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Abstract—Multi factor correction is optimized for fatigue life 

prediction and reliability evaluation of structural components. 

Based on the optimization of Bayesian theory, reliability 

evaluation is carried out to improve the efficiency of fatigue life 

prediction and reliability evaluation of structural components. 

The research results indicate that the crack propagation length 

increases with the increase in loading time. The average 

probability density of the modified method is 3.628, while the 

probability density of the traditional fracture mechanics model is 

1.242. Based on the multi factor modified crack propagation 

prediction model, the predicted data accuracy exceeds the 

traditional fracture mechanics model. It is consistent with the 

experimental results. The crack propagation prediction model 

based on multi factor correction can ensure the accuracy of the 

prediction. The reliability of the model is evaluated. The average 

prediction accuracy of multiple sets of data is over 90%. This 

research method helps predict the fatigue life of structural 

components and evaluate reliability to ensure the safe operation of 

construction machinery. 

Keywords—Multi factor bayesian theory correction; structural 
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I. INTRODUCTION 

A. Research Background 

Industrial machinery is an important equipment of modern 
industry and an indispensable core part of the machinery, 
shipbuilding and other industries. However, with the increasing 
complexity of construction machinery and the harsh service 
environment, the fatigue life and reliability of structural parts 
are increasingly prominent. In this case, accurate prediction of 
fatigue life and reliability assessment of structural components 
are particularly important [1]. Due to its large weight and high 
labor intensity, the minor failure of construction machinery 
structural parts will cause great losses, and even threaten 
personal safety in serious cases [2]. If the health status of the 
equipment is not fully considered and the life of the equipment 
is regarded as the standard, the blanket elimination of the 
equipment will lead to a great waste of resources [3]. However, 
due to the joint action of multiple factors such as material 
defects and local stress concentration, the damage process of 
structural parts has been expanded from microscopic to 
macroscopic, from cavity formation to growth, and from 

unknowable to observable. The influencing factors span time 
and space, including known and unknown, and the multi-scale 
comprehensive effect will have a multi-faceted impact on the 
evaluation results [4]. 

B. Research Status 

In the existing studies, only the influence of a single factor 
on the life of structural parts is generally considered, and the 
evaluation results of this evaluation method are not 
comprehensive enough. The multi-factor correction method has 
also been paid more attention, but there are still some 
limitations. For example, traditional multi-factor correction 
methods tend to consider only a few major influencing factors 
and ignore other potential influencing factors. In addition, 
traditional correction methods are often based on empirical 
formulas or simple mathematical models, and it is difficult to 
accurately describe the complex variation laws of fatigue life 
and reliability of structural parts [5-6]. 

C. Research Content 

Aiming at the limitations of existing studies, this study 
improved the multi-factor correction to improve the prediction 
and evaluation accuracy and constructed a fatigue life 
prediction and reliability evaluation method based on multi-
factor optimization and modification. The purpose of this 
method is to grasp the health state of the structural parts in the 
process of mechanical production and maintain them in time. 
The innovation of the research is to predict the life of structural 
parts from multiple factors and introduce Bayesian theory to 
optimize the reliability evaluation results. 

This research is mainly divided into six sections. Section II 
is a literature review, introducing the relevant research content 
of scholars in different fields. Section III is the research method, 
mainly introducing the fatigue life prediction and reliability 
evaluation of structural parts based on optimized multi-factor 
repair. Section IV and Section V are the result analysis, which 
explains the application analysis of optimized multi-factor 
correction in fatigue life prediction and reliability evaluation of 
structural parts. Section VI is the conclusion, and points out the 
future research direction. A structured roadmap of research 
content is shown in Fig. 1. 
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Fig. 1. A structured roadmap for the research content. 

II. RELATED WORKS 

The failure of construction machinery components may 
cause serious harm. Therefore, the research on FL prediction 
and reliability evaluation is very important. Due to the high 
working intensity and high use frequency of structural 
components, reliability has always been the focus of research 
in this field. Scholars in different fields have carried out a lot of 
research and achieved good results. 

