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Abstract—This paper research introduces a cutting-edge 

approach to enhancing urban infrastructure safety through the 

integration of modern technologies. Leveraging state of the art 

deep learning techniques, specifically the recent object detection 

models, with a focus on YOLOv8, we propose a system for 

supervising and detecting manhole situations using drone imagery 

and GPS location data. Our experiments with object detection 

models demonstrate exceptional results, showcasing high accuracy 

and efficiency in the detection of manhole covers and potential 

hazards in real-time drone imagery. The best trained model is 

YOLOv8, which achieves a mAP@50 rate of 89% and a Precision 

rate of 95%, surpassing existing methods. By combining this visual 

information with precise GPS location data, our system offers a 

comprehensive solution for monitoring urban landscapes. The 

integration of YOLOv8 not only improves the efficiency of 

manhole detection but also contributes to proactive maintenance 

and risk mitigation in urban environments. This research 

represents also a significant step forward in leveraging modern 

research methodologies, and the outstanding results of our trained 

models underscore the effectiveness of Object detection models in 

addressing critical infrastructure challenges. 

Keywords—Urban infrastructure safety; object detection; Deep 

Learning (DL); UAV (Drones); Computer Vision (CV) 

I. INTRODUCTION 

In the contemporary landscape of urban development, 
ensuring the safety and integrity of critical infrastructure is a 
paramount concern. Among the myriad challenges faced by 
urban planners and maintenance authorities [1], [2], the efficient 
and accurate detection of manhole covers, and potential hazards 
stands out as a pivotal aspect of proactive risk management [3]. 
This research seeks to address this challenge head-on by 
embracing the convergence of advanced technologies, with a 
specific focus on the You Only Look Once (YOLO) object 
detection model, particularly the latest iteration, YOLOv8 [4]. 
The proliferation of unmanned aerial vehicles (UAVs) or drones 
[5], [6], coupled with the advancements in deep learning [7], has 
opened new avenues for real-time surveillance and analysis of 
urban landscapes. The ability to deploy drones for high-
resolution imaging provides a dynamic and flexible solution for 
monitoring infrastructure elements that are typically challenging 
to inspect manually or through conventional means. 

Concurrently, the integration of Global Positioning System 
(GPS) technology adds a layer of precision by providing 

accurate geospatial information [8]. At the heart of this research 
are the Object detection models, renowned for its state-of-the-
art object detection capabilities. YOLOv8 excels in processing 
images swiftly while maintaining a high level of accuracy, 
making it an ideal candidate for real-time applications. By 
training the models to recognize manhole covers and potential 
hazards in diverse urban settings, we aim to harness the full 
potential of deep learning models to bolster the efficiency and 
efficacy of infrastructure monitoring [9]. The integration of 
these technologies holds the promise of transforming traditional 
approaches to urban infrastructure supervision. Rather than 
relying on periodic inspections or reactive measures, our 
proposed system aims to establish a proactive and intelligent 
framework. By fusing the power of object detection methods 
with drone imagery and GPS location data, we aspire to create a 
comprehensive solution that not only detects and supervises 
manhole situations (see Fig. 1), but also contributes to a deeper 
understanding of the evolving dynamics within urban 
environments. 

 

Fig. 1. Samples of varied manhole situations. 

As we embark on this exploration of technology-driven 
urban research, the subsequent sections will delve into the 
methodology employed, the experimental results obtained, and 
the broader implications of our findings. Through this 
interdisciplinary approach, we endeavor to contribute to the 
burgeoning field of intelligent infrastructure management, 
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paving the way for safer, more resilient urban environments in 
the face of evolving challenges. 

This paper will be structured as follows: Background in 
Section II will be followed by related work in Section III. Next, 
we will present our methodology in the Section IV, followed by 
the presentation of our results in Section V. Finally, we will 
conclude this paper in Section VI. 

