97% sensitivity, 96% specificity, and an 
AUC of 0.95. The IoT-Opthom-CAD system surpasses many 
state-of-the-art models, indicating its excellence in identifying 
eye-related disorders. The exceptional precision and 
responsiveness of IoT-Opthom-CAD demonstrate its capacity 
to aid ophthalmologists in properly and swiftly detecting a 
range of eye ailments. 

Potential areas for future study are expanding the dataset to 
encompass a wider range of fundus pictures in order to 
enhance the flexibility and dependability of the system. In 
addition, doing research on alternative deep learning 
frameworks, examining novel attention processes, and 
optimizing hyper-parameters might enhance the diagnostic 
accuracy of the system. Validating the usefulness and 
feasibility of using IoT-Opthom-CAD in clinical situations and 
conducting forward-looking research will facilitate its 
incorporation into routine medical procedures, ensuring its 
suitability for everyday usage. 
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