Kaplan h proposed a new IOT fatigue damage sensor system 
for residual FL prediction of key mechanical and structural 
components, which can estimate the cumulative fatigue damage 
and residual FL. According to the findings, it has high 
prediction accuracy, which is conducive to checking the 
operation of structural parts at any time [7]. Prakash designed a 
probability model based on the Palmgren-Miner rule to better 
evaluate the fatigue state of ageing infrastructure. Bayesian 
method is used to estimate the parameters. Markov chain Monte 
Carlo simulation is applied to predict the FL. According to the 
findings, it can effectively improve the residual FL prediction 
accuracy of bridge components [8]. Su and other scholars 
predicted the FL of steel bridges. Based on the equivalent 
structural stress, a general fatigue reliability calculation model 
is established. The practicability and effectiveness of the fatigue 
reliability model are verified by numerical calculation and 
sensitivity analysis. It can better solve the classification 
problem that is difficult to determine in the random FL 
assessment of steel bridge welded structures [9]. The high pole 
lamp pole is easy to be affected by the wind load, which causes 
the fatigue failure of the whole life cycle. Therefore, Tsai l w et 

al. carried out the FL assessment of the base-pipe joint under 
the wind load. On this basis, the damage fraction under wind 
load is used to evaluate the FL of different structural parts. 
According to the findings, it can provide a general framework 
for designers and producers to develop high-pole lighting pole 
equipment [10]. Klemenc and other scholars designed a step-
stress accelerated life test to test the FL and structural 
component reliability of main failure modes. The expected 
acceleration factor is checked. The experimental results show 
that the predicted step stress accelerated life test duration has a 
good correlation with the actual experiment [11]. 

According to the specific reliability requirements of the 
current wind turbine life, Nielsen j s et al. proposed a risk-based 
derivation method for the specific target reliability level of wind 
turbine life extension. The experimental results show that the 
target annual reliability index is close to 3.1 [12]. Leonetti and 
other researchers designed a probabilistic FL prediction model 
based on S-N curve to evaluate the safety level of non-load 
bearing cross joints. The results show that the reliability index 
can be increased by 0.5:1 by using this model, which is 
conducive to the safety evaluation [13]. To test the fatigue 
characteristics of the laminated chip assembly under thermal 
cycle load, Li et al. developed a laminated chip assembly with 
multiple packaging methods and different chip positions. 
Through creep FL prediction models under various stress states, 
the FL of chips is evaluated. The outcomes indicated that the 
stress of the top mount solder joint is much smaller than that of 
the bottom mount solder joint. The middle position of the inner 
ring of the solder joint has the maximum value [14]. To evaluate 
the reliability of offshore wind turbine support structures with 
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pitting fatigue, Shittu et al. used the damage tolerance modeling 
method to evaluate the reliability of such structures with pitting 
fatigue. A non-invasive formula consisting of a series of steps 
is proposed. At a certain size, the height and width of the pit 
have a great influence on the structural reliability [15]. 

From the above research, the FL prediction and reliability 
evaluation of structural parts are conducive to promoting the 
safe operation and stability of construction machinery. Then the 
above studies only consider single factor, and the reliability of 
prediction and evaluation needs to be improved. Therefore, this 
study considers multiple factors for comprehensive prediction 
and evaluation. 

III. FATIGUE LIFE PREDICTION AND RELIABILITY 

EVALUATION OF STRUCTURAL COMPONENTS BASED ON 

OPTIMIZED MULTI FACTOR CORRECTION 

Through multi factor correction, the fatigue life of structural 
components is predicted. Based on optimized multi factor 
correction, the crack propagation of structural components is 
predicted. According to optimized Bayesian theory, reliability 
evaluation is carried out to improve the efficiency of FL 
prediction and reliability evaluation of structural components. 