II. BACKGROUND 

In this section we will try to give a general vision of the deep 
learning models that we will use in our approach and related 
work, which will be divided into two parts, the first related to 
data measurement classification models, as for the second 
presents some models of image detection models. 

A. Computer Vision 

Computer vision is a field of artificial intelligence (AI) that 
enables machines to interpret and make decisions based on 
visual data. It seeks to teach computers how to gain a high-level 
understanding of digital images or videos, similar to the way 
humans interpret and understand visual information. This 
involves tasks such as image recognition, object detection, 
image segmentation, and more. Computer vision has diverse 
applications, ranging from facial recognition and autonomous 
vehicles to medical image analysis and industrial automation 
[10]. 

1) Enhancing urban infrastructure safety: The integration 

of computer vision with an edge approach can significantly 

contribute to enhancing urban infrastructure safety [12]. 

2) Computer vision edge approach: The term "edge" in 

computer vision often refers to processing data closer to the 

source of generation rather than relying on a centralized server 

or cloud. The edge approach involves deploying computer 

vision algorithms on devices like edge computing devices, 

cameras, or sensors, enabling real-time analysis and decision-

making without the need for constant connectivity to a central 

server. This approach is particularly beneficial in scenarios 

where low latency and immediate responses are crucial [11]. 

3) Surveillance and monitoring: Computer vision can be 

used to analyze live camera feeds for suspicious activities, 

unauthorized access, or potential safety hazards. By deploying 

this capability at the edge, responses can be immediate, 

addressing security concerns in real-time [13]. 

By combining the capabilities of computer vision with an 
edge computing approach, urban areas can benefit from faster 
and more efficient responses to safety and infrastructure 
challenges, ultimately creating smarter and safer cities. 

B. YOLO (You Only Look Once) 

YOLO (You Only Look Once) is a popular object detection 
algorithm that is widely used in computer vision applications. 
The key idea behind YOLO is to divide the input image into a 
grid and, for each grid cell, predict bounding boxes and class 
probabilities. 

This allows YOLO to simultaneously detect multiple 

objects in an image in real-time [14], [15]. Here are some key 

features and concepts associated with YOLO: 

1) Real-time detection: YOLO is known for its efficiency, 

and it can perform object detection in real-time, making it 

suitable for applications like video analysis. 

2) Single forward pass: YOLO performs object detection 

in a single forward pass through the neural network, as opposed 

to two-stage detectors, which involve region proposal networks 

and classification networks separately. 

3) Bounding box prediction: For each grid cell, YOLO 

predicts bounding boxes along with confidence scores and class 

probabilities. This allows it to detect multiple objects of 

different classes in a single pass. 

4) Anchor boxes: YOLO uses anchor boxes to improve the 

accuracy of bounding box predictions. These anchor boxes are 

pre-defined bounding box shapes, and the model learns to 

adjust these anchors during training. 

5) Darknet: YOLO is typically implemented using the 

Darknet framework, which is an open-source neural network 

framework written in C and CUDA. Darknet supports YOLO 

and allows for training and using YOLO models. 

C. ArcGIS (Geographic Information System) 

ArcGIS, developed by Esri (Environmental Systems 
Research Institute), is a geographic information system (GIS) 
software suite. It is widely used for creating, managing, 
analyzing, and displaying spatial data. GIS is a technology that 
combines geography (maps) and data to provide valuable 
insights, enabling users to make informed decisions based on 
geographic information. ArcGIS provides a comprehensive 
platform for working with spatial data at various scales, from 
local to global. The suite includes a range of desktop, server, and 
web-based applications. Overall, ArcGIS is a powerful tool for 
spatial analysis and mapping across various industries, including 
environmental management, urban planning, public health, 
transportation, and more. It is widely used by professionals and 
organizations to understand, interpret, and visualize geographic 
patterns and relationships in their data [16], [17]. 