A. Fatigue Life Prediction Based on Multifactor Correction 

With the continuous progress of science and technology, the 
understanding of fatigue issues continues to deepen. A series of 
FL prediction methods have been widely applied, such as 
nominal stress method, field strength method, etc. However, in 
practical applications, the nominal stress method and local 
stress-strain method are commonly used. The traditional 
nominal stress method mainly analyzes the maximum stress of 
the structure. Based on the maximum stress and the S-N curve 

of the material, the FL of the structure is predicted [16]. With 
the continuous development of finite element technology, the 
combination of traditional nominal stress method and finite 
element technology is an important research direction for 
predicting the FL of structural components under complex 
loads. This method has simple analysis steps, wide applicability, 
and strong practical value. However, due to the different fatigue 
characteristic parameters between structural components and 
material samples, it is difficult to ensure the accuracy of FL 
prediction between structural components and material samples. 
Therefore, starting from the actual characteristics of 
engineering components, the main controlling factors for the FL 
of structural components are identified and quantified. 
Furthermore, a set of FL prediction methods for structural 
components considering the combined effects of multiple factor 
corrections is established. 

Quantitative research on the impact of multiple factors on 
the fatigue performance of structural components is the basis 
for accurately predicting the FL of structural components. 
Stress concentration has a certain impact on the stress state of 
load-bearing structural components, which in turn affects the 
FL of the structure. The stress concentration factor is an 
important indicator that can distinguish the influence degree of 
stress concentration. There are two commonly used methods for 
obtaining stress concentration factors, namely the calculation 
method and the measurement method [17]. The measurement 
method is mainly aimed at elemental samples and is not suitable 
for large-sized components. The finite element method and 
numerical simulation method are more suitable for calculating 
the stress concentration coefficient of large-sized structural 
components. The calculation steps are shown in Fig. 2. 
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Fig. 2. Calculation steps for stress concentration coefficient. 

From Fig. 2, stress analysis is first conducted on the 
structural component to determine the maximum stress. An 
optimal integration path is selected on the cross-section of the 
maximum stress that reflects the distribution of the stress field. 
Then a point is used as the integration path to obtain the 

corresponding values of point distance L  and stress S  in 

the direction of the stress root section. By fitting these data, the 
corresponding stress field function can be obtained. The stress 
field function is used for calculation in Eq. (1). The nominal 
stress corresponding to the stress field is shown in Eq. (1). 
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In Eq. (1)，
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 . The nominal stress is taken into Eq. 

(2) for calculation. The stress concentration factor 
corresponding to the structural component is obtained. 
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t

n

S
K

S
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To evaluate the prediction accuracy of this method, finite 
element technology is used to analyze the material standard 
samples. The size factor of structural components is a parameter 
that reflects the influence of structural component size on FL. 
The fatigue limit relationship between structural components 
and materials is shown in Eq. (3) [18]. 
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In Eq. (3), 0r  and r  represent the fatigue limit of 

structural members and materials respectively.  1 2,f x x  is a 

function of the stress field near the local maximum stress. 1x  

and 2x  are the coordinate parameters of the plane field 

respectively. The stress field function can also be expressed by 

the distance  L i  between a point under the stress integration 

path in the stress field and the root of the maximum local stress, 
as shown in Eq. (4). 
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When the materials of two components are consistent, the 
size factor between the two components that meet the principle 
of similarity is shown in Eq. (5). 
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In Eq. (5),   represents the size factor. By combining Eq. 

(3), Eq. (4), and Eq. (5), another representation of the size factor 
can be obtained, as shown in Eq. (6). 
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In Eq. (6), 1 2 3 4, , ,     and 1 2 3 4, , ,     are both 

coefficients in the fitting function expression. The size factor of 

a single component can be represented by the integral ratio 
between the component and the reference sample in the stress 
field. Different surface treatment methods not only have 
different effects on the stress state of components, but also have 
impacts on the FL of components [19]. In addition, the loading 
method can also affect the FL. The influence of loading method 
factor on loading form is corrected. The FL prediction 
expression based on nominal stress is generally shown in Eq. 
(7). 

mS N C                   (7) 

In Eq. (7), S  represents stress. N  is used to describe the 

number of loading times for the load. m  and C  represent 

parameters related to material and stress ratio. By combining 
the influence of various factors and Eq. (7), a FL prediction 
algorithm based on optimized multi factor correction can be 
obtained, as shown in Eq. (8). 
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In Eq. (8), 1S  represents the material fatigue limit under 

symmetric loading. m  is the average stress, 

max min

2
m

 



 . max  and min  are the maximum and 

minimum values of stress, respectively. b  represents the 

tensile strength limit of the material. tK  represents the stress 

concentration factor.   is the surface quality factor. N  

represents FL. LC  represents the loading method factor. The 

implementation steps of the FL prediction method based on 
optimized multi factor correction are shown in Fig. 3. 
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Fig. 3. Implementation steps of fatigue life prediction method based on optimized multi factor correction. 
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From Fig. 3, during the implementation process, a finite 
element model of the structural component is first established 
and analyzed. Residual stresses in the structural components are 
tested. Then, stress concentration factors and size factors are 
calculated. Then, the surface quality factor and loading method 
factor are determined. After solving the FL, the fatigue bench 
test can be verified. 

B. Crack Propagation Prediction in Structural Components 

Based on Multi Factor Correction 

Crack propagation information is an important feature in the 
reliability evaluation of structural components. Accurately 
predicting crack development is crucial for grasping the 
reliability of structural components. However, due to structural 
and other factors, a crack propagation prediction model 
containing structural and other factors is established to 
quantitatively correct each influencing factor. Although 
existing fracture mechanics calculation methods cannot 
simultaneously correct multiple influencing factors, there is 
already a method that utilizes multiple factors to correct the S-
N curve [20]. The current judgment method is based on the 
development of cracks to fracture as the basis for determining 
failure. Therefore, the traditional FL prediction method based 
on S-N curve cannot be applied to the crack development stage 
of structural components. The core issue is that it does not 
include parameters that reflect its development process. The 
multi factor joint correction method is adopted based on the 
failure criterion of crack development to fracture. The stress 
concentration coefficient is introduced to accurately describe 
the crack length, thereby achieving prediction of crack length. 
Based on the multi factor correction method for predicting the 
FL of structural components in the previous section, the 
structural factors, average stress, and other factors on the FL are 
quantitatively represented, as shown in Eq. (8). The failure 
criterion is based on the extension of cracks towards the fracture 

state. tK  is the only parameter in the algorithm that can be 

associated with the crack length a , as shown in Eq. (9). 
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In Eq. (9), n  represents the nominal stress. The 

expression is shown in Eq. (10). 
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In Eq. (10), ir  represents the distance between any point 

in the stress field and the maximum stress position at the crack 

root, maxA r . i  represents the stress value at any point 

along the stress field path. Combining Eq. (9) and Eq. (10), the 
expression for the stress concentration factor can be obtained, 
as shown in Eq. (11). 
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By combining Eq. (8) and Eq. (9), the crack propagation 

length can be obtained when the working time N  is specified, 

as shown in Eq. (12) [21]. 
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The implementation process of the crack propagation 
prediction model based on multi factor correction under 
constant amplitude load is explained, as shown in Fig. 4. 

From Fig. 3, during the implementation process, the stress 
at the crack root of the structural component is first analyzed. 
Then the material parameters and correction factors are 
determined. Then the crack propagation of the structural 
component is predicted. Finally, the acoustic emission test is 
verified. 
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Fig. 4. Implementation steps of crack propagation prediction method. 

C. Reliability Evaluation Method Based on Optimized 

Bayesian Theory 

In practical applications, due to various uncertain factors, 
there is a deviation between the predicted results obtained by a 
single numerical prediction model and the actual situation. 
Therefore, based on the Bayesian theory of dynamic 
distribution parameters, existing numerical prediction models 
and experimental data are organically integrated. 
Corresponding prior and posterior probability distribution 
models are constructed to achieve accurate reliability 
evaluation of structural components. If the initial reliability of 
different materials is divided according to certain parameters 
and the ordered reliability between test data is characterized by 
a certain increasing coefficient, then the NHPP model based on 
Bayesian theory can be used to evaluate the reliability of 
components under different initial damage conditions. 