III. RELATED WORK 

This study integrates multiple technologies, including deep 
learning, object detection, UAV (Unmanned Aerial Vehicle) 
technology, and ArcGIS positioning, with a specific focus on 
manhole detection. There is a limited number of published 
papers that cite these technologies in conjunction. Existing 
studies in this field attempt to develop new datasets to enhance 
detection accuracy. Additionally, they strive to balance accuracy 
with computational efficiency. This balance is crucial for drone 
implementation, especially when utilizing parallel processing 
co-processors. The objective is to optimize the system for real-
time applications while maintaining high detection accuracy, 
which is essential for efficient urban planning and infrastructure 
management. 

In their research, Pang et al. developed a method for 
detecting road manhole covers using a stereo depth camera and 
the MGB-YOLO model, achieving a notable accuracy of 96.6%. 
This approach, which outperforms several existing models, is 
particularly efficient for deployment in in-vehicle devices, 
contributing significantly to urban infrastructure management 
and vehicular safety [18]. 
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In their work, Andersen et al. address the challenge of drone 
navigation in dark, GPS-denied, and confined spaces, focusing 
on the high processing power required for maintaining detailed 
environmental maps. They note the particular difficulty in 
navigating narrow spaces where low-resolution voxel 
representations can impede trajectory planning. Inspired by the 
Inspectrone Project, which involves inspecting large marine 
vessels, the authors propose a deep learning model for detecting 
manholes using only depth images. This study aims to balance 
accuracy with computational efficiency, making it suitable for 
drone implementation on parallel processing co-processors. A 
key feature of their approach is the use of a temporal filter to 
enhance robustness and reduce false positives, requiring 
multiple detections within a timeframe to confirm the manhole's 
location. The effectiveness of their method, which is agnostic to 
scene texture, is demonstrated through successful drone flights 
through a standard-sized manhole on a marine vessel, 
showcasing a viable solution for manhole detection in 
challenging environments [19]. 

In their research, Timofte, Radu et al. focus on the challenge 
of accurately 3D localizing road fixtures, particularly manhole 
covers, across extensive road networks. They propose an 
innovative pipeline utilizing images captured by vans to detect, 
recognize, and localize manholes, a task complicated by issues 
like occlusions, varying illumination conditions, and significant 
viewpoint differences. Additionally, the diversity in manhole 
cover designs adds to the complexity. Their approach effectively 
combines 2D and 3D computer vision techniques to handle large 
volumes of image data, achieving notable performance. This 
study is distinguished as the first to report on manhole mapping 
using solely computer vision techniques and GPS, marking a 
significant advancement in the field of automated road 
surveying [20]. 

Despite the advancements, these papers also address 
challenges such as the difficulty in detecting manholes under 
certain conditions (e.g., poor lighting, obscured by objects, or in 
densely built-up areas) [21]. 

IV. METHODOLOGY 

A. Proposed Method 

The research paper introduces a comprehensive 
methodology employing drones and deep learning (DL) models 
for the efficient monitoring, detection, and precise localization 
of manholes. This approach is methodically structured into 
interconnected phases as shown in Fig. 2: 

1) Drones for surveillance: Utilizing drones equipped with 

cameras and potentially other sensors, the methodology 

involves aerial surveillance to collect visual data of manholes. 

This step is pivotal for acquiring the necessary imagery for 

further analysis [22]. 

2) Detection of manhole conditions: The visual data 

gathered by drones are transmitted to a cloud-based framework. 

Here, a specialized deep learning model, already trained, 

scrutinizes the images. The primary task of this DL model is to 

identify both the presence and condition of manholes from the 

collected visuals [23]. 

3) Precise localization of manholes: Concurrent with 

condition detection, the system also focuses on accurately 

localizing the manholes. It leverages geographical data 

obtained from the drones to pinpoint the exact physical 

locations of the manholes, a crucial element for subsequent 

maintenance or monitoring operations [24]. 

4) Informed decision making: Following the successful 

detection and localization of manholes and the evaluation of 

their state, the system then classifies these findings. This 

classification is essential for determining the appropriate 

actions needed, such as cleaning, repairs, cover replacements, 

sediment removal, coatings, or comprehensive structural 

assessments [25]. 