The conventional Bayesian theory is no longer applicable to 
the reliability of components with cracks in different initial 
crack states, such as non-uniform crack situations. If a 
parameter based on initial reliability can be established and the 
ordered reliability between test data can be characterized, an 
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ordered Bayesian model can be used to evaluate the reliability 
of materials in different initial states. The specific process is 
shown in Fig. 5. 

From Fig. 5, the reliability sequence model is combined 
with NHPP. The sequence relationship between various test 
data and overall process parameters is fused through Bayesian 
theory to obtain a Gama Beta prior probability distribution 
suitable for NHPP model parameters. Then, Bayesian theory is 
combined with likelihood functions of multiple test processes 
to obtain the NHPP posterior probability distribution. 
Afterwards, the existing measured data is used to predict and 
evaluate the reliability of component crack development under 
different initial conditions. In this research, the stress 
concentration factor is selected as a parameter that reflects the 
reliability gradient relationship between different data values of 
structural components, namely the progressive factor. 
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Fig. 5. Specific process of research. 

The progressive factor is a very important parameter in 
establishing the reliability ordering relationship between data. 
Therefore, data statistics are conducted to determine the 

discreteness. , ,,j L j U  
   serves as the value space for the 

progressive factor to reduce the impact of calculation errors in 
stress concentration factors on the progressive factor. The 
corresponding first-order and second-order matrix expressions 
are shown in Eq. (13). 
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In Eq. (13),  jE   and  2
jE   represent the 

progressive factor value space considering calculation errors. In 
the prior distribution based on Bayesian theory NHPP, there is 
no conjugate prior distribution of parameters. Therefore, the 
main problem is to accurately describe prior information and 

determine prior distribution. When the initial crack is very 
small, two methods are usually used to construct an uninformed 
prior distribution, namely constructing an uninformed prior 
distribution, or using existing theoretical models to predict prior 
information. The expression for constructing an uninformed 
prior distribution using the Box-Tao method is shown in Eq. 
(14). 
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By standardizing the description of prior information and 
integrating information between different types of data, 
Bayesian reliability sequences for different cracks are 
constructed. In posterior reasoning, based on Bayesian theorem 
and combined with group likelihood function, the posterior 
distribution of NHPP parameters is obtained. To further verify 
the feasibility and analytical accuracy of the model, fatigue 
loading tests were conducted on components with different 
initial crack lengths. Among them, the ordering relationship is 
the fundamental condition for the application of the model. 
Therefore, the sequencing relationship between the analyzed 
data is verified. The statistical criteria for validation are shown 
in Eq. (15). 
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In Eq. (15), j  and 1j   represent two data groups. 

*F  is the test statistic. 
*

1,N jL   represents the crack 

propagation length corresponding to the number of iN  load 

actions in the organized data. After satisfying the serialization 
relationship in the model assumption, Eq. (12) can be used to 
predict the crack propagation data under annotated loads. 

IV. APPLICATION ANALYSIS OF OPTIMIZED MULTI FACTOR 

CORRECTION IN FL PREDICTION AND RELIABILITY 

EVALUATION OF STRUCTURAL COMPONENTS 

For the prediction and reliability evaluation of FL for 
structural components, the crack propagation under constant 
load and the reliability of structures under different initial crack 
states are analyzed to promote the reliability evaluation and safe 
operation of engineering machinery structural components. 

A. Prediction Analysis of Crack Propagation Under Constant 

Load 

The accuracy of predicting crack propagation based on 
multi factor correction under constant load is verified. A 
structural component with a crack length of 600mm, a crack 
width of 100mm, and a crack length of 50mm is selected as the 
analysis object. The crack propagation model will be calculated 
according to the parameters calculated in the method to obtain 
the crack length propagation curve. The results are shown in 
Fig. 6. 
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Fig. 6. Crack propagation curve based on multi factor correction. 

From Fig. 6, the crack propagation length increases with 
increasing loading time. When the loading time is 2000s, the 
crack propagation length is 0.9mm. When the loading time is 
10000s, the crack propagation length is 8.5mm. To analyze the 
accuracy of prediction, crack propagation prediction is carried 
out based on multi factor correction. The loading times are fixed. 
The results are shown in Fig. 7. 