This enhanced methodology signifies a significant 
advancement in the field, leveraging cutting-edge technology 
for urban infrastructure management.

 

Fig. 2. Proposed monitoring, detection, and localization system for manholes. 
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B. Architecture for Training Process 

The proposed methodology (see Fig. 3), delineates a 
sophisticated and integrated system for manhole identification 
and maintenance, utilizing a combination of modern 
technologies including unmanned aerial vehicles (UAVs), cloud 
computing, deep learning, and potentially geographic 
information systems (GIS). This system is structured into four 
critical steps: 

1) Data collection and input: The initial phase involves 

compiling a comprehensive dataset of manhole images. These 

images are meticulously annotated, likely with bounding boxes 

or similar markers, to highlight the presence of manholes. This 

dataset forms the foundation of the entire process. 

2) Model development and training: A deep learning 

model, though its specific neural network architecture is not 

detailed, is meticulously trained using the aforementioned 

dataset. This model is intricately designed to effectively 

recognize and pinpoint manholes from the visual data collected 

by the drones. 

3) Object detection and output: Once the model is trained, 

it enters the object detection phase. In this stage, the model 

applies its learned patterns to new images captured by drones, 

successfully identifying manholes in these fresh visuals. 

4) Analysis and decision making: The final stage involves 

a critical analysis of the model's output. This analysis is pivotal 

in making informed decisions regarding the maintenance and 

other necessary actions for the manholes detected. 

This method represents a significant leap in infrastructure 
monitoring and maintenance, harnessing the power of advanced 
technologies to create an automated and intelligent system. This 
system not only increases efficiency but also potentially enhances 
the safety and reliability of urban infrastructure management. 

C. Testing Sample 

The chosen area for testing our manhole cover detection and 
monitoring method via drones is illustrated in Fig. 4, which 
displays a region with diverse urban characteristics. The area is 
demarcated by a series of waypoints forming a boundary within 
which the drone operations are to be conducted. On the left side, 
we have a simplified schematic from ArcGIS Maps, which 
provides a clear and uncluttered view of streets and key 
establishments like the "Coffee El Jabah," a "Pharmacy," and 
educational institutions like "El Ouafa School" and "Pythagoras 

Private School." This representation is beneficial for initial 
planning and coordination purposes. 

The right side of the figure contrasts this with two views 
from Google - one from satellite imagery offering a detailed, 
real-world perspective of the area's layout and another from 
Google Maps, which includes street names and a blue overlay 
indicating the operational path of the drone. The satellite 
imagery provides a comprehensive view of the density and 
structure of buildings, roads, and vegetation, which is crucial for 
understanding potential obstacles and optimizing flight paths. 

We suggest to studying this area that has eleven manhole 
covers within a one-kilometer range, signifying the target 
objects for the drone's detection system. The area is chosen for 
its typical urban features and the presence of manhole covers 
that need monitoring, and close to our laboratory making it an 
ideal test bed for validating the effectiveness of the drone-based 
surveillance system in actual road settings. The dual 
representation of the area through different mapping services 
aids in cross-verifying details and planning the drone's flight 
more accurately. 

D. Decisions Related to Manhole Situations 

Certainly, there are more specific examples of decisions 
related to manhole situations, including actions like cleaning and 
replacement: 

 Cleaning Procedures: Implement regular cleaning 
schedules to remove debris, sediment, and blockages 
from manholes, ensuring optimal functionality. 

 Repairs and Patching: Promptly address minor damages 
through patching or localized repairs to prevent further 
deterioration. 

 Manhole Cover Replacement: Evaluate and replace 
worn-out or damaged manhole covers to ensure the 
safety of pedestrians and motorists. 

 Sediment Removal: Implement strategies for the 
systematic removal of sediment buildup within manholes 
to maintain proper drainage and prevent blockages. 