From Fig. 7(a), (b), (c), (d), and (e) represent the probability 
density at 2000, 4000, 6000, 8000, and 10000 loading times, 
respectively. The horizontal axis stands for the crack 
propagation length, and the vertical axis stands for the 
probability density. CM represents the correction method. FM 
stands for fracture mechanics. The curve in the figure represents 
the probability density distribution corresponding to the 
acoustic emission test data. Each crack propagation length 
value corresponds to a probability density value. The 
probability density values corresponding to the modification 
method and fracture mechanics method are marked in the figure. 
The red area represents the difference in probability distribution 
between the two methods. According to the analysis results, the 
average probability density of the modified method is 3.628. 
The probability density of traditional fracture mechanics 
models is 1.242. Based on the multi factor modified crack 
propagation prediction model, the accuracy of the predicted 
data is significantly higher than that of traditional fracture 
mechanics models. It is consistent with the experimental results. 
Therefore, a crack propagation prediction model based on multi 
factor correction can ensure the accuracy of the prediction. 
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Fig. 7. Probability density distribution of predicted data. 
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B. Structural Reliability Evaluation Analysis Under Different 

Initial Crack States Based on Bayesian Theory NHPP 

To further verify the feasibility and accuracy of the model, 
crack lengths of 5mm, 10mm, and 15mm are prepared. Fatigue 
loading experiments are conducted on components with 
different initial crack lengths. The fatigue crack propagation life 
of the structural components is displayed in Table I. In order to 
evaluate the generalization ability of the model and verify its 
accuracy in practical applications, the method of cross-
validation is used to retrain and test the model. The performance 
of the model is evaluated by dividing the raw data into K parts 
and recycling K-1 of them as training data and the remaining 

part as test data. In the experiment, the study chose to use 10-
fold cross-validation to perform this step. The first group has an 
initial crack length of 5mm, the second group is 10mm, and the 
third group is 15mm. The sequencing accuracy is analyzed. In 
the initial state, the experimental data and maximum probability 
prediction results of the posterior process model are compared. 
The prediction accuracy of the test data is obtained. Table II 
displays the results. 

The combination of known critical fracture crack length and 
predicted data can obtain the predicted reliability gradient 
process of structural components under different initial crack 
states. The results are shown in Fig. 8. 
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Fig. 8. The gradual process of predictive reliability of structural components under different initial states. 

TABLE I. CRACK PROPAGATION INFORMATION OF COMPONENTS IN DIFFERENT INITIAL STATES 

Initial crack length=5mm Initial crack length=10mm Initial crack length=15mm 

Number of load 

applications (×104) 

Crack propagation 

length/mm 

Number of load 

applications (×104) 

Crack propagation 

length/mm 

Number of load 

applications (×104) 

Crack propagation 

length/mm 

1 4.20 1 4.81 1 5.12 

2 8.65 2 9.96 2 10.62 

3 13.41 3 15.36 3 16.37 

4 18.35 4 21.03 4 22.43 

5 22.91 5 26.25 5 27.96 

6 28.21 6 32.26 6 34.47 

7 33.09 7 37.93 7 40.51 

8 38.60 8 44.31 8 47.18 

9 43.94 9 50.38 9 53.77 

10 51.18 10 58.65 10 62.56 

TABLE II. ACCURACY OF PREDICTION RESULTS 

Initial crack length(mm)(Group) Average prediction accuracy (%) 

5(Group 1) 91.41 

10(Group 2) 92.13 

15(Group 3) 92.80 
 

From Fig. 8, the predicted reliability of structural 
components under three different initial crack states decreases 

with the increase of load actions. When the load times are 100

×103, the reliability of the first and second group of data is 0.28. 
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It can be seen that the reliability of the second group of data 
continues to decline. While the third group of data tends to be 
stable. 

The reliability is ranked from high to low in the third group, 
the second group, and the first group. 

C. Structural Reliability Evaluation Results Under Different 

Initial Crack States 

In practical engineering, it is common to face the reliability 
evaluation of multiple similar structural components. Therefore, 
fatigue loading experiments are conducted on structural 
components with different initial crack lengths of 10mm, 25mm, 

38mm, and 43mm. The fatigue crack propagation data of 
structural components are illustrated in Table III. 

In Table III, the first group has an initial crack length of 
10mm, the second group is 25mm, the third group is 38mm, and 
the fourth group is 430mm. Similarly, for the data in Table III, 
a cross-validation approach was adopted to train and test the 
model. Table IV displays the accuracy of the test data. 

Afterwards, the known critical fracture crack length is 
combined with predicted data to obtain the reliability gradient 
process of structural components under different initial crack 
states, as shown in Fig. 9. 
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Fig. 9. Gradual process of component reliability under four different initial states of cracks. 

TABLE III. CRACK PROPAGATION OF COMPONENTS CORRESPONDING TO DIFFERENT INITIAL CRACK SIZES 

Initial crack length=10mm Initial crack length=25mm Initial crack length=38mm Initial crack length=43mm 

Number of load 

applications 
(×104) 

Crack propagation 

length/mm 

Number of load 

applications 
(×104) 

Crack propagation 

length/mm 

Number of load 

applications 
(×104) 

Crack propagation 

length/mm 

Number of load 

applications 
(×104) 

Crack propagation 

length/mm 

1 3.92 1 6.31 1 9.24 1 10.88 

2 9.16 2 14.40 2 21.15 2 21.55 

3 14.46 3 21.01 3 29.56 3 30.27 

4 18.56 4 25.91 4 35.23 4 37.46 

5 21.06 5 29.18 5 38.95 5 43.51 

6 22.10 6 31.20 6 41.43 6 48.81 

7 22.49 7 32.73 7 43.45 7 53.75 

8 23.75 8 34.83 8 45.76 8 58.76 

9 27.95 9 38.94 9 49.05 9 64.24 

10 38.01 10 46.75 10 54.08 10 70.55 

11 57.29 11 60.35 11 61.57 11 78.13 

12 72.23 12 76.10 12 79.98 12 87.32 

13 86.75 13 92.49 13 96.35 13 98.58 

14 105.89 14 112.35 14 115.18 14 123.04 

15 128.91 15 130.25 15 138.63 15 146.35 
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TABLE V. ACCURACY OF FOUR SETS OF TEST DATA PREDICTION RESULTS 

Initial crack length(mm)(Group) Average prediction accuracy (%) 

10(Group 1) 90.99 

25(Group 2) 91.21 

38(Group 3) 92.84 

43(Group 4) 92.95 
 

From Fig. 9, the predicted reliability of structural 
components under four different initial crack states decreases 
with the increase of the load actions. When the load times are 

12×104, the reliability of the third set of data is almost close to 

that of the fourth set of data, but it is still lower than that of the 
fourth set of data after that. The reliability is ranked from high 
to low in the fourth group, the third group, the second group, 
and the first group. 

The fatigue life prediction and reliability of structural parts 

are evaluated by considering many complex factors. In order to 
test the superiority of the multi-factor evaluation method, the 
performance of the study was compared with that of the single 
factor evaluation method. The comparative single-factor 
evaluation methods included initial crack length, material type, 
loading frequency, and ambient temperature. Under the same 
experimental conditions, four groups of structural parts with 
different initial crack lengths were predicted and evaluated by 
using these four single factor evaluation methods. The 
experimental results are shown in Table V. 

TABLE VI. COMPARISON OF PREDICTION ACCURACY BETWEEN MULTI-FACTOR AND SINGLE-FACTOR EVALUATION METHODS 

Initial Crack Length 

(mm) 
Evaluation Method Average Prediction Accuracy (%) Evaluation Accuracy (%) 