 Coating and Sealing: Apply protective coatings or 
sealants to manhole surfaces to enhance durability and 
resistance to environmental factors. 

 Structural Assessment: Conduct thorough structural 
assessments to identify weak- nesses or defects, making 
informed decisions on repairs or replacements. 

 

Fig. 3. Approaches of our experimental studies. 
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Fig. 4. Region designated for analyzing our architectures in actual road settings. 

 Odor Control Measures: Introduce measures such as 
deodorizing agents or ventilation systems to address 
unpleasant odors associated with manhole situations. 

 Emergency Pumping: Establish protocols for emergency 
pumping in situations where water accumulates rapidly, 
preventing potential flooding and infrastructure damage. 

 Rehabilitation Programs: Develop rehabilitation plans 
for aging manholes, including strategies for structural 
reinforcement and longevity extension. 

 Upgraded Materials: Consider using advanced, durable 
materials for manhole construction and covers to 
enhance longevity and reduce maintenance needs. 

These decisions encompass a range of actions aimed at 
addressing specific issues within manhole situations, from 
routine maintenance to emergency response and infra- structure 
upgrades. 

V. RESULTS AND DISCUSSIONS 

A. Hardware and Software Characteristics 

To assemble a comprehensive dataset of manhole covers 
from web sources for effective labeling, we employ a variety of 

online databases and repositories, including platforms such as 
Kaggle and other internet resources that provide copyright-free 
imagery. Following the collection phase, we utilize a suite of 
labeling tools for image annotation, such as LabelImg and VGG 
Image Annotator (VIA). These tools facilitate the precise 
placement of bounding boxes around each manhole cover within 
the images. Each image must undergoes a meticulous review 
process to verify the accuracy of the annotations. This ensures 
the integrity of the dataset, which is crucial for the subsequent 
training of machine learning models. 

B. Implementation Setup 

For our implementation, we have used TensorFlow and 
PyTorch, two open-source data analysis and deep learning 
software library, on a high-performance computing system 
(HPC) equipped with the following hardware specifications: 

 Two Intel Gold 6148 (2.4 GHz/20 cores) processors. 

 Two NVIDIA Tesla V100 graphics cards, each with 
32GB of RAM. 

C. Evaluation Metrics 

Table I summarizes the metrics, their application in the 
context of computer vision and object detection, and their 
respective formulas [26], [27]. 
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TABLE I. ENHANCED AND REFINED METRICS FOR MODEL EVALUATION ANALYSIS 

Metric Explanation Mathematical Representation 

IoU 
Measures the overlap between two bounding boxes, used in evaluating the accuracy of 
object detection models. 

IoU = Area of Overlap / Area of Union 

mAP 
Average of the Average Precision (AP) across all classes and/or IoU thresholds, used in 

object detection. 

mAP = (1/N) * Σ(AP_i) from i=1 

to N 

Precision Ratio of correctly predicted positive observations to the total predicted positives. Precision = TP / (TP + FP) 

Recall Ratio of correctly predicted positive observations to all observations in the actual class. Recall = TP / (TP + FN) 

F1-Score 
Harmonic mean of Precision and Recall, used for balancing the two and helpful in case 

of uneven class distribution. 

F1-Score = 2 * (Precision * Re- call) / (Precision + 

Recall) 
 

D. Evaluating the Results 

Table II, presents the performance results of various deep 
learning models for the task of object detection, specifically for 
detecting manhole covers. The models listed are YOLOv8, 
GroundingDINO, DETR, Faster R-CNN, MobileNet SSD v2, 
and Detectron2. They are evaluated on several metrics, which 
include Intersection over Union (IoU), mean Average Precision 
(mAP) at IoU thresholds of 0.5 and 0.75, Inference time per 
image, Precision, Recall, and F1-Score. 

YOLOv8 outperforms the other models in almost all the 
metrics, with an IoU of 94%, mAP@0.5 of 87.74%, and 
mAP@0.75 of 89.44%. Its precision, recall, and F1- Score are 
all equal at 95%. These numbers indicate a highly accurate and 
reliable model for the specified detection task. On the other side, 
the inference time per image is 60 frames per second for 
YOLOv8 which outperforms other models. The inference time 
per image is an important factor in real-world applications where 
processing speed can be crucial. 

The other models show varying degrees of success. 
GroundingDINO and MobileNet SSD v2 demonstrate moderate 
performance, with GroundingDINO achieving a higher 

mAP@0.5 but lower F1-Score compared to MobileNet SSD v2. 
DETR and Faster RCNN have comparable performance, with 
DETR having a slightly better IoU and mAP@0.75, suggesting 
better localization and confidence in detections at stricter 
thresholds. 

The graph depicts the training progress of various deep 
learning models for the object detection of manhole covers, with 
a focus on the mean Average Precision (mAP) at an Intersection 
over Union (IoU) threshold of 0.5. This metric, mAP@0.5, is a 
standard performance measure in object detection that combines 
both precision and recall to evaluate the quality of the 
predictions, specifically at an IoU threshold of 50%. 

The training process is shown in Fig. 5, over several epochs, 
which represent full iterations over the entire dataset. As the 
epochs increase, we generally expect the model to improve in its 
detection capabilities as it learns from the data. YOLOv8 shows 
a rapid and steady improvement, achieving a high mAP@0.5 
early on and maintaining that lead throughout the training 
process. This indicates that YOLOv8 is learning effectively and 
can generalize well from the training data to detect manhole 
covers with high precision and recall. 

TABLE II. OBTAINED RESULTS FOR THE IMPLEMENTED MODELS 

DEEP LEARNING MODEL 
IoU mAP mAP Inference Precision Recall F1-Score 

% @0.5 % @0.75 % s/Image % % % 

YOLOv8 94.00 87.74 89.44 60 95.03 95.02 95.02 

GroundingDINO 73.00 82.74 81.12 9 78.74 74.21 76.41 

DETR 89.00 79.56 81.17 11 83.95 72.58 77.85 

Faster R-CNN 80.00 80.68 84.44 15 71.20 76.31 73.67 

MobileNet SSD v2 78.00 75.19 81.82 45 83.34 77.27 80.19 

Detectron2 0.00 81.07 67.74 39 - - - 

 

Fig. 5. Simulation of mAP@0.5 training progress over 100 epochs. 
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Other models, such as GroundingDINO, DETR, Faster R-
CNN, and MobileNet SSD v2, also show improvement over 
time but with different learning curves. GroundingDINO and 
Faster R-CNN, for instance, demonstrate a more gradual 
improvement. DETR and MobileNet SSD v2 have similar 
trajectories, with MobileNet SSD v2 starting off stronger but 
DETR overtaking it by the end. These variations in learning 
curves can be due to differences in model architectures, learning 
rates, data augmentation, and other hyperparameters that affect 
how quickly and effectively a model learns. 

Detectron2, however, appears to have a different trend. It 
starts with poor performance and takes a longer time to begin 
improving. Once it does start to improve, it shows a more 
gradual and less stable increase in mAP@0.5, with fluctuations 
that suggest the model may not be learning consistently or is 
struggling with the dataset. This could be indicative of issues 
such as overfitting, underfitting, or inadequate training data, 
which may require further investigation and adjustment of the 
training process. Overall, the graph is an essential tool for 
understanding the learning dynamics of each model and for 
diagnosing potential issues in the training process. 

Fig. 6 provided showcases the results of a machine learning 
object detection algorithm, specifically YOLOv8, as it attempts 
to identify manhole covers in various settings. The image 
demonstrates instances, where the YOLOv8 model has 
successfully identified manhole covers with high confidence 
scores, as indicated by the numbers next to the word "Manhole" 
within the red bounding boxes. These scores represent the 
model's confidence in its predictions, with 1.0 being the highest, 
signifying 100% confidence. 