10 

Single Factor (Initial Crack Length) 82.35 82.45 

Single Factor (Material Type) 84.02 83.74 

Single Factor (Loading Frequency) 80.47 80.45 

Single Factor (Ambient Temperature) 87.84 87.45 

Multi-Factor Evaluation Method 92.45 92.74 

25 

Single Factor (Initial Crack Length) 82.45 83.45 

Single Factor (Material Type) 83.97 84.05 

Single Factor (Loading Frequency) 80.42 80.94 

Single Factor (Ambient Temperature) 87.15 87.84 

Multi-Factor Evaluation Method 92.48 93.05 

38 

Single Factor (Initial Crack Length) 82.48 82.01 

Single Factor (Material Type) 83.89 84.94 

Single Factor (Loading Frequency) 80.74 90.14 

Single Factor (Ambient Temperature) 87.56 85.74 

Multi-Factor Evaluation Method 93.08 94.78 

43 

Single Factor (Initial Crack Length) 82.84 82.41 

Single Factor (Material Type) 82.97 83.06 

Single Factor (Loading Frequency) 80.15 81.15 

Single Factor (Ambient Temperature) 87.45 88.01 

Multi-Factor Evaluation Method 92.56 92.45 
 

It can be seen from Table V that under any initial crack 
length, the prediction accuracy of the multi-factor evaluation 
method is higher than that of the single-factor evaluation 
method. This shows that considering the combined influence of 
many factors is very important to accurately predict the fatigue 
life and reliability of structural parts. Especially in the complex 
working environment and variable load conditions, the single 
factor evaluation method often cannot fully reflect the actual 
state of the structural parts, while the multi-factor evaluation 
method can more accurately describe the performance change 
and reliability gradient process of the structural parts. 

V. THE RESULTS OF THE RESEARCH 

In the process of crack growth prediction analysis under 
constant load, it is found that the crack growth length increases 
with the increase of loading time. When the loading time was 
2000s, the crack growth length was 0.9mm, and when the 
loading time was 10000s, the crack growth length was 8.5mm. 
This indicates that the crack growth rate is not linear, but the 
crack growth rate is slow at the initial stage of loading, and then 
gradually accelerates. In order to better understand this 
nonlinear crack growth process. Under different loading times, 
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the predicted probability density value of CM is significantly 
higher than that of FM, and the average probability density 
number of the modified method is 3.628, while the probability 
density number of the traditional fracture mechanics model is 
1.242. Based on the multi-factor modified crack growth 
prediction model, the predicted data accuracy is significantly 
higher than that of the traditional fracture mechanics model. In 
reliability evaluation analysis, the longer the initial crack length, 
the higher the reliability. In comparison with the experimental 
results of other methods, the prediction accuracy and reliability 
evaluation accuracy of the proposed method are both above 
90%, which are 92.64% and 93.26%, respectively. In 
conclusion, the multi-factor evaluation method has obvious 
superiority and wide application prospect in the fatigue life and 
reliability evaluation of structural parts. 

VI. CONCLUSION 

Construction machinery is important in the "the Belt and 
Road" initiative. With the advancement of modernization 
construction, its development prospects are still broad. 
Continuously improving the safety and reliability of 
construction machinery can better support national economic 
development and ensure that it plays a positive role in the 
application of various industries. The operational safety and 
stability of construction machinery are crucial for the economic 
benefits of enterprises and the safety of personnel. For 
predicting and evaluating the FL of structural components, 
multiple complex factors need to be considered. It is a challenge 
that must be faced in practical engineering. Multiple factors are 
modified for predicting the FL and reliability evaluation of 
structural components. According to the research results, the 
crack propagation length increases with increasing loading time. 
When the loading time is 2000s, the crack propagation length 
is 0.9mm. When the loading time is 10000s, the length is 8.5mm. 
In the process of single-factor and multi-factor comparison, the 
prediction accuracy and evaluation accuracy of multi-factor 
reached 92.64% and 93.26%, respectively. Moreover, in the 
comparison experiment between the modified method and the 
traditional fracture mechanics model, the average probability 
density number of the modified method is 3.628, while the 
probability density number of the traditional fracture mechanics 
model is 1.242. Based on the multi-factor modified crack 
growth prediction model, the accuracy of the predicted data is 
significantly higher than that of the traditional fracture 
mechanics model, and is consistent with the experimental 
results. The crack propagation prediction model based on multi 
factor correction can ensure the accuracy of the prediction. 
Subsequent research will investigate the impact of residual 
stress on crack propagation patterns. 
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