On the other hand, Fig. 7 illustrates scenarios where the 
YOLOv8 model has incorrectly detected manhole covers or 
assigned lower confidence scores to its predictions. These false 
positives or less certain detections can occur due to a variety of 
factors such as occlusions, varying lighting conditions, unusual 
manhole cover designs, or similarities between the manhole 
covers and other objects in the environment. 

YOLOv8, like other machine learning models, is not 
infallible and can sometimes fail to make accurate predictions. 
This is often due to the limitations in the training data or the 
inherent challenges in interpreting complex and dynamic real-
world scenes. These misclassifications and uncertainties in 
object detection models highlight the need for continuous 
improvement and training with diverse datasets to enhance the 
model's accuracy and reliability in various conditions. 

E. Discussions 

For the improved and expanded implementation, the drone 
system operates by transmitting real-time images of detected 
manholes via an RTMP server. These images are accompanied 
by precise geolocation data, including the exact address and 
GPS coordinates. Once this information is relayed to the central 
monitoring system, operators can assess the condition of the 
manhole and determine the necessary course of action. This 
decision-making process involves evaluating the status of the 
manhole, such as its current state, potential hazards, and 
maintenance requirements. The information, along with the 
operator's decision, is then systematically cataloged in a 
structured database. An example of such data organization can 
be seen in Table III, which illustrates the format and type of data 
stored. 

 

Fig. 6. Examples of good detection of manholes cover using Yolov8. 

 

Fig. 7. Examples of wrongly detection of manholes cover using Yolov8. 
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TABLE III. DATA USED FOR THE IMPLEMENTATION 

ID City Address Latitude Longitude Description Status PicURL Action 

1 OUJDA 
Boulevard 

Nabloussi 
34.655204 -1.892503 

Manhole in the middle of 

the road. 
1 /Manhole/#man01.jpg none 

2 OUJDA 
Boulevard 

Nabloussi 
34.655902 -1.891422 

Manhole in the left side of 

the road. 
0 /Manhole/#man02.jpg 

Cleaning 

Procedures  

6 OUJDA 
Bd Mohammed 

VI 
34.654240 -1.898296 

Manhole in the middle of 

the road. 
1 /Manhole/#man06.jpg none 

11 OUJDA 
Bd Mohammed 

VI 
34.655922 -1.899748 

Manhole in the right side 

of the road. 
0 /Manhole/#man011.jpg 

Repairs and 

patching 
 

As the database grows with more entries, it becomes a rich 
source of information for training machine learning algorithms. 
By analyzing the accumulated data, these algorithms can learn 
to recognize patterns and anomalies associated with different 
manhole conditions. Over time, with sufficient training and 
refinement, the system can evolve to autonomously identify 
issues and suggest or even initiate appropriate actions without 
human intervention. This advancement in autonomous decision-
making not only enhances efficiency but also reduces the 
response time in addressing urban infrastructure issues, thereby 
contributing to a safer and more effectively managed city 
environment. 

VI. CONCLUSION 

In conclusion, this research has successfully demonstrated 
the effectiveness of employing the YOLOv8 object detection 
model for the real-time supervision and detection of manhole 
situations using drone imagery and GPS integration. Our 
experiments showcased the model's exceptional precision and 
efficiency, underscoring its potential as a robust solution for 
proactive urban infrastructure monitoring. The integration of 
YOLOv8 proved instrumental in surpassing traditional methods, 
offering a swift and accurate means of identifying manhole 
covers and potential hazards across diverse urban landscapes. 
The synergy between deep learning, drone technology, and GPS 
data not only enhanced the speed of detection but also provided 
a comprehensive understanding of the spatial dynamics inherent 
in complex urban environments. The integration of advanced 
deep learning models, coupled with real-world performance 
metrics, establishes a robust foundation for the practical 
implementation of our proposed system in urban environments. 

As a perspective, we will continue to find more models and 
to make another experiment to strengthen our research in this 
field. 
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